
IEEE SYSTEMS JOURNAL 1

Efficient Authentication and Key Management
Mechanisms for Smart Grid Communications

Hasen Nicanfar, Student Member, IEEE, Paria Jokar, Student Member, IEEE,
Konstantin Beznosov, Member, IEEE and Victor C. M. Leung, Fellow, IEEE

Abstract—Smart Grid (SG) consists of many sub-systems and
networks, all working together as a system of systems, many of
which are vulnerable and can be attacked remotely. Therefore,
security has been identified as one of the most challenging topics
in the SG development, and designing a mutual authentication
scheme and a key management protocol is the first important
step. This paper proposes an efficient scheme that mutually
authenticates a Smart Meter (SM) of a Home Area Network
(HAN) and an authentication server in SG by utilizing an
initial password, by decreasing the number of steps in the
Secure Remote Password (SRP) protocol from five to three and
number of exchanged packets from four to three. Furthermore,
we propose an efficient key management protocol based on
our Enhanced Identity-Based Cryptography (EIBC) for secure
SG communications using the Public Key Infrastructure. Our
proposed mechanisms are capable of preventing various attacks
while reducing the management overhead. The improved effi-
ciency for key management is realized by periodically refreshing
all public/private key pairs as well as any multicast keys in all
the nodes using only one newly generated function broadcasted
by the key generator entity. Security and performance analysis
are presented to demonstrate these desirable attributes.

Index Terms—Mutual Authentication; Key Management; SRP;
Security; Smart Meter; Smart Grid; EIBC.

I. INTRODUCTION

PROVIDING a high level of security is one of the most
important and challenging topics in the Smart Grid (SG)

design, which has gained substantial attention in the research
community [1]. SG is a combination of different systems
and sub-systems, and is vulnerable to various attacks that
may cause different level of harms to the devices and even
society-at-large [2]. Since SG is moving the power grid from
a closed control system to one employing open IP networks
[3], a variety of threats have been identified in the SG
context, e.g., Man-In-The-Middle (MITM), Denial of Service
(DoS), impersonation, which can affect the data integrity
and authentication of users and devices. Moreover, different
viruses or attacks such as brute-force and dictionary attacks
can target the data security and confidentiality. The Stauxnet
worm is another example that can cause a significant impact
on even national security [3]. Once an entry point is found,

Manuscript received: 4/15/2012; revised: 9/30/2012; accepted: 1/23/2013;
date of current version 2/15/2013.

This paper is based in part on a paper appeared in Proc. of the first IEEE
PES ISGT Asia conference, as well as a paper in Proc. of the IEEE SysCon.

Hasen Nicanfar, Paria Jokar and Victor C.M. Leung are with WiNMoS Lab,
and Konstantin Beznosov is with LERSSE Lab.

All authors are with Department of Electrical and Computer Engineering,
The University of British Columbia, Vancouver, BC V6T 1Z4, Canada.

E-mail: {hasennic , pariaj , beznosov , vleung}@ece.ubc.ca.

an intruder or a malicious node may perform different action
to compromise the whole system. Since millions of homes are
connected to an SG, the impact of such attacks can cause a
significant loss or harm on society, e.g., by causing a blackout,
changing the customer billing information, or changing the
pricing information sent to the customers [2], [3], [4].

Providing an authentication scheme and a key management
protocol are the required first steps of designing and imple-
menting system security in SG [5]. The National Institute
of Standards and Technology (NIST) of the United States,
which is developing SG-related standards and guidelines,
suggests using Public Key Infrastructure (PKI) to secure SG
communications [1]. PKI [6] is briefly reviewed in Section II.
Our proposal facilitates secure and efficient authentication and
key management on top of PKI.

The customer’s side of an SG consists of Home Area Net-
works (HANs) in customer premises where smart appliances
and controllers are connected to smart meters (SMs), which
form the end-points of the Advanced Metering Infrastructure
(AMI) that provides two-way data communications between
SMs and the utility’s Meter Data Management Center. This
work is focused on authentication and key management over
the AMI. The AMI will likely employ Internet Protocol
version 6 (IPv6) technology in a mesh based topology [4].
Although power line communication (PLC) has gained much
attention in Europe, in North America wireless mesh networks
(WMN) is a more popular and dominant solution for the AMI
[3]. Gharavi et. al [7] proposed a mesh based architecture for
the last mile SG, in which the Neighbourhood Area Network
(NAN) supports communications between SMs and AMI head-
end via data aggregation points and mesh-relay-stations if
required. This mesh based topology enables easy expansion of
the network coverage area using multi-hop communications.

Secure communications generally employ cryptographic
keys for encrypting/decrypting data messages. There are differ-
ent solutions to establish a key between two parties, usually
as a part of the authentication process, some of which are
tailored for (mutual or one-way) authentication. One well-
known solution to form a session (symmetric) key is the
Diffie and Hellman (D-H) algorithm [8]. To protect the D-
H algorithm from different attacks like MITM, Bellovin et al.
proposed a solution [9] that utilizes a password to assure the
secrecy of key establishment messages. Later on, Seo et al.
developed a two-step Password Authenticated Key Exchange
(PAKE) protocol called SAKA [10]. First, both parties obtain
a number based on their shared password. Then, each party
picks a random number and multiplies it to the shared number

2 IEEE SYSTEMS JOURNAL

from the first step to be used in D-H algorithm. In [11], a
verifier is utilized for key establishment, with the support of
a server as a trusted third party. Each party has an individual
password and the server holds the appropriate verifier. The
entities establish temporary session keys used to construct the
final symmetric key in a protocol with four phases.

The Secure Remote Password (SRP) protocol [12] also
utilizes a predefined password and the verifier to construct
a key, which delivers most of the characteristics that are
expected from an authentication scheme. SRP is a fast mu-
tual authentication scheme that uses the session key in the
mechanism and resists the dictionary attacks. Furthermore, in
the SRP protocol, compromising the server does not make
it easy to find the password as well as compromising the
password does not lead to revealing the past session keys
(forward secrecy); and finally, compromising the session key
does not lead to compromising of the password. More details
are provided in Section II.

PKI is preferred for securing data exchanges over SG.
Based on the Identity-Based signature scheme [13] proposed
by Shamir, Boneh and Franklin [14] proposed ID-Based
Cryptography (IBC) for encryption-decryption and key
management, which extends PKI by replacing the public key
of an entity with a function of the entity’s ID to reduce the
overhead of public key distribution. More details are provided
in Section II.

Contributions: In this paper we propose a secure and efficient
Smart Grid Mutual Authentication (SGMA) scheme and Smart
Grid Key Management (SGKM) protocol. SGMA provides
efficient mutual authentication between SMs and the security
and authentication server (SAS) in the SG using passwords;
it reduces the number of steps in SRP from five to three
and the number of exchanged packets from four to three.
SGKM provides an efficient key management protocol for
SG communications using PKI as specified by NIST [1]; it
employs our Enhanced Identity-Based Cryptography (EIBC)
scheme to substantially reduce the overhead of key renewals.

SGMA and SGKM are presented in Sections III and IV,
respectively. Security analysis in Section V shows that these
schemes are capable of preventing various well-known attacks
such as Brute-force, Replay, MITM and DoS. Furthermore, we
reduce the network overhead caused by the control packets
for key management. The improved efficiency results from
our key refreshment protocol in which the SAS periodically
broadcasts a new key generation to refresh the public/private
key pairs of all the nodes as well as any required multicast
security keys. Performance analysis in Section V verifies the
overhead reduction.

II. BACKGROUND REVIEW AND RELATED WORKS

A. Authentication and Key Management

By definition, authentication means binding an identity (ID)
to a subject or principal. It can be accomplished by showing
what the subject (i) is capable of doing, e.g., performing
a digital signature, or (ii) knows, e.g., a password, or (iii)
possesses, e.g., a smart card, or (iv) has biometrically, e.g.,

fingerprints. Moreover, in a networking environment, network
nodes should follow a mutual authentication to establish a
certain level of trust [1]. After two parties get authenticated
to each other, they need to set-up a secure communication
channel, normally by use a security key for data encryption,
to protect their data from unauthorized parties. The key can be
symmetric, supported by a private key cryptography system, or
asymmetric, supported by a public key cryptography system.

B. Secure Remote Password Protocol

SRP [12] (latest version 6a [15]), is an authentication
and key-exchange protocol for secure password verification
and session key generation over an insecure communication
channel. SRP utilizes Asymmetric Key Exchange (AKE) [12],
and stores verifiers instead of the passwords. AKE uses a one-
way (hash) function to compute the verifier and stores it in the
server. Therefore, compromising the server and finding the
verifier is not enough to obtain the key, since the password is
still required.

In SRP, the client initially enters a password and then the
server computes a verifier from the password using a randomly
generated salt and stores the client’s ID, salt and verifier in
the server database. Subsequently, the client is authenticated
to the server by providing the password to the server, which
computes the verifier again using the salt stored against the
client’s ID and checking it against the one stored in its
database. Furthermore, each party generates a random number,
then calculates the session key based on the password, verifier
and random numbers as well as verifies the key utilizing a
one-way hash function.

C. Public Key Infrastructure

In the PKI [6], two keys, namely the public key and private
key, are associated with each entity. The sender uses her private
key to sign the message the public key of the recipient to
encrypt the message, and the recipient uses her private key to
decrypt the message and the sender’s public key to authenticate
the sender’s ID. A Private Key Generator (PKG)/Certificate
Authority (CA) issues to each entity an individual certificate
consisting of the private key of the entity, and makes the
public key of the entity available to the public. The PKG
is required to refresh these keys periodically per the system
security requirements and informs the relevant parties, which
may incur a substantial communication overhead [16]. One
solution to reduce this overhead is IBC.

D. Identity-Based Cryptography

In IBC [14], the PKG provides a unique one-way function
F (.), e.g., a hash function, to all the parties, which can be
applied to ID (e.g., email address, phone number or IP address)
of each party to obtain the public key of the party using (1).
Then, PKG selects a secret random number “s”, and applies
it to the public key of each party to obtain the private key of
the party via (2).{

PubK(ID) = F (ID) (1)
PrvK(ID) = s ∗ F (ID) = s ∗ PubK(ID) (2)

NICANFAR et al.: EFFICIENT AUTHENTICATION AND KEY MANAGEMENT MECHANISMS FOR SMART GRID COMMUNICATIONS 3

The message encryption/decryption and verification processes
then follow those of PKI using the private and public keys
thus generated.

Key Refreshment: In order to refresh the keys to maintain
the system security, PKG periodically reselects “s”, recalcu-
lates private keys of the entire entities and securely informs
them one by one. Since this is time consuming, normally
PKG supplies the parties with a Valid Time (VT) value, which
presents the starting time of using the new keys.

E. EIBC: Enhanced Identity-Based Cryptography

Our proposed EIBC [16] enhances IBC by making the
private key refreshment more efficient and accommodating
distribution and refreshment of any multicast key needed in the
network. The modifications to IBC are described as follows.

1) One-way/Hash function F (.): The static function F (.)
in IBC is made dynamic in EIBC as function Fi(.). Precisely,
PKG periodically generates and broadcasts function fi(.) that
is applied to Fi(.) to obtain Fi+1(.), which is the new one-way
function of the system. In this case, all of the public keys and
private keys are being updated. Each party updates the public
key of any other party by applying fi(.) to the current public
key of that party. Also, each party uses fi(.) in the private
key refreshment algorithm that will be explained shortly. The
index “i” represents the current state (called live in this paper)
of the system.{

Fi+1(.) = fi+1(Fi(.)) (3a)
PubKi(ID) = Fi(ID) (3b)

2) System secret value “s”: In IBC, “s” is the product of a
True Random Number Generator (TRNG) managed and kept
secret by PKG. In EIBC, “s” is replaced by two values: “si”
from (4a) is a non-shared TRNG value kept by PKG, and
“s̃i” is obtained from (4b) using a Pseudo Random Number
Generator (PRNG) with parameters a, b and modulus q, shared
by all entities.

si+1 = fi+1(si) (4a)
s̃i+1 ≡ (a ∗ s̃i + b) mod q (4b)
s.t. : i, a, b, q ∈ Z & s̃i ∈ Z∗

q

3) Seed and End Values: In EIBC, some of the parameters
have a Seed Value (SV) as well as an End Value (EV). For

instance, PKG has “public key SV” (P̃ ubK
i

PKG) and “public
key EV” (PubKi

PKG). Moreover, each entity has a private key

SV (P̃ rvK
i

A) and a private key EV (PrvKi
A). PKG produces

SVs of the keys via (5a) and via (5b), and all entities perform
(6a) and (6b) to obtain the live EVs:

Seed V alues :

 P̃ ubK
i

PKG = si.P̆
i
PKG (5a)

P̃ rvK
i

A = si.Fi(IDA) (5b)

End V alues :

 PubKi
PKG = fi(s̃i).P̃ ubK

i

PKG (6a)

PrvKi
A = fi(s̃i).P̃ rvK

i

A (6b)

4) Key refreshment periods: In EIBC, there are different
values that need to be updated or refreshed from time to

time, including “fi(.)”, “si”, “s̃i”, and the PRNG parameters
“a & b”. EIBC employs three timers for Short, Medium
and Long Term Refreshments (STR, MTR and LTR) for the
refreshment of these parameters.

a) STR process: PKG generates a new function
“fi+1(.)” and makes it publicly accessible, along with a VT,
which is the start time of moving to a new live (“i”→ “i+1”).
At the time of VT, each party refreshes “s̃i” following (4b),
updates Fi(.) via (3a) in order to have refreshed public keys
of others. Also, the party refreshes the public key of PKG as
per (7a) and (7b), as well as its own private key based on (7c)
and (7d), utilizing the updated values of “s̃i+1” and “Fi+1(.)”:

P̃ ubK
i+1

PKG = fi+1(P̃ ubK
i

PKG) (7a)

PubKi+1
PKG = fi+1(s̃i+1).P̃ ubK

i+1

PKG (7b)

P̃ rvK
i+1

A = fi+1(P̃ rK
i

A) (7c)

PrvKi+1
A = fi+1(s̃i+1).P̃ rvK

i+1

A (7d)

b) MTR process: PKG renews the PRNG parameters
“a & b” along with the required VT, and shares them with all
the parties to be used starting at VT.

c) LTR process: PKG reselects the system non-shared
secret values, along with the system shared secret values, and
updates one-way function “Fi(.)”, in order to refresh all the
keys, i.e., public and private keys of all parties. PKG also
updates the private key of each party, and informs the party
along with a VT via the secure channel.

Note that the LTR process is similar to the IBC key
refreshment process. As it has been analyzed in the [16], EIBC
simultaneously improves key management process overhead
cost and system security level.

5) Multicast group key support: To support secure mul-
ticasting, EIBC incorporates two mechanisms to manage the
multicast group source/receiver key pair. Each multicast group
is identified by a Multicast Group ID (MID), which is used
similar to ID of an entity, to obtain Source Multicast Key
(SMK) of the group via (1). At the same time each group has a
Receiver Multicast Key (RMK) managed by SAS and obtained
via (5b) and (6b). Each Multicast Group Source (MGS) entity
receives the group’s SMK and RMK, and grants membership
to a Multicast Group Receiver (MGR) entity by sending RMK
to the new MGR. So, MGS encrypts the messages by SMK,
and a MGR uses RMK to decrypt the messages. In order to
authenticate the source of a multicast packet and because a
SMK can be compromised, MGS signs the messages using its
own entity (original) private key (PrvKi

ID).
Furthermore, EIBC generates “m̃i”, similar to “s̃i”, using a

Muticast Group Pseudo Random Number Generator with its
own setup values “c & d” and initial value “m̃0”. Receivers
use “m̃i” to refresh RMK.

F. SG Security Schemes in the Literature

The security scheme in [17] is aimed at data transfer via
the PLC technology for SG communications. In this mecha-
nism, the manufacturer of any device, e.g., meter, modem or
aggregator, should obtain a certificate for the device from the

4 IEEE SYSTEMS JOURNAL

SG security server following the PKI approach, and embeds
it in the device. Then, each node/device utilizes its own
public/private key pair to construct a shared symmetric key
with the next node. In this system, the SG security server
is involved in authentications of all the nodes in each stage
of the mechanism, which can be a heavy workload in the
SG environment. Another concern about this proposal is the
assumption that all the manufacturers of the devices are fully
trusted parties. Also, the shared symmetric key is chosen by
one node and transferred to the peer encrypted with the public
key of the peer. Therefore, the proposed mechanism is vulner-
able to attacks, e.g., by malicious nodes that have obtained a
certificate illegally, or devices from a rogue manufacturer.

The use of symmetric keys for SG security is proposed
in [18], [19], the former based on the D-H algorithm, and
the latter based on the elliptic curve approach of the D-H
algorithm; both adds a key verification step to the pairwise
key construction. Use of symmetric keys is vulnerable to
MITM attacks, despite the verification phase. Furthermore,
using symmetric keys for communications over the entire SG
system is not scalable due to the large number of devices and
nodes. Consequently, PKI is recommended in [1] to secure SG
communications.

In order to decrease the cost of key distribution, the proposal
in [20] requires all packets to be transferred through a server.
Each source encrypts its packet with the public key of the
server and sends it to the server. Then, the server uses its
private key to decrypt the packet, and uses the public key of
the destination to re-encrypt the packet and sends it to the
destination, e.g., a service provider. In an SG, this mechanism
causes a very high demand on the server to handle the
decryption and re-encryption of packets and on the network
to route each packet via the server. Thus, the cost of key
distribution is lowered at the cost of a highly loaded server and
increased data packet communication load. Furthermore, this
method does not preserve confidentiality of the packets since
all packets are decrypted by the server, which is not the end
receiver. The mechanism presented in [21] is also vulnerable
to the MITM attack, although the authors mentioned that it is
safe against this attack. For instance an authenticated malicious
node can perform the MITM attack. This scheme requires two
hash functions, and needs a third party in the key construction
process, in initializing the key construction as well as the key
verification.

Using IBC to secure vehicle-to-grid communications over
SG is proposed in [22]. The authors mainly focused on the
key management, and they provide a one-way authentication
for authenticating the vehicles to the grid. Using biometrics
is proposed in [23] for the authentication of users in SG. The
author suggested that their proposal addresses the user privacy
issue in SG communications [23], although the need to collect
users’ fingerprint information can raise overall user privacy
concerns.

Authors of [24] studied the approaches of having a Uni-
fied Key Management Function (UKMF) and Dedicated Key
Management Functions (DKMF) or a hybrid of the two for
different applications in SG. They showed that using UKMF is
more efficient, and furthermore, they suggested an Extensible

Authentication Protocol based mechanism to be used in SG.
Our work is built on top of PKI, the preferred method to

secure SG communications, and provides secure and efficient
mechanisms for initial authentication and key generations and
updates.

III. SMART GRID MUTUAL AUTHENTICATION

A. System Setup

We concentrate on data communications over the AMI
outside of the HAN domain, which includes an SAS that is
charged with supporting the required authentication and key
management mechanisms. We also cover the key management
for unicast, multicast and broadcast communications that may
be needed to support any application over SG. Our assump-
tions are as follows:

• Nodes are connected in a WMN, with requires unicast
technology support for the multi-hop communications.

• Each node has a unique ID (most likely an IPv6 address),
which may be manually assigned to the node by a
technician at set up time.

• Each SM has a unique serial number “SN” embedded
by the manufacturer, and an initial secret password “pw”
loaded by the installing technician, for authentication
purposes. On the other hand, SAS holds the appropriate
verifier “ver” and “salt” for the SM, in support of the
SRP algorithm.

• Each node is initially loaded with the “H(.)” function,
and values “g & p” to be used in the SRP algorithm,
which can be loaded by the technician at set up time, or
at manufacturing.

• Nodes are all synchronized in time, and the newly in-
stalled SM would be able to synchronize itself with others
using a suitable synchronization system, which design is
outside of the scope of this paper.

• SAS is responsible for the authentication as well as the
key management mechanisms.

The system topology is depicted by Fig. 1, which is based
on [7]. Referring to our discussion in Section I, when a new
SM is installed, it mutually authenticates itself with the SAS,
and receives its private key from the SAS as well.

Definition: Let us define system state “(i, j)”:
Dimension “i”: Represents the index, also referred as

live, of system functions “fi(.)” and “Fi(.)” as well as random
values “si” and “s̃i”.

Dimension “j”: Represents index of PRNG set up values
“aj & bj” used in (4b), which are shown only by “a & b” for
simplicity.

B. Mutual Authentication Scheme

Depicted by Fig. 2, our SRP-6a based mutual authentication
scheme consists of following three steps:

1) Step I: New SM, “sm”, selects a random value “Rsm”
and calculates “Gsm = gRsm mod p”. Then, SM sends “Gsm”
along with its own “SNsm” and “IDsm” to the SAS.

NICANFAR et al.: EFFICIENT AUTHENTICATION AND KEY MANAGEMENT MECHANISMS FOR SMART GRID COMMUNICATIONS 5

Security Server

Controller
Aggregator

Fig. 1: Smart Grid Topology for AMI

2) Step II: SAS performs the following steps upon receiv-
ing the packet from SM in Step I:

• SAS lookups values “ver & salt” associated with
“SNsm”.

• SAS computes “k = H(N, g)”, and picks random values
“Rsas”.

• SAS calculates “Gsas = k.ver+gRsas mod p” and “u =
H(Gsm, Gsas)”.

• SAS computes “S = (A ∗ veru)Rsas” followed by “K =
H(S)” and verifier value “M” as “M = H((H(N) ⊕
H(g)), H(IDsm, SNsm), salt, Gsm, Gsas,K)”.

• Furthermore, SAS computes the private key SV of SM,

“P̃ rvK
i

SM”, and forms the system parameter set for SM.
• Finally, SAS sends values “salt, Gsas & M” along with

the encrypted and signed parameters set of the system to
SM.

3) Step III: SM performs the following steps when it
receives the packet sent by SAS in Step II:

• SM calculates “k = H(N, g)” and “u = H(Gsm, Gsas)”.
• SM computes “x = H(salt, pw)”, and then “S =

(Gsas − k.gx mod p)(Rsm+u.x)”.
• Then, SM calculates “K” as “K = H(S)”,

and then verifies “K” based on the received
“M” by comparing it with “H((H(N) ⊕
H(g), H(IDsm, SNsm), salt, Gsm, Gsas,K)”.

• If the verification condition holds, SM is assured that
the symmetric key “K” shared with the server is valid.
So, SM is able to decrypt received values, as well as is
capable of checking the signature.

• Finally, SM obtains its own private key and sends an
encrypted and signed acknowledgement to the SAS.

Note that by this point, SM and SAS are mutually authenti-
cated to each other, and SM has received system parameters
as well as its own private key.

S
te

p
#

I

II

III

SM SAS
pmodgG,(.)RndR smR

smsm

 i

SM)j,i(1sas

smii

i

SM

i

SAS

jjiii

)j,i(

sassm

smsm

Ru

sm

sassm

R

sas

sas

sm

vKPr,mPrS,TSP

,IDF.svKPr

,
LTR,MTR,STR,PubK

,b,a,j,s,F,f,i
mPrS

,
K,G,G,salt,

SN,IDH,gHNH
HM

,SHK,ver.GS

,G,GHu,pmodgver.kG

,.RndR,g,NHk

,SNLookupsalt,ver

sas

sas

smsmsm G,ID,SN

 sasK

vKPr

sasK

sas

Pe

Sign

,Pe

,M,G,salt

i
SAS

 HANsm21sm

i

SASii

i

SAS

i

SMii

i

SM

sassm

smsm

uxRx

sas

sassm

ID,ID,j,i,TS,TSP

,PubK,sfPubK

,vKPr,sfvKPr

,M
?

K,G,G,salt,

SN,IDH,gHNH
H

,SHK,g.kGS

pw,saltHx

,G,GHu,g,NHk

sm

 smPubK

vKPr

smPubK

Pe

Sign

,Pe

i
SAS

i
SM

i
SAS

Fig. 2: Smart Grid Mutual Authentication (SGMA)

IV. SMART GRID KEY MANAGEMENT PROTOCOL

Our proposed SGKM is based on EIBC. Thus far, nodes
have the appropriate private-public keys to be used for unicast
and node-to-node secure communications based on PKI. In
this section, we introduce our key refreshment mechanism as
well as solutions for the required multicast and broadcast keys.

A. Key Refreshment

Referring to the EIBC mechanism presented in Section II
and [16], the system needs to set the values of three timers
STR, MTR and LTR. Values of these timers are transferred as
parts of the system parameter in Step II of the authentication
process described above.

1) Short Term Refreshment Process: As depicted by Fig. 3,
the system regularly runs this process to move the system state
from “(i, j)” to “(i + 1, j)” based on the value of STR.

Fig. 3: Broadcasting an encrypted and signed packet in STR

a) SAS duties: SAS first generates a new function
“fi+1(.)” according to the new system state “i+1”. Then, SAS
prepares a packet “Pti+1

STR” containing the “fi+1(.)” function,
Time Stamp (TS) of producing the “fi+1(.)”, Valid Time
(V T) of the current system state dimension “i” and its new
value “i+ 1”. Then, SAS applies the original “H(.)” function
to its own live public key to obtain a symmetric key “Ki,j”
via (8):

Ki,j = H(PubKi
SAS) (8)

6 IEEE SYSTEMS JOURNAL

Note: We describe more about “Ki,j” at the end of this
section, since we use this technique to handle the broadcasting
key in the broadcast key management part (Section IV-C).

Finally, SAS encrypts the “Pti+1
STR” packet utilizing the

“Ki,j” key, and broadcasts it along with the STR control
command “CSTR”. SAS also signs these values with its own
live private key in order to provide source authentication.

b) SMs duties: As soon as any of the SMs receives
the broadcast information identified by “CSTR”, uses the live
public key of SAS to verify the signature. If the signature is
valid, SM calculates the symmetric key “Ki,j” following (8)
and decrypts the received packet “Pti+1

STR”. Then, SM verifies
the received system state “i+1” as part of the packet to make
sure it is one after the current state. Furthermore, to prevent
the replay attack, SM checks that “TS” is more than the “V T ”
received in the previous STR refreshment command. Finally,
prior to “V T ”, SM utilizes “fi+1(.)” to refresh the appropriate
keys using (7a)-(7d) by following the steps in the short period
refreshment process of EIBC (Section II.E), and starts using
them by “V T ”.

2) Medium Term Refreshment Process: The system runs
the medium term refreshment process presented in Fig. 4 to
change the system state from “(i, j)” to “(i, j + 1)” based on
the value of MTR.

Fig. 4: Broadcasting an encrypted and signed packet in MTR

a) SAS duties: Referring to EIBC, SAS first generates
a new pair of PRNG parameters “aj+1 & bj+1” for the
new system state “(i, j + 1)”. Then, SAS prepares a packet
“Ptj+1

MTR” containing the “aj+1 & bj+1” values, Time Stamp
“TS” of the packet, Valid Time “V T ” of the new setup
values plus the new system state “j + 1”. Then, SAS applies
the original “H(.)” function to its own live public key to
obtain a symmetric key “Ki,j” (8). Finally, SAS broadcasts
the encrypted packet “Ptj+1

STR” utilizing the “Ki,j” key, along
with the MTR control command “CMTR”. SAS also signs
this packet with its own live private key in order to maintain
source authentication.

b) SMs duties: When a SM receives the broadcast in-
formation identified by “CMTR”, it obtains the live public
key of SAS to verify the signature. If the signature is valid,
SM calculates the symmetric key “Ki,j” following (8), and
decrypts the received packet “Ptj+1

MTR”. Then, SM makes sure
the system state “j + 1” is one after the current one (j), and
checks “TS” to prevent a replay attack. Finally, starting by
“V T ”, SM updates its “s̃i” parameters according to (4b).

3) Long Term Refreshment Process: Based on the value of
LTR, the system runs the long term refreshment process as
shown in Fig. 5 to go from the “(i, j)” state to the “(0, 0)”
state. SAS needs to regenerates the system parameters as well
as the private key of each node and inform them one by one.

Fig. 5: Unicasting an encrypted and signed packet in LTR

B. Multicast Key Mechanism

SMK is used by a group source to encrypt the multicast
packets. Furthermore, RMK is used by all group receivers
to decrypt the messages that are encrypted by SMK. Our
assumptions are:

• The multicast group is source based, and joining is
initiated by the receiver.

• Each group is identified by a unique MID.
• SAS is in-charge of the multicast group key management.

Beside the SMK and RMK keys, each group also has a
public/private key pair that is used in the multicast join
algorithm. Similarly and by utilizing MID, system manages
this key pair based on (5a), (5b), (6a) and (6b).

For the SMK and RMK keys, we define multicast group
state “(k & l)” in a manner similar to the “(i & j)” state.
Furthermore, “gk(.) & Gk(.)” similar to the “fi(.) & Fi(.)”
functions, and finally “mk & m̃k” along with “cl & dl” are
similar to the “si & s̃i” and “aj & bj” items in our original
system design for the unicast communication.

Gk+1(.) = gk+1(Gk(.)) (9a)
mk+1 = gk+1(mk) (9b)
m̃k+1 = cl ∗ m̃k + bl (9c)
SMKk = Gk(MID) (9d)
RMKk = (m̃k, (mk ∗Gk(MID)) (9e)

1) Establishing a multicast group: (i) An MGS that wants
to form a multicast group sends a request to SAS. (ii) SAS
provides MGS with the group initial parameters set consisting
of “{MID, m̃0, RMK0 & G0}” along with the private key
SV of the group per (5b) and (6b) based on MID. (iii) MGS
picks “c0, d0 & g0(.)” and completes the group parameter set
for the multicast group “(0, 0)” state. Once the multicast group
is established by MGS, MID is made publicly accessible by
the parties that want to join. Note that MGS is in-charge of
generating the “gk(.)” function in each state.

2) Joining multicast group: The join algorithm, as pre-
sented in Fig. 6, consists of the following steps:

a) Join request (Step I): The new MGR applies the
current system state function “Fi(.)” to MID to obtain the
public key via (3b). Then, MGR broadcasts its join request
encrypted by the public key of the group, including its own

NICANFAR et al.: EFFICIENT AUTHENTICATION AND KEY MANAGEMENT MECHANISMS FOR SMART GRID COMMUNICATIONS 7

MGR MGS
St

ep

II

 1MGRPubK
TS,MID,IDe i

MID

ll1k1kk

kMGSMGR21

vKPr

ll1k1kk

kMGSMGR21

PubK

d,c,l(.),g(.),G,RMK

,m,k,ID,ID,TS,TS
Sign

,
d,c,l(.),g(.),G,RMK

,m,k,ID,ID,TS,TS
e

i
MGS

i
MGR

I

Broadcasting

Unicasting

 l,k,TS,MID,IDe 2MGRPubK i
MGS

Unicasting
III

Fig. 6: Joining a Multicast Group

ID.
b) Grant membership (Step II): Since only MGS has

private key of the group, only MGS can decrypt the packet
and replies with the membership grant, which consists of the
group parameter set “ m̃k, RMKk, Gk+1, gk+1, cl, dl”, and
at the same time, sends the “gk+1(.)” to the entire (current)
group members to support forward secrecy. For the source
authentication purposes, MGS signs this packet with its own
private key.

c) Acknowledgement of membership (Step III): Firstly,
MGR verifies the signature, and then accepts the information
and joins the group if it is a valid one. Then, MGR sends
an acknowledgement to the source notifying the source that
MGR has successfully joined the group.

3) Key refreshment process: The reasons for the key re-
freshments in case of multicasting situation are different than
the aforementioned unicast situation and consist of two cases:
(i) a member joining or leaving causes the system to refresh
the keys in order to maintain forward and backward secrecy,
and (ii) providing overall multicast key secrecy. However,
we define and use a similar algorithm in both cases. To be
more precise, each multicast group has timers similar to the
unicast case, which are set by the system administrator as per
group establishment purposes and application requirements.
Referring to the unicast timer refreshment processes, we only
describe relevant points of the multicast timers refreshment.

• For multicasting forward and backward secrecy concern-
ing the receivers join/leave situation, we follow the short
term refreshment process.

• MGS is in-charge of generating and distributing the
new “gk+1(.)” in a manner similar to the short term
key refreshment, and proceeding from the “(k, l)” to
“(k + 1, l)” state.

• MGS is in-charge of distributing the “ m̃k” set up values
“cl+1 & dl+1” addressing in a manner similar to the
medium term key refreshment, moving from the “(k, l)”
state to the “(k, l + 1)” state.

• SAS is in charge of the long term key refreshment pro-
cess, moving from the “(k, l)” state to the “(0, 0)” state.
SAS provides appropriate parameters including keys to

the MGS, and then MGS unicasts them to the members
utilizing their unicast public/private pair key.

C. Broadcast key mechanism

Referring to our unicast medium term key refreshment
process, we apply the system original “H(.)” function to the
public key of SAS to obtain a symmetric key. Since the public
key of SAS is dynamic and changes periodically according to
the “fi(.)” function and state of the system, only the parties
authenticated by the SAS, who receive their key management
service from the SAS, have the live public key of SAS.

V. SECURITY AND PERFORMANCE ANALYSIS

In this section, we evaluate the security of our proposed
SGMA and SGKM mechanisms using the Automated Valida-
tion of Internet Security Protocols and Application (AVISPA)
security analyzer [25]. Furthermore, we review the adversary
models including adversary interests and capabilities to attack
the system, following the Dolev and Yao approach [26]. Then,
we review the system security against attacks. At the end
of this section, we verify the overhead cost reduction of our
proposal.

A. Formal Validation Using Software Tool

AVISPA is a software tool for the automatic verification and
analysis of Internet security protocols that is currently consid-
ered by the research community as one of the most trusted
evaluation tools to analyze the ability of a scheme or protocol
to withstand different attacks. AVISPA integrates automatic
security analysis and verification back-end servers like On-
the-Fly Model-Checker (OFMC) and Constraint-Logic-based
Attack Searcher (Cl-AtSe). First of all, the mechanisms under
examination by AVISPA must be coded in the High Level
Protocol Specifications Language (HLPSL) to be evaluated
by the back-end servers. HLPSL is an expressive, role-based
formal language used to describe the details of the protocol
in question. Our HLPSL codes (see Appendix A) includes
different sections used to model the roles of SM and SAS
entities, as well as the role of the environment and the
security goals that have to be achieved. We started with the
original model already existing in the AVISPA library, and
then developed our HLPSL codes based on the proposed
mechanism. The results of the evaluation presented in Figs. 7a
and 7b show that our proposed mechanism is secure and safe
from attacks. To be more precise, the symmetric key that we
prepare at the end of our authentication to be used by SAS to
send the system parameters to SM is a valid and safe key. The
system parameters consists of the PRNG and its setup values
“a & b”, as well as the private key SV of SM. Furthermore,
SM is capable of finding the public key of SAS, and sends
acknowledgement back to SAS, which is secure as well.

B. Adversary Models

Since we may have different situations for an adversary,
we describe two scenarios addressing the adversary’s different
objectives and initial knowledge. In the first scenario, the

8 IEEE SYSTEMS JOURNAL

% OFMC
% Version of 2006/02/13
SUMMARY
 SAFE
DETAILS
 BOUNDED_NUMBER_OF_SESSIONS
PROTOCOL

/ubc/ece/home/vl/grads/hasennic/Deskto
p/avispa-1.1/testsuite/results/SGAS6.if

GOAL
 as_specified
BACKEND
 OFMC
COMMENTS
STATISTICS
 parseTime: 0.00s
 searchTime: 23.32s
 visitedNodes: 0 nodes
 depth: 1000000 plies

(a) OFMC

SUMMARY
 SAFE

DETAILS
 BOUNDED_NUMBER_OF_SESSIONS
 TYPED_MODEL

PROTOCOL

/ubc/ece/home/vl/grads/hasennic/Deskto
p/avispa-1.1/testsuite/results/SGAS6.if

GOAL
 As Specified

BACKEND
 CL-AtSe

STATISTICS

 Analysed : 1956 states
 Reachable : 1956 states
 Translation: 1.16 seconds
 Computation: 7285.36 seconds

(b) ATSE

Fig. 7: AVISPA Results

adversary does not have control on any party; however in the
second scenario, the adversary has full control on one of the
SMs (i.e., there exists a malicious SM).

1) First scenario:
Objectives: The adversary wants to gain access to the

system resources, like SAS or any of the SMs, and wants to
be able to decrypt and encrypt the messages. Other possible
objectives of the adversary are performing a DoS attack against
SAS, or compromising the SAS.

Initial capabilities: The adversary knows the IDs of all
of the parties, as well as initial “H(.)” function and “g & p”
values in SGMA. Also, the adversary knows in detail the
design of SGMA, and can make or have a valid serial number.

Capabilities during the attack: During the attack,
the adversary is able to receive the entire SMs and SAS
communications, encrypted and unencrypted packets. If the
adversary is able to steal the private key of any victim SM,
it will be able to decrypt the encrypted packets sent to the
SM, and impersonate the SM in sending packets with forged
signatures of the SM. Therefore, the adversary will be able
to send incorrect pricing information to the SM, take control
of the smart appliances attached to the SM, modify billing
information, etc. The adversary will also be able to mount a
DoS attack by sending multiple authentication requests to the
SAS.

Discussion: An adversary forging an SM’s signature to
mount a DoS attack on the SAS by sending multiple authen-
tication requests (Step III in Fig. 2) to SAS. As soon as SAS
receives the requests, it checks its database for the (ver, salt)
pair associated with each request. Incorrect or missing values
of (ver, salt) cause the SAS to drop the request and ignore
subsequent requests from the SM once a number of requests
have been dropped.

If the adversary initiates the request with valid ID & SN
that have been stolen from a SM, SAS may find the (ver, salt)
values and process the request by sending the response back to
SM, and goes to the next step of SGMA. Since the adversary
does not have the appropriate password, s/he is not able to
obtain the key and decrypt the packets. However, SAS will
leave the session open. Note that SAS sends a time stamp
(TS1) among other information in Step II of SGMA. SAS can

close the session if the appropriate acknowledge is not being
received within a certain time period (e.g.,session expiry time).
Furthermore, to prevent DoS attack in Step I, SAS can limit
the number of the authentication requests it process within a
given time frame. So, sending a large number of requests does
not harm the SAS.

The adversary may try to perform a replay attack by
forwarding a previous acknowledgement from the SM to the
server. This solution does not help the adversary since the
acknowledgement should be encrypted and signed utilizing the
valid and appropriate system public and private keys. Also, the
acknowledgement consists of the time stamp and ID of SM,
which is not the valid one for the authentication session of the
adversary.

The next option for the adversary is performing a brute-
force attack and obtaining access to the encrypted packets.
Normally, brute-force attack is time consuming, based on size
of the key that packets are encrypted with. If the attacking time
takes more than the session expiry time, the attack will not
cause any issue. In the worst situation, the adversary can move
to the on-line dictionary attack to speed up, or performs an
off-line dictionary attack and find the session key, and finally
obtain an expired private key for a not valid SM. However, the
adversary would gain access to the system parameters, and if
SAS has not run the key refreshment process yet, the adversary
can keep going making the system parameters valid and fresh.
In summary, by using any of the aforementioned attacks, the
adversary is not able to compromise the server, since the
adversary can only communicate with others, and only if
the other parties send information to the malicious node, the
adversary would be able to decrypt the packets. Furthermore,
since SGMA uses a hash function, our authentication provides
forward secrecy, and the adversary is not able to find out the
original password.

To perform a MITM attack as another option for the
adversary, the adversary may receive the first packet generated
by a victim SM and change the value of “Gsm”. However, the
adversary is not able to decrypt the second packet coming
from the server, because the adversary needs the password of
the victim to obtain the symmetric key “K”.

The other option is compromising the server by social engi-
neering. Compromising the server does not give the adversary
access to the passwords of SMs since SAS only keeps the
verifier (and salt). However, if SAS records and keeps the
private keys of the nodes (to be more precise, the private key
SVs), the adversary will have private keys of the entire SMs.
This attack is costly and unfortunately works in almost most of
the situations. If SAS only generates the private keys and does
not log them, to some extent this will prevent the attack from
harming the previous generated keys. However, the adversary
will be able to attack the new SMs. The best solution to prevent
this attack is improving the server security well enough, for
instance by changing the server password more often.

2) Second scenario:
Objectives: Similar to the previous scenario, the adver-

sary wants to gain access to the system resources, like SAS
or any of the SMs. The adversary would like to decrypt
and encrypt the messages. Other objectives of the adversary

NICANFAR et al.: EFFICIENT AUTHENTICATION AND KEY MANAGEMENT MECHANISMS FOR SMART GRID COMMUNICATIONS 9

may include performing a DoS attack against the SAS, or
compromising the server or any of SMs.

Initial capabilities: Similar to the previous scenario, the
adversary knows the IDs of all the parties, the system param-
eter “H(.)” function and “g & p” values regarding SGMA, as
well as the detail design of the SGMA protocol. Furthermore,
the adversary has a valid password to start SGMA, and by
proceeding with the SGMA protocol, the adversary has a valid
private key and all of the system parameters like “Fi(.)”.

Capabilities during the attack: During the attack,
the adversary is able to receive the entire SMs and SAS
communications, encrypting and decrypting packets. Since
the adversary has a valid private key of a SM, the adversary
is able to decrypt and encrypt packets to and from the SM.
For instance, the adversary can change the HAN commands,
price list, or meter/billing information.

Discussion: In this situation, the adversary has full control
of a malicious SM, in other words the adversary is a valid SM.
Therefore, the adversary can rerun SGMA to be authenticated,
and some-how perform a DoS attack. However, the adversary
has only one password, and can resend the same ID and SN of
victim SM to initiate a session, and in the worst case causes
one open session.

The previous discussion about analyzing the adversary be-
haviour is valid in this scenario as well. The only differences
are having valid system parameters like PRNG. Generally
speaking, being in this scenario does not help an adversary
to improve the chance of a successful attack. For instance,
the adversary can run a brute-force attack by having a valid
private key and communicate with others to obtain their private
keys by brute-force. In this case, off-line dictionary can work
because the adversary has the system parameters, like fi(.)
and PRNG, and can find the live private key. However, just by
performing one LTR process by SAS, the system can prevent
the adversary from continuing the successful attack.

C. Other security characteristics

Recall in our discussion in Section III, a mutual authenti-
cation is performed since SAS needs to know the password
verifier, and on the other side, SM needs to know the pass-
word. Both ends require one of these values to calculate the
session key. In terms of attacks resilience, we refer to the
discussion in the previous subsection, about the most well-
known attacks such as brute-force, DoS, replay, on-line and
off-line dictionary and MITM attack, which cover parts of the
attacks resilient summary as presented by TABLE I. We also
refer to the above section about the social engineering attack
that may work partially on the server; however, compromising
one SM does not help the adversary to attack the whole
system. In TABLE I we compare our mechanism with five
of the schemes described in Section II-F, which include
mechanisms for authentication and/or key construction. Since
[20] proposed using PKI and aimed at reducing the number
of certificates (or issued private keys), [23] suggested using
users’ biometric parameter (fingerprint) for authentication and
[24] does not have detail design of the authentication and/or

key construction, therefore we did not include them in this
table.

TABLE I: Summary of resilience to the attacks

Attack [17] [18] [19] [21] [22] Ours
Social engineering 6 6 6 6 6 4 & 6
Brute-force 6 4 4 4 6 4
Replay 4 4 4 4 4 4
DoS 6 6 6 6 6 4
MITM 4 6 6 6 4 4
On-line dictionary 4 4 6 6 6 4
Off-line dictionary 6 4 4 4 6 4
Unknown key share 4 4 4 4 4 4
Compromised impression 4 4 4 4 & 6 4 4
Denning-Sacco 6 4 4 4 6 4
Key privacy & insider 4 6 4 4 6 4
Ephemeral key compro-
mise impersonation

6 4 6 6 6 4

Unknown key-share attack: The second packet of the
authentication scheme presented in Fig. 2 is encrypted by
symmetric key “K”. Encryption of this packet by SAS shows
SAS has the key, and decryption the packet by SM and
acknowledging the SAS proves that SM has the key as well.

Compromised impression resilience: Referring to our
analysis at the beginning of this section, finding the private
key of any SM does not help an intruder to obtain the private
key of any other node or SAS.

Denning-Sacco attack resilience: If an intruder somehow
finds a symmetric key used in the authentication scheme, since
the key is the product of a hash function, which is a one-way
function, the intruder would not be able to find the original
password or the verifier. Furthermore, finding a private key
does not help the adversary to find a symmetric key of the
authentication session.

Privacy and insider attack resilience: Since our scheme
is based on PKI, each private key is known only by the owner
(and maybe the server). Other nodes know only the public
keys of all the nodes, which in fact is required by them to
communicate with each other. Even if other nodes in between
relay the packets, since the packets are encrypted and signed,
they cannot have access to the private key of the source or
destination nodes.

Ephemeral key compromise impersonation: Suppose an
adversary performs an off-line dictionary attack or brute-force
or even social engineering attack and obtains the password of
a SM. Because the password is only one of the values required
for the session key construction, the adversary still is not able
to find the session key, or the private key.

D. Performance analysis

Consider the topology shown by Fig. 1. Suppose SAS wants
to refresh the keys of all the SMs. Compared to the original
PKI, the IBC approach yields a better performance in the
overhead cost, as we have discussed in Section II. Therefore,
we only compare our proposal with an SG that uses the IBC
approach to secure data exchanges.

We assume that on average, each SM is connected to
“Hsm > 1” neighbours (dimension of SM), and the average
hop counts between SAS and any SM is equal to “Lsas”

10 IEEE SYSTEMS JOURNAL

TABLE II: FD and FBM based on Hsm and Lsas

Hsm Lsas FD(Lsas, Hsm) FBM (Lsas, Hsm)

3 5 54.6 10.13
3 10 14024 21.37
3 20 8.45E+08 43.875
3 40 3.00E+08 88.87
4 5 159.2 12.45
4 10 1.69E+05 25.78
4 20 1.50E+11 52.44
4 40 2.00E+23 105.78
5 5 371 14.84
5 10 1.19E+06 30.47
5 20 1.18E+13 61.72
5 40 1.13E+27 124.22

(Length of SAS network). Moreover, we define “bwl” as the
bandwidth (BW) of each link required per key distribution
while the total network BW to refresh all the keys is “BWnet”.
To compare the delay, we define “dh” as the delay/time
required by each hop (or link) to deliver/process a packet, and
“Dnet” to be the total system delay/time to refresh all the keys.
For simplicity, we assume SAS generates same packet sizes in
STR, MTR and LTR. Since the LTR process is similar to the
key refreshment process in the original IBC, we use it as our
bench mark in this study. In order to show the improvement of
SGKM employing EIBC, we assume the following relations
exists between values of the timers:

MTR = ms ∗ STR , ms > 1 (10a)
LTR = lm ∗MTR , lm > 1 (10b)
LTR = ls ∗ STR , ls > 1 (10c)
ls = lm ∗ms (10d)

The total network required BW and applicable delay by each
key refreshment process are as follow:

Dnet(LTR) = dh.(Hsm +

Lsas∑
v=2

v.Hv−1
sm) (11a)

BWnet(LTR) = bwl.

Lsas∑
v=1

(v.Hsm + v − 1).Hv
sm(11b)

Dnet(STR) = dh.(1 + 2.dh) (11c)

BWnet(STR) = 2.bwl.Hsm.
HLsas

sm − 1

Hsm − 1
(11d)

In (11a)-(11d), we assume that in each STR (and MTR)
process, 50% of the nodes broadcast concurrently, and in the
LTR process, SAS processes “Hsm” SMs at the same time.

By a reasonable estimation, we have:

FD(Lsas, Hsm) =
Dnet(LTR)

Dnet(STR)
≈
∑Lsas

v=2 v.Hv−1
sm

2.Lsas
(12)

FBW (Lsas, Hsm) =
BWnet(LTR)

BWnet(STR)
≈
∑Lsas

v=1 (v.Hv+1
sm)

2.HLsas
sm

(13)

FD in (12) represents the relationship between the delays of
the key refreshment processes, while FBW in (12) demon-
strates their required network bandwidth. Although these two
quantities depend on the network topology, they are always
greater than one.

TABLE II illustrates a few examples of FD and FBM based

on Hsm and Lsas. As the table shows, the values increase with
Hsm and Lsas. Note that STR (and MTR) processes are run
more frequently in our mechanism compared to LTR, whereas
in the original IBC (and PKI), the key renewal (similar to
LTR) process are run at almost the same rate as STR in our
mechanism. For example if “Hsm = 4” and “Lsas = 40”,
the system requires less than 1% bandwidth to distribute the
private keys following SGKM, compared with IBC/PKI. The
time required for key distribution is reduced to “5E − 24” of
the LTR delay. The data in TABLE II along with the above
examples clearly shows that the proposed mechanism is much
more efficient and greatly reduces the key refreshment delays
compared to the original IBC or PKI mechanisms.

Overall analysis: In our design, we take advantage of the
SRP, PKI and IBC approaches. Each one brings some benefits
to our proposed mechanisms. Besides, our enhancement of
each mechanism has improved the overall benefits to the
system.

Firstly, we have reduced the required number of packets in
our authentication scheme. To be more precise, we reduced
the number of packets needed for mutual authentication from
four to three. Furthermore, in the three packets, the entire set
of system parameters are delivered as well as the private key
of the new SM. Our analysis shows that SGMA is fast and
robust and secure.

Secondly, implementing the private key cryptography sys-
tem in a distributed environment causes providing a symmetric
key between every two nodes that need to communicate to
each other. Moreover, increasing the number of nodes that
want to communicate with a single node requires that the
node keeps and manages a large number of keys (one per
peer node), which is the case in the SG context. However,
PKI requires only one key pair per entity in spite of a larger
key size. In fact, while a node has its own private/public key
pair, it is sufficient for the node and others to exchange secure
communications.

Also, since IBC reduces the public key distribution overhead
in PKI, we take advantage of this technique in our design.
Furthermore, we have designed EIBC, an improved version of
the IBC, and utilized it in SGKM. The most important benefit
of using EIBC in this design is reduction of the private key
distribution and refreshment overhead. In EIBC, most of the
key refreshments are accomplished by the PKG broadcasting
a packet to all nodes instead of unicasting one packet to
each node, which yields substantial reduction in the system
overhead cost. Indeed, broadcasting is used in two out of three
key refreshment processes (STR and MTR), while unicasting
is used in the LTR refreshment process, which is run much
less frequently than the STR and MTR processes.

Also, our mechanism can be easily implemented in any
system and platform. Since nodes are only required to have
their own private keys, and to know only the public keys of
the nodes that they want to communicate with, the mechanism
is scalable. Based on the nodes population and application that
are going to be run on the system, the system administrator can
tune the security and overhead by changing the values of the
timers as well as sizes of the keys. Furthermore and referring
to our EIBC design [16], the system administrator can even

NICANFAR et al.: EFFICIENT AUTHENTICATION AND KEY MANAGEMENT MECHANISMS FOR SMART GRID COMMUNICATIONS 11

turn any of the features off, like PRNG. All an administrator
requires to do is for instance to set “a = 0 & b = 1”. On
the other hand, if the administrator wants to turn the periodic
distribution function fi(.) off, s/he can set “fi(x) = x”. This
flexibility makes our mechanisms applicable to a variety of
systems and platforms.

VI. CONCLUSION

In this paper, we have presented novel mutual authentication
and key management mechanisms tailored for the SG com-
munications. The proposed mechanism addresses the required
security aspects by the SG system, and at the same time,
manages the process in an efficient fashion. The savings in
resource consumption as the result of our mechanism can
be used to handle more data delivery, and/or to increase the
security of the system by refreshing the keys more often,
which brings to SG the opportunity to utilize keys of smaller
sizes, further reducing resource consumption in the system.
In order to enjoy the security benefits of PKI, SG has to
endure the inefficient resource utilization due to the large key
sizes as well as the large key distribution overhead. We have
shown that our proposed SGMA and SGKM mechanism have
successfully addressed both of these efficiency concerns of the
PKI approach, while retaining the security strength of PKI.

APPENDIX A
IMPLEMENTATION OF PROPOSED MECHANISM IN AVISPA

The HLPSL codes for AVISPA to define the SM and SAS
roles are presented in Figs. 8 and 9, respectively. Also, the
required session and environment HLPSL codes are shown in
Fig. 10. Note that since AVISPA does not support arithmetic
operations, we have used instead the “xor & exp” (raise
to power) operators besides other security functions. The
“xor” operator is used for the mod 2 “+ & −” (addition
and subtraction) operations required for the authentication
algorithms.

ACKNOWLEDGEMENT

This work was supported in part by the Natural Sciences and
Engineering Research Council (NSERC) of Canada through
grant STPGP 396838.

REFERENCES

[1] NIST Smart Grid, Cyber Security Working Group, “Introduction to
NISTIR 7628 Guidelines for Smart Grid Cyber Security,” Guideline,
Sep. 2010. [Online]. Available: www.nist.gov/smartgrid

[2] P. McDaniel and S. McLaughlin, “Security and privacy challenges in the
smart grid,” Security & Privacy, IEEE, vol. 7, no. 3, pp. 75–77, 2009.

[3] Z. Fan, P. Kulkarni, S. Gormus, C. Efthymiou, G. Kalogridis,
M. Sooriyabandara, Z. Zhu, S. Lambotharan, and W. H. Chin, “Smart
Grid Communications: Overview of Research Challenges, Solutions, and
Standardization Activities,” IEEE Commun. Surveys & Tutorials, vol. 15,
no. 1, pp. 21–38, 2013.

[4] J. Wang and V. Leung, “A survey of technical requirements and
consumer application standards for ip-based smart grid ami network,” in
International Conference on Information Networking (ICOIN). IEEE,
2011, pp. 114–119.

[5] H. Nicanfar, P. Jokar, and V. Leung, “Smart grid authentication and key
management for unicast and multicast communications,” in IEEE PES
Innovative Smart Grid Technologies Asia (ISGT). IEEE, 2011, pp. 1–8.

[6] D. Cooper, S. Santesson, S. Farrell, S. Boeyen, R. Housley, and W. Polk,
“Internet X. 509 public key infrastructure certificate and certificate
revocation list (CRL) profile,” 2008.

[7] H. Gharavi and B. Hu, “Multigate communication network for smart
grid,” Proceedings of the IEEE, vol. 99, no. 6, pp. 1028–1045, 2011.

[8] W. Diffie and M. Hellman, “New directions in cryptography,” IEEE
Transactions on Information Theory, vol. 22, no. 6, pp. 644–654, 1976.

[9] S. Bellovin and M. Merritt, “Encrypted key exchange: Password-based
protocols secure against dictionary attacks,” in IEEE Computer Society
Symposium on Research in Security and Privacy. IEEE, 1992, pp.
72–84.

[10] D. Seo and P. Sweeney, “Simple authenticated key agreement algorithm,”
Electronics Letters, vol. 35, no. 13, pp. 1073–1074, 1999.

[11] Z. Zhang and Q. Zhang, “Verifier-based password authenticated key
exchange protocol via elliptic curve,” in IEEE International Conference
on Information Theory and Information Security (ICITIS). IEEE, 2010,
pp. 407–410.

[12] T. Wu et al., “The secure remote password protocol,” in Internet Society
Symposium on Network and Distributed System Security, 1998.

[13] A. Shamir, “Identity-based Cryptosystems and Signature Schemes,” in
Advances in CryptologyCRYPTO 1984. Springer, 1984, pp. 47–53.

[14] D. Boneh and M. Franklin, “Identity-based encryption from the Weil
pairing,” in Advances in CryptologyCRYPTO 2001. Springer, 2001,
pp. 213–229.

[15] T. Wu et al., “SRP-6: Improvements and Refinements to the Secure
Remote Password Protocol,” P1363.2 working group,.

[16] H. Nicanfar and V. C. Leung, “EIBC: Enhanced Identity-Based Cryptog-
raphy, a Conceptual Design,” in IEEE InternationalSystems Conference
(SysCon). IEEE, 2012, pp. 1–7.

[17] S. Kim, E. Kwon, M. Kim, J. Cheon, S. Ju, Y. Lim, and M. Choi,
“A Secure Smart-Metering Protocol Over Power-Line Communication,”
IEEE Transactions on Power Delivery, vol. 26, no. 4, pp. 2370–2379,
2011.

[18] J. Kamto, L. Qian, J. Fuller, and J. Attia, “Light-weight key distribu-
tion and management for advanced metering infrastructure,” in IEEE
GLOBECOM Workshops (GC Wkshps). IEEE, 2011, pp. 1216–1220.

[19] F. Zhao, Y. Hanatani, Y. Komano, B. Smyth, S. Ito, and T. Kambayashi,
“Secure authenticated key exchange with revocation for smart grid,” in
IEEE PES Innovative Smart Grid Technologies (ISGT). IEEE, 2012,
pp. 1–8.

[20] X. He, M. Pun, and C. Kuo, “Secure and efficient cryptosystem for
smart grid using homomorphic encryption,” in IEEE PEIS nnovative
Smart Grid Technologies (ISGT). IEEE, 2012, pp. 1–8.

[21] J. Xia and Y. Wang, “Secure Key Distribution for the Smart Grid,” IEEE
Transactions on Smart Grid, vol. 3, no. 3, pp. 1437–1443, 2012.

[22] H. Tseng, “A secure and privacy-preserving communication protocol
for v2g networks,” in IEEE Wireless Communications and Networking
Conference (WCNC). IEEE, 2012, pp. 2706–2711.

[23] Q. Gao, “Biometric authentication in Smart Grid,” in International
Energy and Sustainability Conference (IESC). IEEE, 2012, pp. 1–5.

[24] S. Das, Y. Ohba, M. Kanda, D. Famolari, and S. Das, “A key manage-
ment framework for ami networks in smart grid,” IEEE Communications
Magazine, vol. 50, no. 8, pp. 30–37, 2012.

[25] “AVISPA-Automated Validation of Internet Security Protocols.”
[Online]. Available: http://www.avispa-project.org

[26] D. Dolev and A. Yao, “On the security of public-key protocols,” IEEE
Transactions Information Theory, vol. 29.

Hasen Nicanfar (S’11) is a PhD student in the
department of Electrical and Computer Engineering,
the University of British Columbia. He received his
BASc. degree in Electrical Engineering from Sharif
University of Technology in 1993, and his MASc.
degree in Computer Networks from Ryerson Univer-
sity in 2011. From 1993 to 2010, he has worked in
different positions such as IT/ERP manager, project
manager, production engineer/manager, and business
& system analyst. His research interests are in the
areas of the security, privacy, cryptography, system

& network design and management for wireless communication and Smart
Grid system.

12 IEEE SYSTEMS JOURNAL

Paria Jokar (S’11) received the B.Sc and M.Sc.
degree with distinction in electrical engineering from
the Iran University of Science and Technology. She
is currently working toward Ph.D. in the Department
of Electrical and Computer Engineering, The Uni-
versity of British Columbia, Canada.

She has more than five years of practical and
working experience in the industry as network and
security engineer & analyst. Currently, she holds
the research assistant position in WiNMoS Lab.
Her Research interests include computer networks,

wireless networks and network security.

Konstantin Beznosov (M’98) is an Associate Pro-
fessor at the Department of Electrical and Computer
Engineering, University of British Columbia, where
he directs the Laboratory for Education and Re-
search in Secure Systems Engineering. His research
interests are usable security, distributed systems
security, secure software engineering, and access
control. Prior UBC, he was a Security Architect at
Hitachi Computer Products (America) and Concept
Five. Besides many academic papers on security
engineering in distributed systems, he is also a co-

author of “Enterprise Security with EJB and CORBA” and “Mastering Web
Services Security” books, as well as XACML and several CORBA security
specifications.

Victor C.M. Leung (S’75-M’89-SM’97-F’03) is a
Professor of Electrical and Computer Engineering
and holder of the TELUS Mobility Research Chair
at the University of British Columbia (UBC). He has
contributed more than 600 technical papers and 25
book chapters in the areas of wireless networks and
mobile systems. He was a Distinguished Lecturer
of the IEEE Communications Society. He has been
serving on the editorial boards of IEEE Transactions
on Computers, IEEE Wireless Communications Let-
ters and several other journals, and has served on the

organizing and technical program committees of numerous conferences. Dr.
Leung was a winner of the 2012 UBC Killam Research Prize, and the IEEE
Vancouver Section Centennial Award.

role sgas_Init (SM,SAS : agent,
 PW : symmetric_key,
 Hsh : hash_func,
 G,N : text,
 Snd,Rcv : channel(dy))
played_by SM
def=
 local State : nat,
 Rsm : text,
 Salt : protocol_id,
 PubKsm, PubKsas: public_key,
 FFi, Ffi : hash_func,
 STi, SNsm, Gsm, Gsas, Ver, K0, K, M1, M2, M, Ru, X, S0, S1, S2, S : message

 const sec_init_Si, sec_init_K : protocol_id

 init State := 0

 transition

 1. State = 0 /\ Rcv(start) =|> % start
 State':= 2 /\ Rsm' := new() % R_sm = Rnd(.)
 /\ SNsm' := new() % SN_sm = Rnd(.)
 /\ Gsm' := exp(G,Rsm') % Gsm = g^R_sm
 /\ Snd(SM.Gsm'.SNsm') % Sending ID_sm, g^R_sm, SN_sm

 2. State = 2 /\ Rcv(Salt'.Gsas'.FFi'.STi') =|> % Receiving Salt, B, Encrypted F_i(.) & State i with K
 State':= 4 /\ K0':= Hsh(N.G) % k= hash(N,g)
 /\ Ru':= Hsh(Gsm.Gsas') % u= hash(A,B)
 /\ X':= Hsh(Salt'.PW) % x= hash(salt, pw)
 /\ Ver' := exp(G,X') % ver = g^x
 /\ S0' := xor(Gsas',Hsh(K0'.Ver')) % g^b + k.g^x - k.g^x = g^b
 /\ S1' := exp(S0',Rsm) % (g^b)^a = g^ab
 /\ S2' := exp(exp(S0',Ru'), X') % ((g^b)^u)^x = g^bux
 /\ S' := xor(S1',S2') % S = g^ab xor g^bux
 /\ K' := Hsh(S') % K = hash(S)
 /\ witness(SM,SAS,k1,K') % Checking K
 /\ secret(K',sec_init_K,{SM,SAS}) % Checking K
 /\ M1' := xor(Hsh(N),Hsh(G)) % M1 = hash(N) xor hash(g)
 /\ M2' := Hsh(xor(SM,SNsm)) % M2 = hash(ID xor SN)
 /\ M' := Hsh(M1'.M2'.Salt.Gsm.Gsas'.K') % M = hash(M1,M2,salt,A,B,K)
 /\ STi' := {STi'}_inv(K') % Decrypting i with K
 /\ FFi' := {FFi'}_inv(K') % Decrypting F_i with K
 /\ PubKsas' := FFi(SAS) % PubK_sas = F_i(ID_SAS)
 /\ Snd({STi'}_inv(PubKsas')) % sending i uncrypted by PubK_sas
 /\ witness(SM,SAS,si1,STi') % Checking state i
 /\ secret(STi',sec_init_Si,{SM,SAS}) % Checking state i

 2. State = 4 /\ Rcv(M) =|> % receiving hash(M)
 State' := 6
 /\ request(SM,SAS,k2,K) % Checking K
 /\ request(SM,SAS,si2,STi) % Checking state i

end role

Fig. 8: Smart Meter (SM) HLPSL codes

%%%

role sgas_Resp (SAS, SM: agent,
 Ver : message,
 Salt : protocol_id,
 Hsh : hash_func,
 G,N : text,
 Snd, Rcv : channel(dy))

played_by SAS

def=
 local State : nat,
 Rsas : text,
 FFi, Ffi : hash_func,
 PubKsm, PubKsas : public_key,
 Resi, Resj, STi, SNsm, Ru, M1, M2, M, K0, K, Gsm, Gsas, X, S0, S1, S : message

 const sec_resp_Si, sec_resp_K : protocol_id

 init State := 1

 transition

 1. State = 1 /\ Rcv(SM.Gsm',SNsm') =|> % A and g^a
 State':= 3 /\ K0' := Hsh(N.G) % k = hash(N,g)
 /\ Rsas' := new() % b = Rnd()
 /\ Gsas' := xor(exp(G,Rsas'),Hsh(K0'.Ver)) % B = g^b + k.g^x
 /\ Ru' := Hsh(Gsm'.Gsas') % u = hash(A,B)
 /\ S0' := exp(Gsm',Rsas') % (g^a)^b = g^ab
 /\ S1' := exp(exp(Ver,Ru'),Rsas') % ((g^x)^u)^b = g^bux
 /\ S' := xor(S0',S1') % S = g^ab xor g^bux
 /\ K' := Hsh(S') % K = hash(S)
 /\ M1' := xor(Hsh(N),Hsh(G)) % M1 = hash(N) xor hash(g)
 /\ M2' := Hsh(xor(SM,SNsm')) % M2 = hash(ID xor SN)
 /\ M' := Hsh(M1'.M2'.Salt.Gsm'.Gsas'.K') % M = hash(M1,m2,salt,A,B,K)
 /\ STi' := new() % State i
 /\ PubKsas' := FFi(SAS) % PubK_sas = F_i(ID_sas)
 /\ Snd(Salt.Gsas'.{FFi}_K'.{STi'}_K') % sending salt,B
 /\ witness(SAS,SM,k2,K') % Checking K
 /\ secret(K',sec_resp_K,{SM,SAS}) % Checking K

 2. State = 3 /\ Rcv({Resi'}_inv(PubKsas)) =|> % receiving state i
 State':= 5 /\ witness(SAS,SM,si2,Resi') % Checking state i
 /\ secret(Resi',sec_resp_Si,{SM,SAS}) % Checking state i
 /\ Snd(M) % sending M
 /\ request(SAS,SM,si1,Resi') % Checking state i
 /\ request(SAS,SM,k1,K) % Checking K

end role

%%%

Fig. 9: Smart Meter (SAS) HLPSL codes

NICANFAR et al.: EFFICIENT AUTHENTICATION AND KEY MANAGEMENT MECHANISMS FOR SMART GRID COMMUNICATIONS 13

%%%

role session(SM,SAS : agent,
 PW : symmetric_key,
 Salt : protocol_id,
 Hsh : hash_func,
 G,N : text)
def=

 local SndSM, RcvSM, SndSAS, RcvSAS : channel (dy)

 composition
 sgas_Init(SM,SAS,PW,Hsh,G,N,SndSM,RcvSM) /\
 sgas_Resp(SAS,SM,exp(G,Hsh(Salt.PW)),Salt,Hsh,G,N,SndSAS,RcvSAS) % x = hash(Salt, pw) & Ver = g^x

end role

%%%

role environment()

 def=
 const si1, si2, k1, k2 : protocol_id,
 sm, sas, intruder : agent,
 kab, kai, kbi : symmetric_key,
 s_ab,s_ai,s_bi : protocol_id,
 hsh : hash_func,
 g, n : text

 intruder_knowledge = {i, kai, kbi, s_ai, s_bi}

 composition
 session(sm,sas,kab,s_ab,hsh,g,n)
 /\ session(sm,intruder,kai,s_ai,hsh,g,n)
 /\ session(sas,intruder,kbi,s_bi,hsh,g,n)

end role

%%%

goal

 secrecy_of sec_init_Si, sec_init_K, sec_resp_Si, sec_resp_K

 authentication_on k1
 authentication_on k2

 authentication_on si1
 authentication_on si2

end goal

%%%

environment()

Fig. 10: AVISPA Session and Environment HLPSL codes

