

<u>Qiang Wei</u>¹, Jason Crampton², Konstantin Beznosov¹, Matei Ripeanu¹

Laboratory for Education and Research in Secure Systems Engineering (LERSSE), University of British Columbia

²Information Security Group, Royal Holloway, University of London

outline

the overview

- authorization architecture
- motivation
- recycling approach
- recycling algorithms
- experimental evaluations
- summary & future work

- also known as request-response paradigm
- applied by IBM Access Manager, Entrust GetAccess, CA SiteMinder, etc.

motivations

existing approaches

fault-tolerance by replication/redundancy

- + improve availability
- latency remains unchanged
- require specialized OS/middleware
- poorly scale on large populations
- caching previous authorizations
 - + simple, inexpensive
 - + improves performance & availability
 - serves only requests that have been issued before (precise recycling)

¹J. Crampton, W. Leung and K. Beznosov, "The Secondary and Approximate Authorization Model and its Application to Bell-LaPadula Policies," in the *Proceedings of the 11th ACM Symposium on Access Control Models and Technologies (SACMAT)*, Lake Tahoe, California, USA, 7-9 June, 2006.

SAAM_{RBAC}

SAAM

- only an abstract model
- a specific SAAM recycling algorithm is needed for each access control model

SAAM_{RBAC}

- apply SAAM to role-based access control (RBAC) model
- develop recycling algorithms specifically for RBAC

outline

- the overview
- recycling algorithms
- experimental evaluations
- summary & future work

terminology

- request: issued by a subject s for a permission p
 - request=(s,p)
- ±: denotes the decision to a request
 - an allow response: +(s,p)
 - a deny response: –(s,p)
- subject: modeled as the set of roles r activated in a session
 - $s = \{r_1, r_2, r_3\}$

inference rules

Rule⁺: if +(s,p) and s' ⊆ s, then request (s',p) should also be allowed

Rule⁻: if -(s,p) and s' ⊆ s, then request (s',p) should also be denied

$$Rule^{+} S_{1} = \{r_{1}\} - Rule^{-}$$
$$S_{2} = \{r_{1}, r_{2}\} - Rule^{-}$$

cache⁺ and cache⁻

example: summary

- algorithm correctness is proved
 - if the SDP makes any allow or deny decision, the PDP will always make the same decision

outline

- the overview
- recycling algorithms
- experimental evaluations
- summary and future work

evaluation metrics

SDP hit rate

- a cache hit
 - a request is resolved by the SDP
- higher hit rate => more requests resolved by the SDP
 - even when the PDP fails => higher availability
 - reducing the load of the PDP => higher scalability
- SDP inference time
 - the time used to infer approximate responses
 - less inference time, more efficient the system

evaluation methodology

hit rate

compared with simple caching, hit rate is improved significantly by using $SAAM_{RBAC}$ recycling algorithm

the impact of various system parameters

- the percentage of deny responses
- the number of roles
- the number of roles assigned per permission
- the number of roles assigned per user
- the popularity distribution of role assignment

inference time

inference time stabilizes

cache size

RABC policy: 100 subjects, 1,000 objects, 50 roles

cache size stabilizes

outline

- the overview
- recycling algorithms
- experimental evaluations
- summary and future work

summary

future work

- when role hierarchy is available
- cache replacement algorithm
- experiment with real enterprise RBAC policies and request traces

We are looking for policies and traces from real applications! If you are willing to share them, please talk to me or contact me at: qiangw@ece.ubc.ca

