

An Overview of The Ongoing Research at LERSSE

Konstantin Beznosov http://konstantin.beznosov.net

Who's Konstantin Beznosov

Education

- B.S. in Physics (1993), Novosibirsk State University
- M.S. (1997) & Ph.D. (2000) in CS, Florida Int. Univ.
- Experience
 - US industry (1997-2003): end-user, consulting, and software vendor organizations
 - Assistant Prof., ECE, UBC (2003-present)
- Contributed to
 - OMG
 - CORBA Security revisions
 - Resource Access Decision
 - Security Domain Membership Management
 - OASIS
 - eXtensible Access Control Markup Language v1.0

Bret Hartman Donald Flinn

What's LERSSE?

<u>Laboratory for Education and Research</u> in <u>Secure Systems Engineering</u>

- Research group at the Department of Electrical & Computer Eng. UBC
- People
 - Faculty
 - Konstantin Beznosov, lead (computer security)
 - Sidney Fels (Human Computer Interaction), lead of HCT Lab
 - 2 Ph.D. students
 - 5 Master students + 2 joining in September

http://lersse.ece.ubc.ca

Research Directions and Projects

- engineering security 1. mechanisms
 - CORBA Security, RAD, AAS, RAD JACCet, SDMM, attribute function, 4. network security EASI, composable authorization engines,
- 2. access control models & languages
 - CORBA-RBAC, RelBAC XACML v1.0, SAAM, probabilistic trust

- **3.** engineering secure software
 - agile security assurance
 - - MC-SSL
- JAMES, AC mech. eval. 5. critical infrastructure interdependencies
 - **CITI interdependencies**
 - 6. usable security
 - **HOT Admin**

outline

- motivation & context: practical security engineering
- engineering secure software
 - agile security assurance
- engineering security mechanisms
 - JAMES
 - SAAM
 - composable authorization engines
- security usability
 - HOT Admin
- network security
 - MC-SSL

practical security engineering: motivation & context

why aren't secure systems everywhere?

almost completely insecure, or "secure" but

- too expensive and error-prone to build
- too complex to administer
- inadequate for real-world problems
- forever

what can be done about it?

gradual improvements towards

- inexpensive and error-proof to build
- effective and inexpensive in administration
- adequate for problem domains
- easy and inexpensive to change and integrate

separation of concerns

- application vendors sell application(s) products
- middleware vendors sell middleware products
- security vendors sell security products
- application owners sell service(s)

Direction: engineering secure software

Project: agile security assurance

problem

mismatch between

- agile methodologies for software development
- conventional methods for security assurance

hard to assure with agile development

why is addressing the mismatch important?

more security-critical software

agile methods are here to stay

contribution

1. examined the mismatch between security assurance

and agile methods

2. classified conventional security assurance practices

according to the degree of clash

3. suggested ways of alleviating the conflict

what's agile development?

Requirements		
Design		
Implementation and Testing		
Integration and Testing		
	Requirements	
	Design	
	Implementation and Testing	
	Integration and Testing	
		Requirements
		Design
		Implementation and Testing
		Integration and Testing

- Characteristics
 - Iterative lifecycle
 - Requirements and design emergence
 - Direct communication
 - Tacit knowledge
- Sample methodologies
 - Crystal
 - Adaptive Development
 - Feature-driven Development
 - Scrum
 - Lean Software Development
 - XP

solution(s)?

If the mountain will not go to Mahomet, let Mahomet go to the mountain. (proverb)

examination results

Assurance relies on third party

- reviews
- evaluation
- testing

Points of clash

- 1. direct communication and tacit knowledge
- 2. iterative lifecycle
- 3. design refactoring
- 4. testing "philosophy"

(mis)match classification

1. natural match

e.g., XP pair programming ♥ internal review & coding standards

2. methodology-neutral

- e.g., language (e.g., Java, C# vs. C, C++), version control and change tracking
- 3. can be (semi-)automated

e.g., code static analysis, security testing/scanning

4. mismatch (≈ 50%)

e.g., external review, analysis, testing, validation change authorization

alleviating the mismatch

for (semi)-automatable

- increase acceptance through tools
- codify security knowledge in tools
 - automated fault injection, test generation

for mismatching

- search for new agile-friendly assurance methods
 - direct communication and tacit knowledge
 - iterative lifecycle
 - design refactoring
 - testing "philosophy"
- intermittent assurance
 - apply at the first and last iterations
 - use the results to "align" the development
 - have a security engineer (role) involved in all iterations (Wäyrynen et al. 2004)

summary on agile security assurance

problem

mismatch between agile development & security assurance

contributions

- **1. examined** (pain points)
- 2. classified assurance methods
- **3. alleviated** (tools, knowledge codification, new methods research, intermittent assurance)

Further research

- tool support
- Knowledge classification
- new assurance methods

Direction: engineering security mechanisms

Project: Junk Authorizations for Massive-scale Enterprise Services (JAMES)

- processor time virtually free
- human time/attention expensive
- commodity computing most cost-effective

target environments

target environments

with 0.5M of commodity computing systems
0.5--1.5M application instances
with MTTF of 1 year

1,300--4,000 fail every day

with availability of 99.9%

500--1,500 unavailable at any given moment

request-response paradigm

enables PDP reuse

the new challenge

point-to-point authorization architectures at massive scale

- become too fragile, requiring costly human attention, and
- fail to reduce latency by exploiting the virtually free CPU resources and high network bandwidth

the approach

addressing the problem

 decouple PEP from PDP with publish-subscribe architecture(s)

2. recycle policy decisions

3. flooding

publish-subscribe for policy decisions

PDP PDP **PDP** promotes authorization recycling

recycling authorizations

Bob is a *customer*

He gets authorization to view "Software Design"

recycling authorization

Alice is a preferred customer

- Has more privileges than Bob
- System recycles the authorization for Bob and allows Alice to view the book

Secondary and Approximate Authorizations Model (SAAM)

basic elements

request r = <s, o, p, e, i>

- s -- subject
- o -- object
- p -- permission
- e -- environment
- i -- request identity

< s , o, p , e , i > <"Bob", "eBook-123", "view", "time=11:30", "61171092998292">

authorization a = <r, d>

- r -- request
- d -- decision

authorization types in SAAM

•primary precise

approximate

secondary

recycling authorizations

secondary authorizations

- re-using decisions made for other, but equivalent, requests
- example $< s_1, o_1, p_1, e_1, i_1 > < s_1, o_1, p_1, e_1, i_2 >$

approximate authorizations

- re-using decisions made for other, but similar, requests
- examples
 - <**s**₁,**o**, **p**, **e**, **i**₁> <**s**₂,**o**, **p**, **e**, **i**₂> **s**₁ \ge **s**₂
 - < s, o_1 , p, e, i_1 > < s, o_2 , p, e, i_2 > $o_1 \le o_2$
 - <s, o, p_1 , e, i_1 > <s, o, p_2 , e, i_2 > $p_1 \le p_2$

flooding with speculative authorizations

summary for JAMES & SAAM

problem

- context and assumptions
 - human time/attention is too expensive
 - CPU resources are virtually free
 - commodity computing is most cost effective
- target environments
 - massive-scale enterprises with 10⁵ machines
- limitations of point-to-point architectures
 - too fragile, high latency, too expensive to maintain
- approach to address
 - decouple PEP and PDP with publish-subscribe
 - authorization recycling
 - secondary and approximate authorization model (SAAM)
 - flooding

THE UNIVERSITY OF BRITISH COLUMBIA

Project: composable authorization engines

Copyright © 2002-2005 Konstantin Beznosov

problem motivation

Distributed app. developers/admins have limited choices:

1. Pre-built policy engines with limited capabilities

- e.g., JAAS default policy file, COM+, EJB authorization
- Limited support for non-trivial or application-specific policies
- 2. Pre-built policy engines "one size fits all" generic
 - e.g., CORBA
 - Unnecessary complex and expensive to use
- 3. "plug-in" APIs for creating custom "do-it-yourself" engines
 - e.g., CORBA Sec. Replaceable, JACC, SiteMinder and alike
 - Hard to do it right

premise

- common policy elements
 - e.g., authorizations based on roles, groups, location
- differences in
 - 1. the weight and composition
 - e.g., location || (role && group) vs. role || (location && group)
 - 2. application-specific factors
 - e.g., relations, certification, license

component framework for A&A policy engine

B

expected benefits

- wide range of supported policies
- "pay as you go" cost of supporting a policy
 - determined by required policy
 - not by policy engine complexity
 - incremental changes proportional to policy Δ -s
 - addition/removal/re-composition of policy components
 - re-use of existing policy logic by developers/administrators

THE UNIVERSITY OF BRITISH COLUMBIA

example 1

university course web service

Copyright © 2002-2005 Konstantin Beznosov

university course web service policy

- 1. Anyone can lookup course descriptions.
- 2. All users should authenticate using HTTP-BA.
- 3. Registration clerks can list students registered for the course and (un)register students.
- 4. The course instructor can list registered students as well as manage course content.
- Registered for the course students can download assignments and course material, as well as submit assignments.

policy engine assembly for example 1

THE UNIVERSITY OF BRITISH COLUMBIA

example 2

human resources web service for an international organization

Copyright © 2002-2005 Konstantin Beznosov

HR web service policy

- Only users within the company's intranet or those who access the service over SSL and have valid X.509 certificates issued by the company should access.
- 2. Anybody in the company can look up any employee and get essential information about her/him.
- 3. HR employees can modify contact information and review salary information of any employee from the same division.
- 4. HR managers can modify any information about the employees of the same division.

policy engine assembly for example 2

unresolved issues

 validating engine configuration against a given policy

 generating engine configuration for a given policy

THE UNIVERSITY OF BRITISH COLUMBIA

Direction: usable security

Copyright © 2002-2005 Konstantin Beznosov

THE UNIVERSITY OF BRITISH COLUMBIA

Project: HOT Admin Human, Organization, and Technology Centred Improvement of IT Security Administration

Konstantin Beznosov, Sidney Fels, Lee Iverson

University of British Columbia Brian Fisher Simon Fraser University

Copyright © 2002-2005 Konstantin Beznosov

overview

purpose

- 1. evaluation methodology for sec. admin. effectiveness
- 2. guidelines and techniques to design sec. admin. tools
- problem addressed
 - conflict of human, organizational, and technological forces
- approach
 - resolve the conflict through harmonizing the forces
- work plan (3 years)
 - 1. pilot studies to fine-tune the methodologies
 - 2. inventories and an initial analysis through field research
 - **3.** development of models
 - 4. design of techniques and methodologies
 - 5. validation and evaluation of the project's key results.
- team
 - Beznosov (security), Fels (interfaces), Iverson (collaborations), Fisher (interaction)

- 1. methodology for evaluating the effectiveness of the existing IT security administrative tools
- guidelines and techniques to systematically design effective technological solutions to aid security administrators

THE UNIVERSITY OF BRITISH COLUMBIA

problem

Copyright © 2002-2005 Konstantin Beznosov

classical access control solution

enterprise-scale security server

everything starts with simple tree-like structure

🚰 SiteMinder Administration				
<u>Session Edit View Tools Advanced H</u> elp	System Domains			
	🔷 Policy Domains			
System Domains Object List	🖻 🕆 🌍 Domain1			
System Configuration Description Agents User Directories Policy Domains Administrators Administrators Authentication Schemes	Realms Domain1 Domain1 Groups Responses Response Groups			
Signed by: Netegrity, Inc.				

then continues with simple forms to fill out ...

N SiteMinder	Active Rule Editor			SiteMinder Authenticatio	on Scheme Dialog	×
_	CitaMind	lor Activo Dulo Editor			Authentication Scheme Properties	HELP
	🛯 SiteMinder Realm Dialog		×	*Name:	Description:	
Editor		Realm Properties	HELP	DMS 1 Admin	DMS Administration Authentication Scheme	
*Library Nar	*Name: MyRealm	Description:		Scheme Common Se Authentication Scheme	· · · · · · · · · · · · · · · · · · ·	
*Function N	Resource Session A	dvanced		Protection Level:	5 [1 - 20, higher is more secure]	
Function Pa	Registration	Directory Mapping	_1	Password Policies E	nabled for this Authentication Scheme	
Generated {	New users acces this Realm will b this registration s	eMinder Rule Dialog Ru	r Rule Dialog Rule Prope		Advanced	
		ame: 15 0 Launch	De:	*Conver Moreo:	myserver.myorg.orgcom	
	Events	Realm and Resource	- \	*Target:	/siteminderagent/forms/login.fcc	
🔊 Signed by:	Process AuthProcess Auth	Resource:	_	Additional Attribute List:		
	Realm MyRealm	Effective Resource: gdemetrick(192.168.2.164)/servlet/MSR/Launch Perform regular expression pattern matching	•√*	Authentication Scheme DM	OK Cancel Apply IS 1 Admin	

... or select

l Time Dialog				E
	HELF			
—Effective Sta	arting Date			
<now></now>	Select			
— Expiration D)ate			
<never></never>	Select			
—Hourly Res	trictions A.M.	Noon	P.M.	
	A.M.	Noon	P.M.	J
	12 1 2 3 4 5 6 7 8	9 10 11 12 1 2 3	4 5 6 7 8 9 10 11	
Sunday				Always Fire
Monday				Never Fire
Tuesday				NeverFile
Wednesday				- Rule Behavior -
Thursday				Fire
Friday				Don't Fire
Saturday				
		OK Cancel F	Reset	
Unsigned Java	Applet Window			

but the mental model is complex

(1)

(0..*)

... and even more ...

... complex

hard to map policies to models

so what?

- steep learning curve
- hard to fit real world into the model
- easy to make costly mistakes
 - "friendly" DoS
 - inadvertent hard to catch config. vulnerabilities
- hard to test
 - expensive to test required scenarios
 - no "what if" scenarios to test before changing
 - hard to perform complete testing

motivates users and admins to circumvent security

THE UNIVERSITY OF BRITISH COLUMBIA

approach

Copyright © 2002-2005 Konstantin Beznosov

administrators in the epicentres

organization-centred

UBC

technology-centred

human-centred

better means for

- 1. visualizing the state of the security mechanisms
- 2. providing feedback to security admins
 - "what if" scenarios
 - safe staging playgrounds
 - tests of properties of the security state
- **3.** support for cognitive models of system security

organization-centred

 patterns of communication between different parts of the organization and admins

offload certain tasks from the admins

technology-centred

accommodate security technology to human and organizational needs

possible examples

- self-administration
- domain-specific access control models and languages
- flexible and reconfigurable policy engines

work plan

- 1. pilot studies to fine-tune study plans
- 2. inventories and an initial analysis through field research with industry
- 3. development of models
 - human, organizational, technological
- 4. design of techniques and methodologies
- 5. validation and evaluation of the project's key results
 - sample admin tools

team

Dr. Konstantin Beznosov

- Assist. Prof., ECE, UBC
- 5 years of industry

Dr. Sidney Fels

- Assoc. Prof., ECE, UBC
- New interfaces design

Dr. Brian Fisher

- Assoc. Prof. of Interactive Arts and Technology, SFU
- Adjunct Professor in MIS and CS, UBC
- cognitive science-based interaction design

Dr. Lee Iverson

- Assist. Prof., ECE, UBC
- information visualization and information systems
- collaboration infrastructures

al hu Steve Vinoski IONA Ter

Direction: Network Security Project: multiple-channel SSL

end-to-end security with partially trusted proxiesselective data protection

