
Copyright © 2002-2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

An Overview of The Ongoing
Research at LERSSE

Konstantin Beznosov
http://konstantin.beznosov.net

2

Who’s Konstantin Beznosov
 Education

• B.S. in Physics (1993), Novosibirsk State University
• M.S. (1997) & Ph.D. (2000) in CS, Florida Int. Univ.

 Experience
• US industry (1997-2003): end-user, consulting, and

software vendor organizations
• Assistant Prof., ECE, UBC (2003-present)

 Contributed to
• OMG

• CORBA Security revisions
• Resource Access Decision
• Security Domain Membership Management

• OASIS
• eXtensible Access Control Markup Language v1.0

3

What’s LERSSE?

 Research group at
the Department of Electrical & Computer Eng.
UBC

 People
• Faculty

• Konstantin Beznosov, lead (computer security)
• Sidney Fels (Human Computer Interaction), lead of HCT Lab

• 2 Ph.D. students
• 5 Master students + 2 joining in September

http://lersse.ece.ubc.ca

Laboratory for Education and Research
in Secure Systems Engineering

4

Research Directions and Projects

1. engineering security
mechanisms
• CORBA Security, RAD,

AAS, RAD JACCet,
SDMM, attribute function,
EASI, composable
authorization engines,
JAMES, AC mech. eval.

2. access control models &
languages
• CORBA-RBAC, RelBAC

XACML v1.0, SAAM,
probabilistic trust

3. engineering secure
software
• agile security assurance

4. network security
• MC-SSL

5. critical infrastructure
interdependencies
• CITI interdependencies

6. usable security
• HOT Admin

Legend: current, back in industry, presented

5

outline

 motivation & context: practical security
engineering

 engineering secure software
• agile security assurance

 engineering security mechanisms
• JAMES

• SAAM

• composable authorization engines

 security usability
• HOT Admin

 network security
• MC-SSL

Copyright © 2002-2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

practical security engineering:
motivation & context

7

why aren't secure systems
everywhere?

almost completely insecure, or

“secure” but
 too expensive and error-prone to build

 too complex to administer

 inadequate for real-world problems

 forever

8

what can be done about it?

gradual improvements towards

• inexpensive and error-proof to build

• effective and inexpensive in administration

• adequate for problem domains

• easy and inexpensive to change and integrate

9

separation of concerns

 application vendors – sell application(s) products

 middleware vendors – sell middleware products

 security vendors – sell security products

 application owners – sell service(s)

Copyright © 2002-2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Direction: engineering secure software

Project: agile security assurance

11

problem

mismatch between

• agile methodologies for software development

• conventional methods for security assurance

hard to assure with agile development

12

why is addressing the mismatch important?

 more security-critical software

 agile methods are here to stay

13

contribution

1. examined the mismatch between security assurance

and agile methods

2. classified conventional security assurance practices

according to the degree of clash

3. suggested ways of alleviating the conflict

14

what’s agile development?
 Characteristics

• Iterative lifecycle
• Requirements and design

emergence
• Direct communication
• Tacit knowledge

 Sample methodologies
• Crystal
• Adaptive Development
• Feature-driven Development
• Scrum
• Lean Software Development
• XP

Requirements

Design

Implementation
and Testing

Integration and
Testing

Requirements

Design

Implementation
and Testing
Integration
and Testing

Requirements

Design

Implementation
and Testing

Integration and
Testing

15

what’s conventional
security assurance about?

review,
validation

risk analysis
external
review

static
security
analysis

Risk Analysis

Penetration
Testing

Adapted from
D. Verdon and G. McGraw, "Risk analysis in software design," IEEE Security & Privacy, vol. 2, no. 4, 2004, pp. 79-84.

Requirements
Definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
Maintenance

arch. styles,
design

principles

security tests,
test depth
analysis,

validation

security
requirements
(guidelines,

analysis, review)

languages,
tools,

standards,
change

tracking
…

16

solution(s)?
If the mountain will not go to Mahomet,
let Mahomet go to the mountain. (proverb)

Ad
ap

t
ag

ili
ty

Ad
ap

t
as

su
ra

nc
e

17

examination results

Assurance relies on third party
• reviews
• evaluation
• testing

Points of clash
1. direct communication and tacit knowledge
2. iterative lifecycle
3. design refactoring
4. testing “philosophy”

18

(mis)match classification

1. natural match
e.g., XP pair programming ♥ internal review & coding standards

2. methodology-neutral
e.g., language (e.g., Java, C# vs. C, C++),

version control and change tracking

3. can be (semi-)automated
e.g., code static analysis,

 security testing/scanning

4. mismatch (≈ 50%)
e.g., external review, analysis,

testing, validation change authorization

19

alleviating the mismatch

for (semi)-automatable
• increase acceptance through tools
• codify security knowledge in tools

• automated fault injection, test generation

for mismatching
• search for new agile-friendly assurance methods

• direct communication and tacit knowledge
• iterative lifecycle
• design refactoring
• testing “philosophy”

• intermittent assurance
• apply at the first and last iterations
• use the results to “align” the development
• have a security engineer (role) involved in all iterations

(Wäyrynen et al. 2004)

Requi r em ent s

Des i gn
I m pl em ent at i on

and Tes t i ng
I nt egr at i on and

Tes t i ng
Requi r em ent s

Des i gn
I m pl em ent at i
on and Tes t i ng

I nt egr at i on
and Tes t i ng

Requi r em ent s

Des i gn
I m pl em ent at i on

and Tes t i ng
I nt egr at i on and

Tes t i ng

Requi r em ent s

Des i gn
I m pl em ent at i on

and Tes t i ng
I nt egr at i on and

Tes t i ng
Requi r em ent s

Des i gn
I m pl em ent at i o
n and Tes t i ng

I nt egr at i on
and Tes t i ng

Requi r em ent s

Des i gn
I m pl em ent at i on

and Tes t i ng
I nt egr at i on and

Tes t i ng

20

summary on agile security assurance
problem

mismatch between agile development & security assurance

contributions

1. examined (pain points)

2. classified assurance methods

3. alleviated (tools, knowledge codification, new methods research, intermittent

assurance)

Further research

• tool support

• Knowledge classification

• new assurance methods

Copyright © 2002-2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Direction:
engineering security mechanisms

Copyright © 2002-2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Project:
Junk Authorizations for

Massive-scale Enterprise Services
(JAMES)

23

context

 processor time virtually free

 human time/attention expensive

 commodity computing most cost-effective

24

target environments

25

target environments

with 0.5M of commodity computing systems
 0.5--1.5M application instances
 with MTTF of 1 year

• 1,300--4,000 fail every day
 with availability of 99.9%

• 500--1,500 unavailable at any given moment

26

request-response paradigm

application layer

communication layer

server application

Object

PEP

Security Subsystem

PEP

PDP
Access
Request

Access
Request

Request

Response

27

enables PDP reuse

PDPPEP

PEP

PEP

PEP

PEP

PEP

PEP

PEP

28

results in point-to-point architectures

policy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginePDP

policy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginepolicy

enginePDP

policy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginePDP

PEP

PEP

PEPPEP

PEP
PEP

PEP

PEP PEP
PEP

PEP
PEP

PEP

PEP

PEP PEP
PEP

PEP

PEP PEP

PEP
PEP

PEP
PEP

PEP

PEP

PEP

PEP
PEP

PEP

PEP

PEP

PEP

fragilefragile

inefficientinefficient

29

the new challenge

point-to-point authorization architectures at
massive scale
• become too fragile, requiring costly human

attention, and
• fail to reduce latency by exploiting the

virtually free CPU resources and high network
bandwidth

Copyright © 2002-2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

the approach

31

addressing the problem

1. decouple PEP from PDP with

publish-subscribe architecture(s)

2. recycle policy decisions

3. flooding

32

publish-subscribe for policy decisions
policy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginePDP

policy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginepolicy

enginePDP

policy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginePDP

Two-way request/response bus

PEP
PEPPEP

PEP
PEP

PEP

PEP PEP
PEP

PEP
PEP

PEP

PEP

PEP

PEP

PEP

PEP

PEP
PEP

PEP

PEP

PEP
PEP

PEP

PEP

PEP

PEP
PEP

PEPPEP

PEP

PEPPEP

 less fragile
 more resilient to failures
 promotes authorization recycling

33

recycling authorizations

Bob is a customer
• He gets authorization to view “Software

Design”

PEP PDP

Authorize Bob
to view eBook

Bob’s Browser
Access Request

GranteBook

34

recycling authorization

 Alice is a preferred customer
• Has more privileges than Bob
• System recycles the authorization for Bob and

allows Alice to view the book

PEP PDP

Authorize Alice to
view eBook

Alice’s
Browser

Access Request

eBook

Copyright © 2002-2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Secondary and Approximate
Authorizations Model

(SAAM)

36

basic elements

 request r = <s, o, p, e, i>
• s -- subject
• o -- object
• p -- permission
• e -- environment
• i -- request identity

< s , o, p , e , i >
<“Bob”, “eBook-123”, “view”, “time=11:30”, “61171092998292”>

 authorization a = <r, d>
• r -- request
• d -- decision

37

secondaryapproximate

authorization types in SAAM

preciseprimary

38

recycling authorizations

 secondary authorizations
• re-using decisions made for other, but

equivalent, requests
• example <s1,o1, p1, e1, i1> <s1,o1, p1, e1, i2>

 approximate authorizations
• re-using decisions made for other, but similar,

requests
• examples

• <s1,o, p, e, i1> <s2,o, p, e, i2> s1 ≥ s2

• <s,o1, p, e, i1> <s,o2, p, e, i2> o1 ≤ o2

• <s,o, p1, e, i1> <s, o, p2, e, i2> p1 ≤ p2

39

flooding with speculative authorizations
policy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginePDP

policy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginepolicy

enginePDP

policy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginepolicy

enginepolicy
enginePDP

Two-way request/response bus

PEP
PEPPEP

PEP
PEP

PEP

PEP PEP
PEP

PEP
PEP

PEP

PEP

PEP

PEP

PEP

PEP

PEP
PEP

PEP

PEP

PEP
PEP

PEP

PEP

PEP

PEP
PEP

PEPPEP

PEP

PEPPEP

40

summary for JAMES & SAAM

 problem
• context and assumptions

• human time/attention is too expensive
• CPU resources are virtually free
• commodity computing is most cost effective

• target environments
• massive-scale enterprises with 105 machines

• limitations of point-to-point architectures
• too fragile, high latency, too expensive to maintain

 approach to address
• decouple PEP and PDP with publish-subscribe
• authorization recycling

• secondary and approximate authorization model (SAAM)
• flooding

Copyright © 2002-2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Project:
composable authorization engines

42

problem motivation

Distributed app. developers/admins have limited choices:

1. Pre-built policy engines with limited capabilities
• e.g., JAAS default policy file, COM+, EJB authorization

• Limited support for non-trivial or application-specific policies

2. Pre-built policy engines “one size fits all” generic
• e.g., CORBA

• Unnecessary complex and expensive to use

3. “plug-in” APIs for creating custom “do-it-yourself”
engines

• e.g., CORBA Sec. Replaceable, JACC, SiteMinder and alike

• Hard to do it right

Mechanism
(Enforcement function)

Policy
(Decision function

a.k.a. Policy engine)

43

premise

 common policy elements
• e.g., authorizations based on roles, groups,

location

 differences in
1. the weight and composition

• e.g., location || (role && group) vs.
 role || (location && group)

2. application-specific factors
• e.g., relations, certification, license

44

component framework for A&A policy engine

Legend

Created by
ReplaceableReplaceable Fixed

45

expected benefits

 wide range of supported policies
 “pay as you go” cost of supporting a policy

• determined by required policy
• not by policy engine complexity

• incremental changes proportional to policy Δ-s
• addition/removal/re-composition of policy

components
• re-use of existing policy logic by

developers/administrators

Copyright © 2002-2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

example 1

university course web service

47

university course web service policy

1. Anyone can lookup course descriptions.

2. All users should authenticate using HTTP-BA.

3. Registration clerks can list students registered for the

course and (un)register students.

4. The course instructor can list registered students as well

as manage course content.

5. Registered for the course students can download

assignments and course material, as well as submit

assignments.

48

policy engine assembly for example 1

Publicmethods
PolicyEvaluator

CourseId
AttributeRetriever

Course
PolicyEvaluator

HTTP BA
Credential Retriever

Permit Overrides
Decision Combinator

Legend

CustomGeneric
Prebuilt

Copyright © 2002-2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

example 2

human resources web service for
an international organization

50

HR web service policy
1. Only users within the company’s intranet or

those who access the service over SSL and have valid X.509

certificates issued by the company should access.

2. Anybody in the company can look up any employee and get

essential information about her/him.

3. HR employees can modify contact information and review

salary information of any employee from the same division.

4. HR managers can modify any information about the

employees of the same division.

51

policy engine assembly for example 2

Public
methods

PE

Authorized IP
PE

X.509
Certificate

PE

RBAC
PE

Division
PE

X.509 Certificate
Credential
Retriever

HTTP BA
Credential
Retriever

(AuthroizedIP ∨ Certificate) ∧ (PublicMethod ∨ (Role ∧ Division))
Decision Combinator

Legend

Generic from
Third-party CustomGeneric

Prebuilt

X.509 Certificate
Credential

52

unresolved issues

 validating engine configuration against a
given policy

 generating engine configuration for a
given policy

Copyright © 2002-2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Direction: usable security

Copyright © 2002-2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Project:
HOT Admin

Human, Organization, and Technology
Centred Improvement of

IT Security Administration

Konstantin Beznosov, Sidney Fels, Lee Iverson
University of British Columbia

Brian Fisher
Simon Fraser University

55

overview
 purpose

1. evaluation methodology for sec. admin. effectiveness
2. guidelines and techniques to design sec. admin. tools

 problem addressed
• conflict of human, organizational, and technological forces

 approach
• resolve the conflict through harmonizing the forces

 work plan (3 years)
1. pilot studies to fine-tune the methodologies
2. inventories and an initial analysis through field research
3. development of models
4. design of techniques and methodologies
5. validation and evaluation of the project’s key results.

 team
• Beznosov (security), Fels (interfaces),

Iverson (collaborations), Fisher (interaction)

56

purpose

1. methodology for evaluating the effectiveness of the
existing IT security administrative tools

2. guidelines and techniques to systematically design
effective technological solutions to aid security
administrators

Copyright © 2002-2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

problem

58

classical access control solution

OS
Domain

1
Domain 2 Domain 3 File 1 File 2 Process 1

Domain
1

*owner
control

*owner
control

*call *owne
r

*read
*write

Domain
2

call *read write wakeup

Domain
3

owner
control

read *owne
r

Access Matrix

subjects objects

A
To be

protected
Have

access to
objects

59

enterprise-scale security server

60

everything starts with simple
tree-like structure

61

then continues with simple forms to
fill out …

62

… or select

63

but the mental model is complex

(1) (0..*)

64

… and even more …

65

… complex

66

hard to map policies to models

67

so what?

 steep learning curve
 hard to fit real world into the model
 easy to make costly mistakes

• “friendly” DoS
• inadvertent hard to catch config. vulnerabilities

 hard to test
• expensive to test required scenarios
• no “what if” scenarios to test before changing
• hard to perform complete testing

 motivates users and admins to circumvent security

Copyright © 2002-2005 Konstantin Beznosov

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

approach

69

administrators in the epicentres

Human Organizational

Technological

70

approach

technology-centred organization-centred

human-centred

71

human-centred

better means for
1. visualizing the state of the security

mechanisms
2. providing feedback to security admins

 “what if” scenarios
 safe staging playgrounds
 tests of properties of the security state

3. support for cognitive models of system
security

72

organization-centred

 patterns of communication between
different parts of the organization and
admins

 offload certain tasks from the admins

73

technology-centred

accommodate security technology to human
and organizational needs

possible examples
 self-administration
 domain-specific access control models and

languages
 flexible and reconfigurable policy engines

74

work plan

1. pilot studies to fine-tune study plans
2. inventories and an initial analysis through field

research with industry
3. development of models

• human, organizational, technological

4. design of techniques and methodologies
5. validation and evaluation of the project’s key results

• sample admin tools

75

team
 Dr. Konstantin Beznosov

• Assist. Prof., ECE, UBC
• 5 years of industry

 Dr. Sidney Fels
• Assoc. Prof., ECE, UBC
• New interfaces design

 Dr. Brian Fisher
• Assoc. Prof. of Interactive Arts and Technology, SFU
• Adjunct Professor in MIS and CS, UBC
• cognitive science-based interaction design

 Dr. Lee Iverson
• Assist. Prof., ECE, UBC
• information visualization and information systems
• collaboration infrastructures

76

Direction: Network Security
Project: multiple-channel SSL

 end-to-end security with partially trusted proxies
 selective data protection

P1 Pn

SC

