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Abstract
This paper presents an approach for retrofitting existing web applications with run-
time protection against known as well as unseen SQL injection attacks (SQLIAs)
without the involvement of application developers. The precision of the approach is
also enhanced with a method for reducing the rate of false positives in the SQLIA
detection logic, via runtime discovery of the developers’ intention for individual
SQL statements made by web applications. The proposed approach is implemented
in the form of protection mechanisms for J2EE, ASP.NET, and ASP applications.
Named SQLPrevent, these mechanisms intercept both HTTP requests and SQL
statements, mark and track parameter values originating from HTTP requests, and
perform SQLIA detection and prevention on the intercepted SQL statements. The
AMNESIA testbed is extended to contain false-positive testing traces, and is used to
evaluate SQLPrevent. In our experiments, SQLPrevent produced no false positives
or false negatives, and imposed a maximum 3.6% performance overhead with 30
milliseconds response time for the tested applications.

Introduction

SQL injection attacks (SQLIAs) are one of the foremost threats to web applica-
tions (W. G. Halfond, Viegas, & Orso, 2006). According to the WASP Foundation, injection flaws,
particularly SQL injection, were the second most serious type of web application vulnerability in
2008 (OWASP, 2008). The threats posed by SQLIAs go beyond simple data manipulation. Through
SQLIAs, an attacker may also bypass authentication, escalate privileges, execute a denial-of-service
attack, or execute remote commands to transfer and install malicious software. As a consequence
of SQLIAs, parts of or entire organizational IT infrastructures can be compromised. As a case in
point, SQLIAs were apparently employed by Ehud Tenenbaum, who has been arrested on charges
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of stealing $1.5M from Canadian and at least $10M from US banks (Zetter, 2009). An effective and
easy to employ method for protecting numerous existing web applications from SQLIAs is crucial
for the security of today’s organizations.

State-of-the-practice SQLIA countermeasures are far from effective (Anley, 2002) and many
web applications deployed today are still vulnerable to SQLIAs (OWASP, 2008). SQLIAs are per-
formed through HTTP traffic, sometimes over SSL, thereby making network firewalls ineffective.
Defensive coding practices require training of developers and modification of the legacy applica-
tions to assure the correctness of validation routines and completeness of the coverage for all sources
of input. Sound security practices—such as the enforcement of the principle of least privilege or at-
tack surface reduction—can mitigate the risks to a certain degree, but they are prone to human error,
and it is hard to guarantee their effectiveness and completeness. Signature-based web application
firewalls—which act as proxy servers filtering inputs before they reach web applications—and other
network-level intrusion detection methods may not be able to detect SQLIAs that employ evasion
techniques (Maor & Shulman, 2005).

Detection or prevention of SQLIAs is a topic of active research in industry and academia.
An accuracy of 100% is claimed by recently published techniques that use static and/or dynamic
analysis (W. G. Halfond & Orso, 2005; Buehrer, Weide, & Sivilotti, 2005; Su & Wassermann,
2006; Bandhakavi, Bisht, Madhusudan, & Venkatakrishnan, 2007), dynamic taint analysis (Nguyen-
Tuong, Guarnieri, Greene, Shirley, & Evans, 2005; Pietraszek & Berghe, 2005), or machine learning
methods (Valeur, Mutz, & Vigna, 2005). However, the requirements for analysis and/or instrumen-
tation of the application source code (W. G. Halfond & Orso, 2005; Buehrer et al., 2005; Su &
Wassermann, 2006; Bandhakavi et al., 2007), runtime environment modification (Nguyen-Tuong
et al., 2005; Pietraszek & Berghe, 2005), or acquisition of training data (Valeur et al., 2005) limit
the adoption of these techniques in some real-world settings. Moreover, a common deficiency of
existing SQLIA approaches based on analyzing dynamic SQL statements is in defining SQLIAs too
restrictively, which leads to a higher than necessary percentage of false positives (FPs). False posi-
tives could have significant negative impact on the utility of detection and protection mechanisms,
because investigating them takes time and resources (Julisch & Darcier, 2002; Werlinger, Hawkey,
Muldner, Jaferian, & Beznosov, 2008). Even worse, if the rate of FPs is high, security practitioners
might become conditioned to ignore them.

In this paper, we propose an approach for retrofitting existing web applications with run-
time protection against known as well as unseen SQL injection attacks (SQLIAs) without the in-
volvement of application developers. Our work is mainly driven by the practical requirement of
web-application owners that a protection mechanism should be similar to a software-based secu-
rity appliance that can be “dropped” into an application server at any time, with low administration
and operating costs. This “drop-and-use” property is vital to the protection of web applications
where source code, qualified developers, or security development processes might not be available
or practical.

To detect SQLIAs, our approach combines two heuristics. The first heuristic (labeled as
“token type conformity”) triggers an alarm if the parameter content of the corresponding HTTP
request is used in non-literal tokens (e.g., identifiers or operators) of the SQL statement. While
efficient, this heuristic leaves room for false positives when the application developer (intentionally
or accidentally) includes tainted SQL keywords or operators in a dynamic SQL statement. This case
would trigger an SQLIA alarm, even though the query does not result in an SQLIA. For instance, as
a common case of result-set sorting, a developer could intentionally include a predefined parameter
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value in an HTTP request to form an “ORDER BY” clause in an SQL statement. As we explain
later in the paper, the existing approaches and the detection logic based solely on the first heuristic
would trigger an SQLIA alarm because the keywords “ORDER” and “BY” are tainted, even though
the intercepted SQL statement is indeed benign. In this case, the user is supplying input intended
by the programmer; she is not injecting SQL.

When a potential SQLIA is detected by the first heuristic, our approach employs the second
heuristic (labeled as “conformity to intention”) to eliminate the above type of false positives. We
put forward a new view of an SQLIA: an attack occurs when the SQL statement produced by the
application at runtime does not conform to the syntactical structure intended by the application de-
veloper. Intention conformity enables runtime discovery of the developers’ intention for individual
SQL statements made by web applications. Defined more precisely later in the paper, such a view
of an SQLIA requires “reverse engineering” of the developer’s intention. Our approach not only
“discovers” the intention but does so at runtime, which is critical for those applications that are pro-
vided without source code. To discover the intended syntactical structures, our approach performs
dynamic taintness tracking at runtime and encodes the intended syntactical structure of a dynamic
query in the form of SQL grammar, which we term intention grammar. Our detection algorithm
triggers an alarm if the intercepted SQL statement does not conform to the corresponding intention
grammar.

To evaluate our approach, we developed SQLPrevent. It is a software-based security appli-
ance that (1) intercepts HTTP requests and SQL statements at runtime, (2) marks parameter values
in HTTP requests as tainted, (3) tracks taint propagation during string manipulations, and (4) per-
forms analysis of the intercepted SQL statements based on our heuristics. To evaluate SQLPrevent,
we employed the AMNESIA (W. G. Halfond & Orso, 2005) testbed, which has been used for eval-
uating several other research systems. We extended the AMNESIA testbed to contain requests with
new false positives, and added another set of obfuscated attack inputs per application. In our exper-
iments, SQLPrevent produced no false positives or false negatives, and imposed little performance
overhead (maximum 3.6%, standard deviation 1.4%), with 30 milliseconds response time for the
tested applications.

The rest of the paper is organized as follows. In the next section, we explain how SQL
injection attacks and typical countermeasures work. Then we review existing work and compare it
with the proposed approach. We then describe our approach in detail for detecting and preventing
SQL injection attacks. Next, we discuss the implementation of SQLPrevent in J2EE, ASP.NET, and
ASP, followed by a description of the evaluation methodology and results. Finally, we discuss the
implications of the results and the strengths and limitations of our approach before summarizing the
paper and outlining future work.

Background

In this section, we explain how SQLIAs work, why false positives are possible, and what
countermeasures are currently available. Readers familiar with the subject can proceed directly to
the next section.

How SQL Injection Attacks Work

For the purpose of discussing SQLIAs, a web application can be thought of as a black box that
accepts HTTP requests as inputs and generates SQL statements as outputs, as illustrated in Figure 1.
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Figure 1. How SQL injection attacks work.

Web applications commonly use parameter values from HTTP requests to form SQL statements.
SQLIAs may occur when data in an HTTP request is directly used to construct SQL statements
without sufficient validation or sanitization. For instance, when S="SELECT * FROM product
WHERE id=" + request.getParameter("product id") is executed in the web appli-
cation, the value of the HTTP request parameter product id is used in the SQL statement without
any validation. By taking advantage of this vulnerability, an attacker can launch various types of
attacks by posting HTTP requests that contain arbitrary SQL statements. Below is an example of a
malicious HTTP request:

POST /prodcut.jsp HTTP/1.1
product_id=2; exec master..xp_cmdshell ’net user hacker 1234 /add’

In the case of the above attack, the SQL statement constructed by the programming logic would be
the following:

SELECT * FROM product WHERE id=2; _
exec master..xp_cmdshell ’net user hacker 1234 /add’

If the injected code is executed by the database server, this attack would add a new user account
named “hacker” with a password “1234” to the underlying Windows operating system. More ma-
licious attacks, such as file upload and remote command execution, are also possible with similar
attack techniques (Anley, 2002).

To confuse signature-based detection systems, attackers may also apply evasion techniques
that obfuscate attack strings. Below is an obfuscated version of the above privilege-escalation attack.

POST /prodcut.jsp HTTP/1.1
product_id=2; /* */declare/* */@x/* */as/**/varchar(4000)
/* */set/* */@x=convert(varchar(4000),0x6578656320206D6173
7465722E2E78705F636D647368656C6C20276E65742075736572206861
636B6572202F6164642027)/**/exec/* */(@x)

The above obfuscation utilizes hexadecimal encoding, dropping white space, and inline comment
techniques. For a sample of evasion techniques employed by SQLIAs, see (Maor & Shulman, 2005).
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False Positives

Web application developers typically use string manipulation functions to dynamically com-
pose SQL statements by concatenating pre-defined constant strings with parameter values from
HTTP requests. In these cases, programmers can freely incorporate user inputs to form dynamic
SQL statements. Without taking developers’ SQL-grammatical intentions into account, false posi-
tives are possible in all existing dynamic SQLIA approaches. We illustrate this false-positive prob-
lem through a running example.

Example 1 Assume there is an HTML dropdown list named “order by”, which consists of three
entries—“without order”, “by id”, “by name”. Each entry and its corresponding value
is shown in the following HTML code:

<select name=’order_by’>
<option value=’’>without order</option>
<option value=’ORDER BY id’>by id</option>
<option value=’ORDER BY name’>by name</option>

</select>

Assume a programmer intentionally uses the value of the parameter “order by” to form an SQL
query, as illustrated in the following Java code fragment:

S=“SELECT c1 FROM t1” + request.getParameter(“order by”);

Based on a user’s selection at runtime (assume the second entry is selected), the SQL statement con-
structed by the above programming logic would be “SELECT c1 FROM t1 ORDER BY id”,
where underlined labels indicate the data originated from an HTTP request.

Obviously, the above Java code fragment is vulnerable. An attacker can launch an arbitrary
attack by simply appending an attack string to the legitimate input “order by=ORDER BY id”.
However, during normal operations, the dynamically constructed SQL statements are indeed benign
and harmless.

Existing Countermeasures

Because SQLIAs are carried out through HTTP traffic, sometimes protected by SSL, most
traditional intrusion-prevention mechanisms, such as firewalls or signature-based intrusion detec-
tion systems (IDSs), are not capable of detecting SQLIAs. Three types of countermeasures are
commonly used to prevent SQLIAs: web application firewalls, defensive coding practices, and ser-
vice lock-down.

Web application firewalls such as WebKnight (AQTRONIX, 2007), ModSecurity (Breach
Security Inc., 2007) and Security Gateway (Scott & Sharp, 2002) are easy to deploy and operate.
They are commonly implemented as proxy servers that intercept and filter HTTP requests before
requests are processed by web applications. However, due to the limitation of signature databases
or policy rules, they may not effectively detect unseen patterns or obfuscated attacks that employ
evasion techniques. Also, false positives might occur if signatures or filter policy rules are too
restrictive.
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Defensive coding practices are the most intuitive ways to prevent SQLIAs, by validat-
ing input types, limiting input length, or checking user input for single quotes, SQL keywords,
special characters, and other known malicious patterns. Using a parameterized query API (e.g.,
PrepareStatement in Java and SQLParameter in .NET) is another compelling solution for
mitigating SQLIAs directly in code, as parameterized queries syntactically separate the intended
structure of SQL statements and data literals.

Service lock-downs are procedures employed to limit the damage resulting from SQLIAs.
System administrators can create least-privileged database accounts to be used by web applications,
configure different accounts for different tasks and reduce un-used system procedures. However,
similar to defensive coding practices, these countermeasures are prone to human error, and it is
difficult to assure their correctness and/or completeness.

Having discussed the state of the practice, in the next section we provide an overview of the
state of the art.

Related Work

Existing research related to SQLIA detection or prevention can be broadly categorized based
on the type of data analyzed or modified by the proposed techniques: (1) runtime HTTP requests,
(2) design-time web application source code, and (3) runtime dynamically generated SQL state-
ments. Below, we discuss related work using this categorization, briefly summarize the advantages
and limitations of existing approaches, and demonstrate why false positives are possible in some ap-
proaches. For a more detailed discussion, we refer the reader to a classification of SQLIA prevention
techniques in (W. G. Halfond et al., 2006) and our technical report (Sun & Beznosov, 2009).

Web application source code analysis and hardening: WebSSARI (Huang et al., 2004),
and approaches proposed by Livshits and Lam (2005), Jovanovic, Kruegel, and Kirda (2006), and
Xie and Aiken (2006) use information-flow-based static analysis techniques to detect SQLIA vul-
nerabilities in web applications. Once detected, these vulnerabilities can be fixed by the developers.
They have the advantages of no runtime overhead and the ability to detect errors before deploy-
ment; however, they need access to the application source code, and the analysis has to be repeated
each time an application is modified. Such access is sometimes unrealistic, and repeated analysis
increases the overhead of change management.

Runtime analysis of SQL statements for anomalies: Valeur et al. (2005) propose an SQLIA
detection technique based on machine learning methods. However, the fundamental limitation of
this and other approaches based on machine learning techniques is that their effectiveness depends
on the quality of training data used. Training data acquisition is an expensive process and its quality
cannot be guaranteed. Non-perfect training data causes such techniques to produce false positives
and false negatives.

Static analysis with runtime protection: SQLrand (Boyd & Keromytis, 2004) modifies
SQL statements in the source code by appending a randomized integer to every SQL keyword during
design-time; an intermediate proxy intercepts SQL statements at runtime and removes the inserted
integers before submitting the statements to the back-end database. For our running Example 1 of
false positive, the intercepted SQL statement in SQLrand would read as “SELECTkey c1 FROMkey

t1 ORDER BY id”, where “key” represents the random key. The intercepted SQL statement
would cause a false positive, since the keywords “ORDER” and “BY” are not appended with the
random key.
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SQLGuard (Buehrer et al., 2005) provides programmers with a Java library to manually
bracket the placeholders of user input in SQL statements. During runtime, SQLGuard compares two
parse trees of the dynamically created SQL statement with and without input values respectively.
In the case of Example 1, SQLGuard will compare parse trees of (1) “SELECT c1 FROM t1
keyORDER BY idkey”, and (2) “SELECT c1 FROM t1 keykey”, where the first query
contains input value and the second does not. SQLGuard would trigger an alarm for this query
since neither augmented query is a valid SQL statement.

AMNESIA (W. G. Halfond & Orso, 2005) builds legitimate SQL statement models using
static analysis based on information flow. At runtime, SQL statements that do not conform to the
corresponding pre-built model are rejected and treated as SQLIAs. Since the automaton of the
model “SELECT → c1 → FROM → t1 → β” would not accept the example dynamic SQL
(corresponding β must be string or numeric constant), the SQL query from Example 1 would be an
instance of false positive in AMNESIA.

WASP (W. G. J. Halfond, Orso, & Manolios, 2006) prevents SQLIAs by checking whether all
SQL keywords and operators in an SQL statement are marked as trusted. To track trusted sources,
WASP uses Java byte-code instrumentation techniques to mark all hard-coded and implicitly created
strings in the source code, and strings from external sources (e.g., file, trusted network connection,
database) as trusted. In the case of Example 1, WASP would view the intercepted SQL statement
as “ SELECT c1 FROM t1 ORDER BY id”, where underlined labels indicate the data are
trusted. Since the keywords “ORDER” and “BY” are not marked as trusted, the query would be
rejected as an instance of false positive.

SQLCheck (Su & Wassermann, 2006) detects SQLIAs by observing the syntactic structure
of generated SQL queries at runtime, and checking whether this syntactic structure conforms to an
augmented grammar. The main limitation of SQLCheck is that it requires each parameter value
to be augmented with the meta-characters in order to determine the source of substrings in the
constructed SQL statement. This approach requires manual intervention of the developer to identify
and annotate untrusted sources of input, which introduces incompleteness problems and may lead
to false negatives. In addition, wrapping meta-characters around each parameter value might cause
unexpected side-effects. For instance, if the programming logic in a web application performs
string comparison using the augmented parameter value, the result would be different than in the
case of no meta-characters, which would cause unexpected results in business logic (e.g., math
operations of two user inputs). In addition, the generated SQL statement for Example 1 would read
as “SELECT c1 FROM t1 / ORDER BY id .”, where / and . are special meta-characters
added by SQLCheck. This query would be treated as an injection attack if the augmented grammar
does not state user inputs are permitted in “ORDER” and “BY” keywords.

CANDID (Bandhakavi et al., 2007) transforms a Java web application by adding a benign
candidate variable vc for each string variable v. When v is initialized from the user-input, vc is
initialized with a benign candidate value that is the same length as v. If v is initialized by the
program, vc is also initialized with the same value. CANDID then compares the real and can-
didate parse trees at runtime. Using Example 1, the real and the corresponding candidate SQL
statement would be “SELECT c1 FROM t1 ORDER BY id”, and “SELECT c1 FROM t1
aaaaaaaaaaa”, respectively. The intercepted SQL statement would be treated as an attack, since
the parse trees derived from the two queries differ.

Runtime analysis of HTTP requests and SQL statements: Approaches employing dy-
namic taint analysis have been proposed by Nguyen-Tuong et al. (2005) and Pietraszek and Berghe
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Figure 2. Main elements of SQLPrevent architecture are shown in light grey. The data flow is depicted with
sequence numbers and arrow labels. Underlined labels indicate that the data are accompanied by the tainted
meta-data. Depending on whether an SQL statement is benign or potentially malicious, data may flow to the
Intention Validator conditionally.

(2005). Taint information refers to data that come from un-sanitized or un-validated sources, such
as HTTP requests. Both approaches modify the PHP interpreter to mark tainted data as they enter
the application and flow around. If tainted data have been used to create SQL keywords and/or
operators in the query, the call is rejected. For the running example, the intercepted SQL statement
would be viewed as “SELECT c1 FROM t1 ORDER BY id”, where underlined labels indi-
cate the data are tainted. Since the keywords “ORDER” and “BY” are marked as tainted, the query
would be rejected—which is an instance of false positive. Sekar (2009) proposed a black-box taint-
inference technique that infers tainted data in the intercepted SQL statements, and then employs
syntax and taint-aware policies for detecting unintended use of tainted data. His technique achieves
taint-tracking without intrusive instrumentation on target applications or modification to the runtime
environment. However, false positives and false negatives are possible due to sub-optimal accuracy
of the taint-inference algorithm and taint-awareness policies.

Approach

Our approach enables retrofitting existing web applications with run-time protection against
known as well as unseen SQLIAs. The core of the approach is a software-based secu-
rity appliance, SQLPrevent, which can be “plugged” into a web server without any modifi-
cations to the hosted web applications. As illustrated in Figure 2, SQLPrevent consists of
HTTP Interceptor, Taint Tracker, SQL Interceptor, SQL Lexer, Intention
Validator, and SQLIA Detector modules. When SQLPrevent is deployed in a web server,
the original data flow (HTTP request→ web application→ database driver→ database) is altered.
First, the reference to the program object representing an incoming HTTP request is intercepted
by HTTP Interceptor, and data in the request are marked as tainted. Second, propagation of
tainted data is tracked by Taint Tracker. Finally, the SQL statements issued by web appli-
cations are intercepted by the SQL Interceptor and passed to the SQLIA Detector. The
SQLIA Detector module performs detection based on the two heuristics (token type confor-
mity and conformity to intention) to detect an attack. Token type conformity determines whether
an HTTP request is benign or potentially malicious by checking whether tainted data are used
only as string or numeric literals in the intercepted SQL statement. SQL Lexer is used by
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SQLIA Detector module to tokenize SQL statements. Normally, most dynamically constructed
SQL statements are benign. When a potential SQLIA is detected (i.e., any non-literal token con-
tains tainted characters), SQLIA Detector passes a tainted SQL statement to Intention
Validator to confirm whether tainted non-literal tokens have been intentionally constructed by
developers. If the intercepted SQL statement does not conform to the intended syntactical struc-
ture, SQLIA Detector, depending on the configuration, either triggers an alarm or prevents the
malformed SQL statement from being submitted to the database. Note that any HTTP request that
violates toke type conformity will be flagged as a potential vulnerability. Whereas the SQLPrevent
architecture is based on a standard approach of implementing a security subsystem in the form of in-
terceptors, our approach is distinguished by its detection logic. The following subsections describe
each of the detection heuristics in detail.

Token Type Conformity

The core of the token type conformity heuristic is based on the observation that SQLIAs
always cause a parameter value, or its portion, to be interpreted by the back-end database as some-
thing other than an SQL string or numeric literal, thus altering the intended syntactical structure of
the dynamically generated SQL statement. In order to retain statements’ intended syntactical struc-
ture, however, parameter values from HTTP requests should be used only as SQL string or numeric
literals.

Tracking of Tainted Data. Tainted data refers to data that originates from an untrusted source,
such as an HTTP request. An SQLIA occurs when tainted data are used to construct an SQL
statement in a way that alters the intended syntactical structure of the SQL statement. To trace
the source of each character in an SQL statement for web applications, we designed per-character
taint propagation using a custom implementation of Java’s string-related classes. Our design (1)
contains an additional data structure—referred as taint meta-data—for tracking the taint status of
each character in a string, and (2) implements public methods for setting/getting the taint meta-
data. This meta-data is propagated during string manipulations, such as concatenation, extraction,
or conversion.

Lexical Analysis of SQL Statements. SQLPrevent performs lexical analysis of SQL state-
ments at run-time in order to identify non-literal tokens in the SQL statements. Lexical analysis
is the process of generating a stream of tokens from the sequence of input characters comprising
the SQL statement. The goal of lexical analysis in our approach is to generate two sets of tokens:
LITERALS and NON-LITERALS. The LITERALS set contains string and number tokens, and the
NON-LITERALS set has tokens of all other types. The exact types of tokens in the NON-LITERAL
set are irrelevant for the purpose of our detection logic. This simplified design of the lexical ana-
lyzer makes our approach efficient and more portable among databases. For instance, during the
experiments, our implementation of SQL lexer worked with MySQL without any modification,
even though the lexer was originally designed for Microsoft SQL Server.

Detecting SQLIAs. Applying our heuristic that parameter values should only be used as
string or numeric literals in the dynamic SQL statements, the mechanisms of taint tracking, and
SQL lexical analysis, we developed an algorithm for SQLIA detection using token type conformity.
Shown in Algorithm 1, the algorithm takes an SQL statement s and taint information about the
characters in s as a implicit parameter. If tainted character(s) appears in any non-literal token (e.g.,
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Algorithm 1: Token type conformity SQLIA detection algorithm
Input: An intercepted SQL statement string s
Output: A boolean value indicates whether s is malicious or not
4← set of tokens in s;
for every token t in4 do

if typeOf(t) 6= string or number literal and isTainted(t) then
return true;

end if
end for
return false;

identifier, delimiter, or operator) of s, the algorithm returns true, otherwise false. For each
token of an intercepted SQL statement, if the type of token is not a literal (i.e., not a string or
number), and the token is tainted, then the intercepted SQL statement is potentially malicious.

The “token type conformity” heuristic was originally inspired by Perl taint mode (Wall,
2007). When in taint mode, the Perl runtime explicitly marks data originating from outside of a
program as tainted. Tainted data are prevented from being used in any security sensitive functions
such as shell commands, or database queries. To “untaint” an untrusted input, the tainted data must
be passed through a sanitizer function written in regular expressions. However, developers have
to manually untaint user input data, and sanitizer functions might not catch all malicious inputs,
especially when evasion techniques are employed. Nguyen-Tuong et al. (2005) and Pietraszek
and Berghe (2005) modified PHP interpreter to support taint tracking. The main limitation of their
approach is that they require modifications to the PHP runtime environment and database access
functions, which may not be viable for other runtime environments such as Java, ASP.NET or ASP.

The effectiveness of our approach depends on the precision of taint tracking. However, the
traces of taint meta-data might be lost due to certain limitations in the tainting implementation.
For instance, in Java, string-related classes export character-based functions (e.g., toCharArray) for
retrieving internal characters of a string. The taint tracking module is unable to propagate taint
meta-data to primitive types unless a modified version of JVM is employed. Thus, the taint in-
formation would be lost if an application constructs a new instance of string based on the internal
characters of another string. Nevertheless, based on the experimental results and to the best of our
knowledge, retrieving internal buffer of a string to construct an SQL statement is a rare case, and
it is common coding practice that a programmer should validate any binary data retrieved from an
unsafe buffer (Howard & LeBlanc, 2003).

Conformity to Intention

To protect the integrity of SQL statements, our token type conformity heuristic, and some ex-
isting approaches, use pre-defined taint policies, implicitly or explicitly, to specify where in an SQL
statement the untrusted data are allowed, and then check at runtime whether an intercepted SQL
statement conforms to those policies. Based on the pre-defined taint policies, these approaches
employ various mechanisms to track tainted data, and distinguish them in a dynamic query. How-
ever, while these approaches are effective, by using static taint policies and not taking developers’
intentions into account, false positives are possible (as we demonstrated in Example 1).

Instead of using pre-defined taint policies, we take the issue of explicit information-flow
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select statement ::= ‘‘SELECT’’ select list from clause [where clause]
[order clause]

select list ::= ‘‘*’’ | id list
id list ::= ID | ID ‘‘,’’ id list
from cause ::= ‘‘FROM’’ id list
where clause ::= ‘‘WHERE’’ cond { (‘‘AND’’ | ‘‘OR’’ ) cond }
cond ::= value OPERATOR value
value ::= ID | STRING | NUMBER
order clause ::= ‘‘ORDER BY’’ id list

Figure 3. A simplified SQL SELECT statement grammar written in Backus-Naur Form (BNF).

one step further, and treat SQLIA as a problem of detecting whether a given SQL query conforms
with the original intention of the application developer. Our second heuristic, which we labeled as
“conformity to intention,” allows discovery of the intended syntactical structure of a dynamic SQL
statement at runtime, and performing validation on the SQL statement against the dynamically iden-
tified intention. To the best of our knowledge, there is no dynamic SQLIA detection and prevention
technique that employs a concept similar to “conformity to intention”.

Intention Statement. Web application developers typically specify the intended syntactical
structure of an SQL statement using placeholders directly in code. For instance, the following Java
code constructs a dynamic SQL statement by embedding parameter values from an HTTP request
(each parameter might also pass through a sanitizer function):

Example 2 Typical Java code for constructing an SQL statement with the use of an HTTP request
object:

statement= "SELECT book_name," + request.getParameter("p1")
+ " FROM " + request.getParameter("p2")
+ " WHERE book_id=’" + request.getParameter("p3") + "’ "
+ request.getParameter("p4");

The intended syntactical structure of the SQL statement in the above example can be expressed as
shown in code Fragment 1, where an underlined question mark is used to indicate a placeholder:

"SELECT book name,? FROM ? WHERE book id=’?’ ?" (1)

We refer to such a parameterized SQL statement as an intention statement. Our approach re-
lies on per-character taint tracking for deriving intention statements during runtime. When an
SQL statement is intercepted, our taint tracker marks every character in a token as tainted when
the token contains one or more tainted characters. Our approach constructs an intention state-
ment by replacing each consecutive tainted substring in a dynamically constructed SQL statement
with a special meta-character. Thus, when the SQL statement “SELECT book name,price
FROM book WHERE book id=’SQLIA’ ORDER BY price” is intercepted, our approach
substitutes each tainted substring with the placeholder meta-character (?) to form an intention
statement, as shown in code Fragment 1. Note that even when a statement containing an
SQLIA, such as “SELECT book name, price FROM book WHERE book id=’SQLIA’



12

Figure 4. The intention tree of the intention statement from Fragment 1. Oval boxes represent nonterminal
symbols, square boxes represent terminal symbols, and dash-lined boxes are placeholders. The grammar rules
for each placeholder are (from left to right) two id lists, a STRING LIT, and an order clause.

ORDER BY price ; UPDATE users SET password=null” is intercepted, the derived
intention statement is the same as the one in code Fragment 1.

A placeholder in an intention statement represents an expanding point, where each expan-
sion must conform to the corresponding grammatical rule intended by the developer. We denote
a placeholder’s corresponding grammar rule as an intention rule, which regulates the instantiation
of a placeholder at runtime. Each intention rule maps to an existing nonterminal symbol (e.g.,
SELECT list) or terminal symbol (e.g., string literal or identifier) of a given SQL grammar. The
collection of intention rules of an SQL statement serves as the intended syntactical structure, and
can be discovered by using an SQL parse tree.

Intention Tree and Intention Grammar. An intention statement is a string without explicit
structure. To identify the intention rules of an intention statement, we use an SQL parse tree. Our
approach constructs a parse tree (referred to in this paper as an intention tree) from an intention
statement to represent the explicit syntactical structure of an intention statement. Figure 4 illustrates
an intention tree for the intention statement in Fragment 1, based on the simplified SQL SELECT
statement sample grammar shown in Figure 3. The sample grammar consists of a set of production
rules, each of the form α ::= ω, where α is a single nonterminal symbol, and ω is any sequence
of terminals and/or nonterminals. In the example from Figure 3, the select statement is
the start symbol. A parse tree represents the sequence of rule invocations used to match an input
stream, and can be constructed by deriving an SQL statement from the start symbol of the given SQL
grammar. For each grammar rule α ::= ω matched during the derivation process, the matched rule
forms a branch in the parse tree, where α is the parent node, and ω represents a set of child nodes
of α. A nonterminal symbol β in ω would be replaced by another grammar rule that matches the
nonterminal symbol β, which in turn forms another branch originated from β. During construction
of an intention tree, the placeholder meta-character represents a special type of token that can match
any nonterminal and terminal symbols during derivation. In addition, lookahead on input data
corresponding to a placeholder are used to distinguish alternatives. The derivation process continues
recursively until all input tokens are exhausted.

In Figure 4, oval boxes represent nonterminal symbols, square boxes are terminal symbols,
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and dash-lined boxes contain placeholders. In an intention tree, a placeholder is an expanding
node. The branch expanded from a placeholder must follow the placeholder’s intention rule. Given
an intention tree, our approach uses the grammar rule of each placeholder’s parent node as the
intention rule for each placeholder. For the intention tree depicted in Figure 4, the intention rules
of the three placeholders are as follows: (from left to right) two identifier lists (id list), a string
literal (STRING LIT), and an ORDER BY clause (order clause), respectively.

In addition to intention rules, the intended structure of a dynamic SQL statement includes
constant symbols that are specified by developers at design-time. The intended constant symbols
of an SQL statement can be represented by leaf nodes of an intention tree, excluding placeholder
nodes. By walking through all leaf nodes of an intention tree, and replacing each placeholder with
its intention rule, a new grammar rule can be derived for that specific dynamic SQL statement. We
refer to the grammar rule derived from an intention tree as an intention grammar. For instance,
code Fragment 2 shows the intention grammar derived from the intention tree in Figure 4, where
double-quoted strings represent constant terminal symbols (e.g., “SELECT book name,”), and
id list, STRING LIT, and order clause are existing grammar rules.

"SELECT book name," id list " FROM " id list
"WHERE book id=’" STRING LIT "’ " order clause

(2)

Detection of SQLIAs. Once an intention grammar is derived, an SQLIA can be detected by
parsing the dynamic SQL statement using its intention grammar. If the dynamic SQL statement can
be recognized by its intention grammar, then it is a benign statement; otherwise, it is malicious. For
instance, while statements in both code Fragments 3 and 4 yield the same intention grammar (as
shown in code Fragment 2), only the statement in Fragment 4 is malicious, as it does not conform
to the intention grammar.

SELECT book name, price FROM book
WHERE book id=’SQLIA’ ORDER BY price

(3)

SELECT book name, price FROM book
WHERE book id=’SQLIA’
ORDER BY price; UPDATE users SET password=null

(4)

Our algorithm for SQLIA detection (Algorithm 2) employs taint tracking and intention gram-
mar derivation. The algorithm takes an SQL statement s, taint information t about s, and an SQL
grammar G as arguments, and then returns a boolean to indicate whether the tainted SQL statement
is malicious or not. The algorithm first constructs an intention statement si from an SQL statement
s by replacing each consecutive tainted string in s with a meta-character. The algorithm then parses
si using an SQL grammar G to construct an intention tree Y . Once the intention tree is constructed,
the algorithm derives an intention grammar Gi by traversing through the leaf nodes of Y . If s
can be parsed by Gi, the algorithm returns false; otherwise, it returns true to indicate that the
intercepted SQL statement is malicious.

Intention discovery reduces the rate of false positive in the SQL detection logic. However,
the intended structure expressed by a developer might allow an SQLIA to pass through. To prevent
SQLIAs from a programmer’s permissive intention, our “conformity to intention” heuristic employs
a baseline policy to restrict where in an SQL statement the untrusted data are allowed. In our design,
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Algorithm 2: IsMaliciousSQL
Input: SQL statement s
Input: s taint information t
Input: SQL grammar G
Output: A boolean value indicate whether s is malicious or not
intention statement: si← construct(s, t);
intention tree: Y ← parse(si, G);
intention grammar: Gi← derive(Y );
if parse(s, Gi) failed then

return true;
else

return false;
end if

in addition to literal tokens, only identifier tokens (e.g., table name, column name) and order by,
group by, and having clauses are permitted to contain tainted data.

As with all existing SQLIA detection techniques that rely on SQL grammar parsing (e.g.,
SQLGuard (Buehrer et al., 2005), SQLCheck (Su & Wassermann, 2006), CANDID (Bandhakavi et
al., 2007)), grammatical differences between the detection engine and the back-end database could
potentially cause false positives. Nevertheless, for “token type conformity”, the SQL lexical an-
alyzer in our approach is required only to be able to distinguish between literals and non-literals.
Even though most database vendors develop proprietary SQL dialects (e.g., Microsoft TSQL, Oracle
PL-SQL, MySQL) in addition to supporting standard ANSI SQL, the lexical analyzer required for
our approach can simply treat all non-literal tokens equally and disregard the syntactical differences
among SQL dialects due to different non-literal tokens supported. For instance, we used SQLPre-
vent with MySQL without any modification to the SQL lexer, even though the lexer was originally
designed for Microsoft SQL Server. For intention discovery, we used ANSI SQL grammar during
evaluation. Our implementation of SQLIA detection module can be configured to use different SQL
dialects, and we are currently evaluating SQLPrevent with a real-world web application that uses
Oracle as a back-end database.

Due to space limitations, we only summarize the complexity-analysis results of proposed
detection logic here. For Algorithm 1, the computational complexity is O(N), where N is the
length of the SQL statement in characters. For Algorithm 2, the computational complexity is the
same as the worst-case complexity for constructing a parse tree, which is as follows:


O(N) if G is LALR
O(N2) if G is not LALR but deterministic
O(N3) if G is non-deterministic

Implementation

In this section, we explain the implementation of SQLPrevent in J2EE, ASP.NET, and ASP.
Our description is organized around the SQLPrevent architecture depicted in Figure 2.
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HTTP Request Interceptor

For J2EE, HTTP Request Interceptor is implemented as a servlet filter that inter-
cepts HTTP requests. For each intercepted HTTP request, a separate instance of TaintMark
‘wraps’ the intercepted request. From this point on, on each access to the value of the request pa-
rameter, TaintMark calls the wrapped HTTPServletRequest object to get the value, marks
it as tainted, and only then returns it to the caller.

Taint Tracker

The purpose of Taint Tracker is to mark the source of each character as either tainted
or not, in an intercepted SQL statement. For J2EE, the Taint Tracker module is imple-
mented as a set of taint-enabled classes, one for each string-related system class—such as String,
StringBuffer, and StringBuilder. Taint Tracker provides dynamic per-character
tracking of taint propagation in J2EE web applications. Each taint-enabled class has exactly the
same class name and implements the same interfaces as the corresponding Java class—in fact, they
are identical from a web application point of view. In order to specify the taintness of each character
in a string, each taint-enabled class has an additional data structure referred to as taint meta-data,
and a set of functions for manipulating this structure. In Taint Tracker for J2EE, taint meta-
data is implemented as an array of booleans, with its size equal to the number of characters of the
corresponding string. Each element in the array indicates whether the corresponding character is
tainted or not. For taint tracking, the taint-enabled classes propagate taint meta-data during string
operations. In order to replace existing system classes with Taint Tracker at runtime, a Java
Virtual Machine (JVM) needs to be instructed to load taint-enabled classes instead of the origi-
nal ones. For instance, we used the -Xbootclasspath/p:<path to taint tracker>
option to configure Sun JVM to prepend the taint tracker library in front of the bootstrap class path.

SQL Interceptor

SQL Interceptor for J2EE extends P6Spy (Martin, Goke, Arvesen, & Quatro, 2003), a
JDBC proxy that intercepts and logs SQL statements issued by web application programming logic
before they reach the JDBC driver. JDBC is a standard database access interface for Java, and has
been part of Java Standard Edition since the release of SDK 1.1. We have extended P6Spy to invoke
the SQLIA Detector when SQL statements are intercepted.

SQL Lexer, Intention Validator and SQLIA Detector

The SQL Lexer module is implemented as an SQL lexical analyzer. This module converts
a sequence of characters into a sequence of tokens based on a set of lexical rules, and determines
the type of each token during scanning. SQLIA Detector takes an intercepted SQL statement
as input, passes the intercepted SQL statement to the SQL Lexer for tokenization, then performs
detection according to Algorithm 1. When a potential SQLIA is detected, SQLIA Detector
passes the intercepted SQL statement to Intention Validator to check whether the query
conforms to the intended syntactical structure of the designer, based on Algorithm 2. If an SQLIA
is identified, the detector throws a necessary security exception to the web application, instead of
letting the SQL statement through.
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Figure 5. Design of the evaluation testbed.

Design Details Specific to ASP and ASP.NET

SQLPrevent was originally implemented in J2EE, and subsequently ported to ASP.NET and
ASP in order to assess the degree to which our approach is generalizable and portable. In addition,
we wanted to offer to the community a means of protecting legacy ASP applications. While the im-
plementations of SQL Lexer, Intention Validator, and SQLIA Detector are identi-
cal among platforms (except the languages used), the design of HTTP Request Interceptor,
Taint Tracker, and SQL Interceptor is specific to each execution environment. In partic-
ular, we used .NET profiling API (Pietrek, 2001) and Microsoft Intermediate Language re-writing
techniques (Mikunov, 2003) to intercept SQL statements in ASP.NET. For ASP, we utilized a tech-
nique known as universal delegator (Brown, 1999) to intercept SQL statements generated from
ActiveX Data Object. Due to space limitation, the design details of SQLPrevent for ASP .NET and
ASP is presented in a technical report (Sun & Beznosov, 2009).

Evaluation

We evaluated SQLPrevent using the testbed suite from project AMNESIA (W. G. Halfond &
Orso, 2005). We chose this testbed because it allowed us to have a common point of reference with
other approaches that have used it for evaluation (W. G. Halfond & Orso, 2005; Su & Wassermann,
2006; W. G. J. Halfond et al., 2006; Bandhakavi et al., 2007; Sekar, 2009).

Experimental Setup

The experimental set up is illustrated in Figure 5. The testbed suite consisted of an automatic
testing script in Perl and five web applications (Bookstore, Employee Directory, Classifieds, Events,
and Portal), all included in the AMNESIA testbed. Each web application came with the ATTACK
list of about 3,000 malformed inputs and the LEGIT list of over 600 legitimate inputs. In addition
to the original ATTACK list, we produced another set of obfuscated attacks by obscuring the attack
inputs that came with AMNESIA using hexadecimal encoding, dropping white space, and inline
comments evasion techniques to validate the ability of SQLPrevent to detect obfuscated SQLIAs.
To test whether the intention-validator module is capable of performing SQLIA detection without
causing false positives, we modified each JSP in the testbed to intentionally include user inputs to
form “ORDER BY” clauses in each dynamic SQL statement when an additional HTTP parameter
named “orderby” is presented. We then modified the ATTACK and LEGIT lists by appending
the additional parameter for each testing trace. To test whether the SQL lexer module is capable
of performing lexical analysis in a database-independent way, we configured Microsoft SQL Server
and MySQL as back-end databases. SQLPrevent was tested with each of the five applications, and
each of the two databases resulting in 10 runs.
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Figure 6. Detection and prevention performance evaluation. tb and tm are round-trip response time with
SQLPrevent deployed, measured using benign and malicious requests, respectively.

Effectiveness

In our experiments, we subjected SQLPrevent to a total of 3,824 benign and 15,876 malicious
HTTP requests. We also obfuscated the requests carrying SQLIAs and tested SQLPrevent against
them, which resulted in doubling the number of malicious requests. We then repeated the exper-
iments using an alternative back-end database. In total, we tested SQLPrevent with over 70,000
HTTP requests. None of these requests resulted in SQLPrevent producing a false positive or false
negative.

Efficiency

We measured the performance overhead of SQLPrevent for two modes of operation: when
the web application receives one request at a time, and when it is accessed concurrently by multiple
web clients. First we describe the experimental setup common to both modes, then discuss specifics
of experiments for each mode and the results.

To make sure the performance measurements were not skewed by hardware, we performed
them on both low-end and high-end equipment. For the low-end configuration, the web applica-
tions and databases were installed on a machine with a 1.8 GHz Intel Pentium 4 processor and 512
MB RAM, running Windows XP SP2. The automatic test script was executed on a host with a
350 MHz Pentium II processor and 256 MB of memory, running Windows 2003 SP2. These two
machines were connected over a local area network with 100 Mbps Ethernet adapters. Round-trip
latency, while pinging the server from the client machine, was less than 1 millisecond on average.
For the high-end configuration, the testing script and web applications were installed on two iden-
tical machines, each equipped with eight Intel Xeon 2.33 GHz processors and 8 GB of memory,
running Fedora Linux 2.6.24.3. Round-trip latency was less than 0.1 millisecond on average in this
configuration.

Sequential Access. To measure the performance characteristics of SQLPrevent, we used
nanosecond API in J2SE 1.5 and employed two sets of evaluation data. The first set was used
for measuring detection overhead, which is the time delay imposed by SQLPrevent for each benign
HTTP request. To calculate detection overhead, we measured the round-trip response time with
SQLPrevent for each benign HTTP request, as shown in Figure 6, and applied the following for-
mula: Detection Overhead = (tr + ts)/tb, where tr and ts are the time delays for the request
interceptor and SQLIA detector, respectively, and tb is the round-trip (from A to C in Figure 6)
response time when a benign SQL statement is detected.
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Overhead(%)
Subject Detection Prevention

Avg Std Dev Avg Std Dev
Bookstore 1.2 0.6 3.4 1.1
Employee 1.7 0.7 4.3 1.5
Classifieds 1.5 0.7 3.6 1.5
Events 3.3 1.4 4.2 2.3
Portal 1.9 0.9 2.5 0.5
Average 1.9 0.9 3.6 1.4

Table 1: SQLPrevent overheads for cases of benign (“detection”) and malicious (“prevention”) HTTP re-
quests.

The second set of data was for measuring prevention overhead, which is the overhead im-
posed by SQLPrevent when a malicious SQL statement is detected and blocked. Prevention over-
head shows how fast SQLPrevent can detect and prevent an SQLIA. If either overhead is too high,
the system could be vulnerable to denial-of-service attacks that aim for resource over-consumption.
To ensure that SQLPrevent would not impose high overhead when blocking SQLIAs, we conducted
another performance experiment and used the following formula to calculate prevention overhead:
Prevention Overhead = (tr + ts)/tm, where tr and ts are the time delays for request interceptor
and SQLIA detector, respectively, and tm is the round-trip (from A to B) response time when a
malicious SQL statement is detected and blocked.

For each web application, Table 1 shows the average detection overhead and prevention over-
head each with its corresponding standard deviation. When averaged for the five tested applications,
the maximum performance overhead imposed by SQLPrevent was 3.6% (with standard deviation
of 1.4%). This overhead was with respect to an average 30 milliseconds response time observed by
the web client.

Concurrent Access. To test SQLPrevent performance overhead under a high volume of simul-
taneous accesses, we used JMeter (Apache Software Foundation, 2007), a web application bench-
marking tool from Apache Software Foundation. For each application, we chose one servlet and
configured 100 concurrent threads with five loops for each thread. Each thread simulated one web
client. We then measured the average response time with SQLPrevent and applied the prevention
overhead formula to calculate the overhead. During stress testing, SQLPrevent imposed an average
6.9% (standard deviation 1.3%) performance overhead, with respect to an average of 115 millisec-
onds response time for all five applications and both databases.

Discussion

In our evaluation, SQLPrevent produced no false positives or false negatives, and imposed
low runtime overhead on the testbed applications. In addition to high detection accuracy and low
performance overhead, the advantages of our technique are in its automatic adaptability to devel-
oper’s intentions, and its ease of integration with existing web applications.

SQLPrevent can be easily integrated with existing web applications. For instance, in order to
protect a J2EE application with SQLPrevent, the administrator needs to (1) deploy the SQLPrevent
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Java library into the J2EE application server, (2) configure the HTTP Request Interceptor
filter entry in the web.xml, (3) replace the class name of the real JDBC driver with the class name
of SQL Interceptor in the configuration settings, and (4) configure the JVM to prepend the
Taint Tracker library in front of the bootstrap class path. For ASP.NET and ASP, deploying
SQLPrevent is a matter of copying and registering the binary components.

We ported SQLIntention to ASP.NET and ASP to assess the generalizability of our approach,
and to offer protection for legacy web applications. Legacy web applications are natural targets
of SQLIAs, since most vulnerabilities are known by attackers, and the resources for prevention
and protection required from development or administration might have been re-allocated to other
projects. To the best of our knowledge, none of the existing dynamic SQLIA detection techniques
have been ported to ASP. The lack of support for ASP is mainly due to the lack of a standard
mechanism for intercepting SQL statements in ASP. Furthermore, the ASP runtime environment
cannot be modified. ASP web applications have been the target of waves of massive SQLIAs from
October 2007 to April 2008 (Keizer, 2008). As a consequence of these attacks, more than half a
million web pages have been infected with malicious JavaScript code that redirects the visitors of
compromised web sites to download malware from malicious hosts (Provos, Mavrommatis, Rajab,
& Monrose, 2008). Our approach can be integrated into an existing web application with a few
configuration setting changes. Security protection without additional effort from developers and
administrators is vital to the protection of legacy web applications.

The approach proposed in this paper is not a replacement for all other defences against
SQLIAs; it offers an alternative point in the trade-off space. Open-source and some other
applications—source code for which can be analyzed and, if necessary, modified by the applica-
tion owners—make those approaches that employ static analysis and/or alteration of the source
code viable. For applications where an additional overhead of 2-5% is unacceptable, static detec-
tion and elimination of SQLIA vulnerability identification, or even the use of parameterized query
APIs, would be more appropriate. Our approach offers the ability to protect existing applications
effectively, efficiently, and without having to depend on application vendors or developers.

The concept of token type conformity and conformity to intention can be applied to other
types of web application security problem such as cross-site scripting (XSS) and remote command
injection, for which taintness of tokens can be analyzed and the intended syntactical structures can
be dynamically discovered. For instance, a web application can check whether tainted data is used
to construct script elements in the Document Object Model (DOM) of a dynamically generated
HTML page to prevent XSS attacks.

Conclusion

SQL injection vulnerabilities are ubiquitous and dangerous, yet many web applications
deployed today are still vulnerable to SQLIAs. Although recent research on SQLIA detection
and prevention has successfully addressed the shortcomings of existing SQLIA countermeasures,
the possibilities of false positive, the effort needed from web developers—such as application
source code analysis/modification, acquisition of the training traces, or modification of the run-
time environment—has limited adoption of these countermeasures in some real world settings. In
this paper, we presented a novel approach to runtime SQLIA protection, as well as a tool (SQLPre-
vent) that implements our approach. Our experience and evaluation of SQLIntention indicate that
it is effective, efficient, easy to deploy without the involvement of web developers, and does not
require access to the application source code.
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For future work, we plan to apply dynamic intention discovery to prevent other types of web
application attacks, and to port our approach to PHP in order to provide protection to web applica-
tions developed in this popular platform. To obtain more realistic data on the practical possibility
of false positives and false negatives, we plan to evaluate SQLPrevent on real-world web applica-
tions, and make SQLPrevent an open source project. We also plan to apply SQLPrevent to dynamic
discovery of SQLIA vulnerabilities.
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