
Analysis of ANSI RBAC Support in
Commercial Middleware

by

Wesam M. Darwish

B.A.Sc., The University of British Columbia, 2001

A THESIS SUBMITTED IN PARTIAL FULFILLMENT OF
THE REQUIREMENTS FOR THE DEGREE OF

MASTER OF APPLIED SCIENCE

in

The Faculty of Graduate Studies

(Electrical and Computer Engineering)

THE UNIVERSITY OF BRITISH COLUMBIA

(Vancouver)

April, 2009

c© Wesam M. Darwish 2009

Abstract

This thesis analyzes the access control architectures of three middleware technologies: Common

Object Request Broker Architecture (CORBA), Enterprise Java Beans (EJB), and Component

Object Model (COM+). For all technologies under study, we formalize the protection state of their

corresponding authorization architectures in a more precise and less ambiguous language than their

respective specifications. We also suggest algorithms that define the semantics of authorization

decisions in CORBA, EJB, and COM+. Using the formalized protection state configurations, we

analyze the level of support for the American National Standard Institute’s (ANSI) specification

of Role-Based Access Control (RBAC) components and functional specification in the studied

middleware technologies. This thesis establishes a framework for assessing implementations of

ANSI RBAC in the analyzed middleware technologies.

Our findings indicate that all of three middleware technologies under study fall short of sup-

porting even Core ANSI RBAC. Custom extensions are necessary in order for implementations

compliant with each middleware to support ANSI RBAC required or optional components. Some

of the limitations preventing support of ANSI RBAC are due to the middleware’s architectural

design decisions; however, fundamental limitations exist due to the impracticality of some aspects

of the ANSI RBAC standard itself.

ii

Contents

Abstract . ii

Contents . iii

List of Tables . vi

List of Figures . vii

Acknowledgements . ix

Dedication . x

Statement of Co-Authorship . xi

1 Introduction . 1

1.1 Motivation . 1

1.2 Overview of ANSI RBAC . 3

1.2.1 Reference Model . 4

1.2.2 Functional Specification . 6

1.3 Literature Review . 7

1.4 Contributions . 10

1.5 Structure . 11

2 Analysis of ANSI RBAC Support in CORBA . 12

2.1 Overview of CORBA Security . 12

2.1.1 CORBA . 12

2.1.2 Security Subsystem . 13

iii

Contents

2.2 CORBA Protection State . 18

2.3 CORBA Access Control Architecture . 18

2.4 Formalization of the Protection State . 22

2.5 Analysis of ANSI RBAC support in CORBA . 26

2.6 Reference Model . 26

2.6.1 Core RBAC . 26

2.6.2 Hierarchical RBAC . 31

2.6.3 Constrained RBAC . 32

2.7 Translating RBAC Policies to CORBA . 32

2.8 Functional Specification . 34

2.9 Discussion . 38

2.10 Conclusion . 42

3 Analysis of ANSI RBAC Support in EJB . 43

3.1 Overview of EJB Security . 43

3.1.1 EJB . 43

3.1.2 EJB Security Subsystem . 47

3.2 EJB Protection State . 49

3.2.1 EJB Access Controls . 49

3.2.2 Formalization of the Protection State . 52

3.3 Analysis of Support for ANSI RBAC . 53

3.3.1 Reference Model . 54

3.3.2 Translating RBAC Policies to EJB . 58

3.3.3 Example . 58

3.3.4 Functional Specification . 64

3.4 Discussion . 66

3.5 Conclusion . 68

4 Analysis of ANSI RBAC Support in COM+ . 70

4.1 Overview of COM+ Security . 70

4.1.1 COM+ . 70

iv

Contents

4.1.2 Security Subsystem . 74

4.2 COM+ Protection State . 77

4.2.1 COM+ Access Control . 77

4.2.2 Formalization of the Protection State . 79

4.3 Analysis of ANSI RBAC Support in COM+ . 81

4.3.1 Reference Model . 82

4.3.2 Translating RBAC Policies to COM+ . 85

4.3.3 Example . 86

4.3.4 Functional Specification . 91

4.4 Discussion . 96

4.5 Conclusion . 99

5 Conclusions . 100

5.1 Contributions . 100

5.2 Discussion . 101

5.3 Applications . 103

5.4 Limitations . 103

5.5 Future Work . 104

Bibliography . 105

v

List of Tables

2.1 Sample CORBASec configuration (adapted from [BD99]) 21

2.2 Access matrix for domain d2 . 25

2.3 Functions defined by ANSI Core RBAC and their support in CORBA 36

3.1 Examples of method-permission sections of EJB deployment descriptor. For clarity

sake, the data representation is converted from XML notation to human-understandable

form, with each row corresponding to an individual section. 52

3.2 Additional authorization-related sections used in deployment descriptors of com-

mercial EJB servers . 52

3.3 Permission-to-role assignment for the example . 60

3.4 Example users, groups, and group memberships . 61

3.5 Functions defined by ANSI Core RBAC and their support by EJB data structures 67

4.1 Examples of role-permission assignment in a COM+ Application 79

4.2 Example COM+ role-method permissions . 89

4.3 Functions defined by ANSI Core RBAC and their support in COM+ 97

vi

List of Figures

1.1 RBAC components . 4

1.2 Examples of Hierarchical RBAC . 6

2.1 Enforcement of policies in CORBA security . 15

2.2 A model of CORBASec access control architecture in UML notation. 19

2.3 RBAC (with white background) and CORBA (with light grey background) sets and

relations. 27

3.1 Basic parts of EJB architecture for an example Enterprise Java Bean Product . . . 45

3.2 Defining a remote interface for the Product enterprise bean (Product.java) 46

3.3 Implementing the remote interface for the Product enterprise bean (ProductBean.java) 46

3.4 Relationships among the sections of deployment descriptor used for expressing access

control policy and the elements of an EJB application 50

3.5 EJB (with light grey background) and RBAC (with white backround) sets and

relations. 55

3.6 Example session beans . 60

3.7 Authorization policy for the example EJB system describing what actions are al-

lowed. All other actions are denied. 61

3.8 Example EJB system role mappings . 61

4.1 An example employee.idl file . 73

4.2 UML model of COM+ access control architecture 79

4.3 COM+ (with light grey background) and RBAC (with white backround) sets and

relations. 83

4.4 Example COM+ interfaces . 87

vii

List of Figures

4.5 Example COM+ application user, group, and role mappings 88

4.6 Sample authorization policy for the example COM+ application describing what

actions are allowed. All other actions are denied. 88

4.7 COM+ Administration Collections . 92

4.8 Psudo-code for adding a COM+ role to an application 93

viii

Acknowledgements

I would like to thank my colleagues from the Laboratory for Education and Research in Secure

Systems Engineering (LERSSE) for their constructive feedback. Many thanks go to every person

who taught me something, and very special thanks to my supervisor, Dr. Konstantin Beznosov,

from whom I learned a lot.

Words fall short of expressing my gratitude towards my family, especially my wife, for their

unconditional love and endless support throughout this journey.

ix

To my parents, and to my wife, Suzan

x

Statement of Co-Authorship

This research is based on three technical reports produced by the author of this thesis and Dr.

Konstantin Beznosov. The research was designed by Dr. Beznosov. The author of this thesis

performed the background research, co-authored Chapter 2, performed the research and data

analysis for Chapters 3 and 4. This manuscript is prepared by the author of this thesis.

xi

Chapter 1

Introduction

This thesis studies the access control mechanisms of the Common Object Request Broker Archi-

tecture (CORBA), Enterprise Java Beans (EJB), and Component Object Model Plus (COM+)

middleware technologies, and analyzes their support for the American National Standard Insti-

tute’s (ANSI) specification of Role-Based Access Control (RBAC) components and functional

specification.

1.1 Motivation

The American National Standard Institute’s (ANSI) specification of Role-Based Access Control

(RBAC) [ANS04] is a standard for access control in which permissions are associated with roles and

users are assigned to appropriate roles. A role can represent competency, authority, responsibility

or specific duty assignments. A major purpose of RBAC is to facilitate access control adminis-

tration and review. RBAC is commonly believed to address the needs of commercial enterprises

better than lattice-based Mandatory Access Control (MAC) [BL75] and owner-based Discretionary

Access Control (DAC) [Lam71] models. Moreover, Osborn et al. [OSM00] show that an RBAC

system can indeed be configured to enforce either a DAC or a MAC policy. Evidence of RBAC

becoming a dominant access control paradigm is the approval of ANSI RBAC standard in 2004.

The ANSI RBAC standard consists of two main parts: (1) the RBAC Reference Model and (2)

the RBAC System and Administrative Functional Specification, each comprising core, hierarchical,

and constraint components.

Early research [FK92, SFK00] was designed to formalize RBAC, and subsequent research over

the years led to the consensus ANSI standard for RBAC [FKS07]. The ANSI RBAC standard

provides a consistent and uniform specification of RBAC features. Without this uniform definition

of RBAC, there would be uncertainty and confusion about RBAC’s utility and meaning [ANS04].

1

1.1. Motivation

In order to conform to this standard, an RBAC system must comply with, and implement, all of

the core set of RBAC functional specifications.

At the same time as RBAC was introduced and evolving into a mature model ready for stan-

dardization, commercial middleware technologies—such as Common Object Request Broker Ar-

chitecture (CORBA) [OMG99], COM+ [Obe00], and Enterprise Java Beans (EJB) [DYK01]—also

matured, and distributed enterprise applications became routinely developed using middleware.

The ability of particular middleware technology to support specific types of access control policy

is an open and practical research question, for the following three reasons.

First, different middleware technologies and their subsystems are defined in different forms

and formats. For example, CORBA is specified in the form of open application programming

interfaces (APIs), whereas EJB is defined through APIs as well as the syntax and semantics of the

accompanying eXtensible Markup Language (XML) files used for configuring an EJB container.

COM+ is defined through an implementation of APIs as well as graphical user interfaces (GUI) for

configuring the behavior of a COM+ server on Windows NT, 2000, 2003, XP, and Vista operating

systems. The variations in the form, terminology, and format of the middleware definitions and

implementations lead to the difficulty of identifying the correspondence among the security (and

other) capabilities of any two middleware technologies as well as the degree to which they can

support a particular access control model.

Second, the capabilities of the middleware security controls are not defined in the language

of any particular access control model. Instead, each middleware provides general access control

mechanisms, which are supposed to be adequate for the majority of cases and scenarios, and could

be configured to support various access control models. Designed to support a variety of policy

types as well as large-scale, diverse distributed applications, the controls seem to be the result

of engineering compromises involving, among other factors, perceived customer requirements, the

capabilities of the target run-time environment, and their expected usage. For example, CORBA

access controls are defined in terms of principal’s attributes, required rights, and granted rights,

whereas EJB controls are defined using role mappings and role-method permissions. Assessing the

capability of middleware controls to enforce particular types of authorization policies is harder due

to the mismatch in terminology between the published access control models and the languages of

the controls.

2

1.2. Overview of ANSI RBAC

Third, the security subsystem semantics in commercial middleware is defined imprecisely, some-

times ambiguously, leaving room for different interpretations. For example, the EJB specification

does not address nor dictate how the EJB security roles should be mapped to the operational

environment’s security principals, leaving the semantics of this mapping up for interpretation by

various vendors. Another example is the CORBA OMG specification, where not always is the

functionality of various interfaces precisely defined [BR02], through UML sequence diagrams, for

example.

In this thesis, we clarify the semantics of the security subsystem and analyze its ability to

support ANSI RBAC for three industrial middleware technologies: CORBA, EJB, and COM+.

This thesis establishes a process for assessing implementations of ANSI RBAC using CORBA,

EJB, or COM+. The results provide directions for middleware developers supporting ANSI RBAC

in their systems and criteria for users and application developers for selecting those middleware

implementations that support required and optional components of ANSI RBAC.

1.2 Overview of ANSI RBAC

Role based access control (RBAC) was introduced more than a decade ago [FK92, SCFY96]. Over

the years, RBAC has enjoyed significant attention as many research papers were written on topics

related to RBAC; and in recent years, vendors of commercial products have started implementing

various RBAC features in their solutions.

The National Institute of Standards and Technology (NIST) initiated a process to develop a

standard for RBAC to achieve a consistent and uniform definition of RBAC features. An initial

draft of a standard for RBAC was proposed in the year 2000 [SFK00]. A second version was later

publicly released in 2001 [FSG+01]. This second version was then submitted to the International

Committee for Information Technology Standards (INCITS), where further changes were made

to the proposed standard. Lastly, INCITS approved the standard for submittal to the American

National Standards Institute (ANSI). The standard was later approved in 2004 [ANS04]. The

ANSI RBAC standard consists of two main parts as described in the following sections.

3

1.2. Overview of ANSI RBAC

Figure 1.1: RBAC components

1.2.1 Reference Model

The RBAC Reference Model defines sets of basic RBAC elements, relations, and functions that the

standard includes. This model is defined in terms of four major RBAC components as described

in the following sections. Figure 1.1 depicts the four major components of RBAC.

Core RBAC

Core RBAC defines the minimum set of elements required to achieve RBAC functionality. Core

RBAC must be implemented as a minimum in RBAC systems. The other components described

below, which are independent of each other, can be implemented separately.

Core RBAC elements are defined as follows [ANS04, pp.4-5]:

Definition 1 [Core RBAC]

• USERS,ROLES,OPS, and OBS (users, roles, operations, and objects respectively)

• UA ⊆ USERS ×ROLES, a many-to-many mapping user-to-role assignment relation

• assigned users(r : ROLES)→ 2USERS, the mapping of role r onto a set of users. Formally:

assigned users(r) = {u ∈ USRES|(u, r) ∈ UA}

• PRMS = 2(OPS×OBS), the set of permissions

4

1.2. Overview of ANSI RBAC

• PA ⊆ PERMS×ROLES, a many-to-many mapping permission-to-role assignment relation.

• assigned permissions(r : ROLES) → 2PRMS, the mapping of role r onto a set of permis-

sions. Formally: assigned permissions(r) = {p ∈ PRMS|(p, r) ∈ PA}

• Op(p : PRMS) → {op ⊆ OPS}, the permission to operation mapping, which gives the set

of operations associated with permission p

• Ob(p : PRMS) → {ob ⊆ OBS}, the permission to object mapping, which gives the set of

objects associated with permission p

• SESSIONS = the set of sessions

• session users(s : SESSIONS)→ USERS, the mapping of session s onto the corresponding

user

• session roles(s : SESSIONS) → 2ROLES, the mapping of session s onto a set of roles.

Formally: session roles(si) ⊆ {r ∈ ROLES|(session users(si), r) ∈ UA}

• avail session perms(s : SESSIONS) → 2PRMS, the permissions available to a user in a

session =
⋃

r∈session roles(s)

assigned permissions(r)

Hierarchical RBAC

This component adds relations to support role hierarchies. Role hierarchy is a partial order relation

that defines seniority between roles, whereby a senior role has at least the permissions of all of its

junior roles, and a junior role is assigned at least all the users of its senior roles. A senior role is

also said to “inherit” the permissions of its junior roles.

The standard defines two types of role hierarchies. These types are shown in Figure 1.2, and

are defined as follows:

• General Role Hierarchies: provide support for arbitrary partial order relations to serve as the

role hierarchy. This type allows for multiple inheritance of assigned permissions and users;

that is, a role can have any number of ascendants, and any number of descendants

• Limited Role Hierarchies: provide more restricted partial order relations that allow a role to

have any number of ascendants, but only limited to one descendant

5

1.2. Overview of ANSI RBAC

(a) General role hierarchy (b) Limited role hierarchy

Figure 1.2: Examples of Hierarchical RBAC

In the presence of role hierarchy, the following is defined:

• authorized users(r) = {u ∈ USERS|r′ � r, (u, r′) ∈ UA} is the mapping of role r onto a

set of users

• authorized permissions(r) = {p ∈ PRMS|r � r′, (p, r′) ∈ PA} is the mapping of role r

onto a set of permissions

where rsenior � rjunior indicates that rsenior inherits all permissions of rjunior, and all users of

rsenior are also users of rjunior.

Constrained RBAC

Static Separation of Duty (SSD) relations component defines exclusivity relations among

roles with respect to user assignments. Dynamic Separation of Duty (DSD) Relations

component defines exclusivity relations with respect to roles that are activated as part of a user’s

session.

1.2.2 Functional Specification

For the four components defined in the RBAC reference model, the RBAC System and Adminis-

trative Functional Specification defines three categories of various operations that are required in

an RBAC system. These categories are defined as follows.

6

1.3. Literature Review

The category of administrative operations defines operations required for the creation and

maintenance of RBAC element sets and relations. Examples of these operations are listed here. A

complete list of these operations, as well as their formal definition is included in the standard.

• Core RBAC administrative operations include AddUser, DeleteUser, AddRole, DeleteRole,

AssignUser, GrantPermission, and so on

• Hierarchical RBAC administrative operations include AddInheritance, DeleteInheritance, Ad-

dAscendant, and AddDescendant

• SSD Relations administrative operations include CreateSsdSet, AddSsdRoleMember, SetSsd-

SetCardinality, and so forth

• DSD Relations administrative operations include CreateDsdSet, AddDsdRoleMember, SetDs-

dSetCardinality, and so on

The administrative reviews category defines operations required to perform administrative

queries on the system. Examples of Core RBAC administrative review functions include RolePer-

missions, UserPermissions, SessionRoles, and RoleOperationsOnObjects. Other operations for other

RBAC components can be found in the standard.

The system level functionality category defines operations for creating and managing user

sessions and making access control decisions. Examples of such operations are CreateSession,

DeleteSession, AddActiveRole, and CheckAccess.

1.3 Literature Review

Over the past decade, there has been no shortage of papers proposing ways to support RBAC.

The overwhelming majority of this work, however, is about support for RBAC96 [SCFY96], which

defines the reference models for plain, hierarchical, and constrained RBAC but does not specify the

operations to be supported by an RBAC implementation. The paucity of analysis or proposals for

supporting ANSI RBAC is not surprising, given the fact that the standard was published in 2004.

Because of the lack of research on support for ANSI RBAC, and because of the significant similar-

ities between RBAC96 and ANSI RBAC, we review related work on supporting or implementing

7

1.3. Literature Review

RBAC96 in operating systems, databases, web applications, and distributed systems, including

middleware.

Since the mainstream operating systems, with the exception of Solaris [Sun00], do not pro-

vide direct support for RBAC, researchers and developers have been employing either groups

(e.g., [SA98, AS01]) or user accounts (e.g., [Fad99, Cha03]) to simulate roles. This choice deter-

mines whether more than one role can be activated in a session. Role hierarchies are either not

supported [Fad99, Sun00] or are simulated by maintaining additional system files with the role

hierarchy and various book-keeping data [SA98, AS01]. No implementations we reviewed support

static SoD. Just one case of dynamic SoD comes as a side effect with those implementations that

simulate roles with user accounts (i.e., [Fad99, Cha03]): the role set in this DSoD is equal to the

set of all roles in the system, and the cardinality of the role set is exactly one. In other words, any

session can have only one role activated at any given time; the current role is deactivated while

another role is activated.

We analyzed DB2 [TM06] and MySQL [MyS07] and updated the analysis of RBAC sup-

port in commercial database management systems (DBMS)—conducted by Ramaswamy and

Sandhu [RS98]—with the latest versions of the corresponding systems. Commercial DBMS con-

tinue to have the most advanced support for RBAC96. Informix Dynamic Server v7.2 [IBM05],

IBM DB2 [TM06], Sybase Adaptive Server v11.5 [Syb05], and Oracle Enterprise Server

v8.0 [BLL03] directly support roles and role hierarchies. Only Oracle and Sybase allow users

to have more than one role activated at any time, though. On the other hand, Informix also

provides limited support for dynamic SoD, and Sybase features support for both types of SoD.

In RBAC implementations for client-server systems, including Web applications, roles are either

“pushed” from the client to the server in the form of attribute certificates or HTTP cookies, as

in [Gut01, PSA01], or “pulled” by the server from a local or remote database, as in [Bar97, FBK99,

PSA01, CO02, ZM04]. The former enables selective activation of roles by users, and the latter

simplifies the implementation of client authentication but activates all of the assigned roles for the

user. However, Web implementation of NIST RBAC [FBK99] has hybrid design, which allows the

user to select the roles to be “pulled” by the server. A number of implementations use a database,

possibly accessible through the Light-weight Directory Access Protocol (LDAP) [WHK97] front-

end, as in [Bar97, Gut01, PSA01, ZM04], to store role and other information. Role hierarchies

8

1.3. Literature Review

are only supported by some implementations, using either manual assignment of permissions of

junior roles to senior ones [PSA01], additional files [Giu99], a database [FBK99] or an LDAP

server [CO02, ZM04]. JRBAC-WEB [Giu99] and RBAC/Web [FBK99] also support both types of

SoD.

The work most relevant to ours addresses support for RBAC in middleware. Ahn [Ahn00]

outlines a proposal for enforcing RBAC policies for distributed applications that utilize Microsoft’s

Distributed Component Object Model (DCOM) [BK98, Mic98]. His proposal employs the following

elements of Windows NT’s architecture: (1) registry for storing and maintaining the role hierarchy,

and permission-to-role assignment (PA), (2) user groups for simulating roles and maintaining user-

to-role assignment (UA), and (3) a custom-built security provider that follows the RBAC model to

make access control decisions, which are requested and enforced by the DCOM run-time. Since the

support for role hierarchy is indicated but not explained in [Ahn00], we assume that the Windows

NT registry can be used to encode the hierarchy so that the RBAC security provider can refer to

it while making authorization decisions. Similar to the proposals for RBAC support in operating

systems, the use of OS user groups for simulating roles enables activation of more than one role.

Yet, like with the pull model in client-server systems, all assigned roles are activated, leaving no

choice to the user. Ahn does not indicate in [Ahn00] support for any kind of SoD, nor does he

explain how RBAC policies can be enforced consistently and automatically in a multi-computer

deployment of DCOM-accessible objects.

RBAC-JaCoWeb [WF99, OF02] utilizes the PoliCap [WdSFW+02] policy server to implement

CORBASec specification in a way that supports RBAC. PoliCap holds all data concerning secu-

rity policies within a CORBASec policy domain, including users, roles, user-to-role and role-to-

permission assignments, role hierarchy relations, and SoD constraints. Most of the authorization

policy enforcement is performed by an RBAC-JaCoWeb CORBA security interceptor. At the time

of the client binding to a CORBA object, the interceptor obtains necessary data from the Poli-

Cap server and instantiates CORBASec-compliant DomainAccessPolicy and RequiredRights objects

that contain the privilege and control attributes appropriate for the application object. When

the client makes invocation requests later, the access decisions are then performed based on the

local instances of these objects. Initially, the client security credentials object—created as part of

the binding—has no privilege attributes, only AccessId, which is obtained from the client’s X.509

9

1.4. Contributions

certificate used in the underlying SSL connection. If the invocation cannot be authorized with the

current set of client privilege attributes, the interceptor “pulls” additional user’s role attributes

from the PoliCap server. Only those roles that are (1) assigned to the user, (2) necessary for the

invocation in question to be authorized, and (3) not in conflict with any DSoD constraints are

activated. These role attributes are added to the client’s credentials and are later re-used on the

server for other requests from the same principal. The extent to which RBAC-JaCoWeb conforms

to the CORBASec specification is unclear from [WF99, OF02]. Nevertheless, RBAC-JaCoWeb

serves as an example of implementation-specific extensions to CORBAsec that enable better sup-

port for RBAC advanced features, such as role hierarchies and SoD, which—as will be seen from

the results of our analysis—cannot be supported without extending a CORBASec implementation

with additional operations.

1.4 Contributions

Each chapter analyzes access control mechanisms of a specific middleware technology, and defines a

configuration of that middleware’s protection system in a more precise and less ambiguous language

than the corresponding middleware specification. Using these configurations, we suggest algorithms

that formally specify the semantics of authorization decisions in each middleware technology. We

analyze the level of support for the ANSI RBAC components and functional specification in each

middleware. Each chapter sets up a process for assessing implementations of ANSI RBAC for the

corresponding middleware system.

The following is a summary of our findings related to each middleware technology in each

chapter.

• Chapter 2 addresses the above contributions for CORBA. The results indicate that CORBA

Security falls short of supporting even Core RBAC. Custom extensions are necessary in order

for implementations compliant with CORBA Security to support ANSI RBAC required or

optional components.

• Chapter 3 addresses the above contributions for the Enterprise Java Beans (EJB) architec-

ture. Our results indicate that the EJB specification falls short of supporting even Core ANSI

10

1.5. Structure

RBAC. EJB extensions dependent on the operational environment are required in order to

ANSI RBAC required components. Other vendor-specific extensions are necessary in order

to support ANSI RBAC optional components. Fundamental limitations exist, however, due

to impracticality of some aspects in the ANSI RBAC standard itself.

• Chapter 4 addresses the above contributions for the COM+ architecture. Our findings

indicate that COM+ falls short of supporting even Core RBAC. The main limitations exist

due to the tight integration of the COM+ architecture with the underlying operating system.

Other limitations exist due to impracticality of some aspects in the ANSI RBAC standard

itself.

1.5 Structure

Each of the following chapters of the thesis is structured as follows: (1) Overview of the middleware

technology and its security subsystem; (2) Description of the access control architecture of the

middleware under analysis, and formalization of a configuration of the middleware’s protection

state; (3) Analysis of support for ANSI RBAC in the middleware being analyzed, which also

includes an example, where appropriate, that illustrates the level of this support; (4) Discussion,

elaborating on interpretations of the analysis; and (5) Conclusions, summarizing the findings of

each chapter.

Chapter 5 summarizes the contributions of this thesis, the limitations of our research, and

directions for future research.

11

Chapter 2

Analysis of ANSI RBAC Support in

CORBA

This chapter analyzes access control mechanisms of CORBA Security, and defines a configuration

of this middleware’s protection system in a more precise and less ambiguous language than the

corresponding CORBA Security specification. We also suggest algorithms that formally specify

the semantics of authorization decisions in CORBA Security. We then analyze the level of support

for the ANSI RBAC components and functional specification in CORBA, and conclude with our

findings.

2.1 Overview of CORBA Security

The following sub-section provides a brief and informal overview of CORBA. More information can

be found in the corresponding CORBA specifications. Readers familiar with CORBA are advised

to proceed to Section 2.1.2, which provides background on CORBA Security.

2.1.1 CORBA

CORBA specifications, including the CORBA Security Service [OMG02], define a general-purpose

interface definition language and OS-independent infrastructure for developing and deploying dis-

tributed applications. The distributed computing model that CORBA adheres to is outlined in

the book Object Management Architecture Guide [SS96]. The model and all other CORBA specifi-

cations are developed by the Object Management Group (OMG), a consortium of software vendor

and user organizations. Application systems and the CORBA infrastructure, including the Security

Service, are defined using standard CORBA declarative facilities.

All entities in the CORBA computing model are specified by means of data structures and

12

2.1. Overview of CORBA Security

interfaces defined in the OMG Interface Definition Language (IDL) [OMG04]. The IDL resembles

declarative elements of C++ in its syntax and constructs. A CORBA interface is a collection

of three elements: operations, attributes, and exceptions. Interface definitions can inherit other

interfaces to allow for interface evolution and composition. The CORBA standards also define

how IDL constructs are translated into various programming languages. The OMG standard-

ized multiple language bindings, which means that CORBA objects—the implementations of the

interfaces—can be coded in different programming languages and yet interoperate with clients and

each other.

When CORBA objects are deployed, they reside in OS processes and utilize CORBA middle-

ware in the form of Object Request Broker (ORB) and object adapters to make their functionality

available to the clients as well as to receive and process invocations and to return the results.

Objects can act as clients as well, that is, make invocations on other objects, creating chains of

invocations. Clients and targets may reside in the same or different processes or on different hosts.

A CORBA ORB is responsible for core middleware functions, such as registering, keeping track of,

and finding interface implementations, aiding clients in connecting to the objects, and providing

communication transport from a client to a target.

Even though in theory, any CORBA client can invoke any CORBA object as long as the client

has a valid IOR for that object, the overwhelming majority of practical scenarios involve clients

and objects from same CORBA deployments, where all entities share the underlying security

technology and often belong to same administrative domain. Such deployments are commonly

limited by intranet boundaries or are subject to pre-established business relationships among

organizations. An example of the latter kind is Parlay [3GP07], a standardized CORBA-based

service for accessing functionality of a telecom network.

2.1.2 Security Subsystem

CORBA Security service [OMG02] (CORBASec for short) defines the content of security-specific

General Inter-ORB Protocol (GIOP) service contexts, interoperable object reference (IOR) com-

ponents, and, most importantly, interfaces to a collection of objects for enforcing a range of security

policies. It provides abstraction from an underlying security technology so that CORBA-based

applications can be independent from the particular security infrastructure provided by the un-

13

2.1. Overview of CORBA Security

derlying computing environment.

CORBASec has an extensible model for subject security attributes to enable security run-time

and administration scalability with possibly large numbers of subjects. Another example of group-

ing in CORBA security is policy domains, which allow scaling on the number of objects. Domains

are used for most security policies in CORBA. A third grouping mechanism—also specific to access

control—employs required and effective rights to allow scaling on the number of operations.

Another design goal of CORBASec architecture was to provide totally unobtrusive protection

to applications. Most CORBA objects should be security-unaware, that is, run securely without

any special programming of the application. At the same time, it should be possible for an

object to exercise security policies that are application-specific and/or of finer granularity than

those enforced by CORBASec run-time. Such objects are referred in CORBASec terminology as

security-aware. For the purposes of this thesis, we will focus on the means for protecting security-

unaware objects.

The three main parts of CORBASec are client security service (CSS), target security service

(TSS), and secure channel. Listed in [BD07, Section 2.2.2], their responsibilities are fairly standard.

The secure channel between CSS and TSS is established and managed via service context in the

GIOP messages. Any GIOP Request/Reply message contains a list of service context elements,

which is used by different services for inserting service-specific information into the stream of

communications between client and server. CORBASec defines a SecurityAttributeService (SAS)

data type, which may be used in GIOP message service context to associate security-specific

identity, authorization, and client authentication contexts with GIOP Request and Reply messages.

Similar to other middleware security technologies, security policies in CORBA are enforced

completely outside of an application system. Everything, including obtaining the information nec-

essary for making policy decisions, is done before the method invocation is dispatched to the target

object. As Figure 2.1 shows, the security enforcement code is executed inside a CORBA security

service when a message from a client application to a target object is passed through the ORB.

The CORBASec subsystem intercepts an invocation, determines what policy domain(s) a target

or a client belongs to, and enforces the policies associated with the domain(s). In the rest of this

section, we describe two key CORBASec functions—authentication and security administration.

We describe access control in Section 2.3.

14

2.1. Overview of CORBA Security

Figure 2.1: Enforcement of policies in CORBA security

The concept of a user is absent from CORBASec. Instead, CORBASec uses the more generic

and abstract notion of principal. “A principal is a human user or system entity that is registered

in and authentic to the system” [OMG02, p.2-3]. It is important for the analysis of RBAC support

in CORBA to note that the notion of a session is indistinguishable from the notion of a principal’s

credentials. Thus the same principal might be represented by multiple, and possibly different,

credentials. Just like a session in the ANSI RBAC model, once a Credentials object has been

created, it begins to exist completely independently from other such objects, even those created

to represent the same principal.

To create credentials, a CORBA application uses a UserSponsor to authenticate the principal

to the CORBA Security environment. A UserSponsor is an implementation artifact that authenti-

cates on behalf of a principal with and obtains authenticated credentials from a PrincipalAuthen-

ticator. Instances of UserSponsor implement user interfaces specific to the authentication methods

supported by the concrete implementations of CORBASec. CORBASec does not mandate any

particular authentication method; what it does specify, however, is the interface of a PrincipalAu-

thenticator. This object conducts the actual authentication and creates a Credentials object for

a new principal. Based on the authentication data it received from the UserSponsor and on the

underlying security technology (e.g., Kerberos [NT94], SESAME [PP95]), PrincipalAuthenticator in-

stantiates the Credentials with various information. The client’s ORB associates Credentials object

with requests on CORBA objects.

The authenticated security attributes of the principal are part of the information stored in the

15

2.1. Overview of CORBA Security

Credentials object. Hereafter, we understand attribute to mean security attribute. The TSS uses

these attributes to decide which operations this principal can invoke on the target object (“target”

for short). A variety of privilege attributes may be available, depending on the access policies.

At any given time, the principal may be using only a subset of these permitted attributes, chosen

either by the principal or by using a default set specified for the principal. There may be limits on

the duration these privilege attributes are valid for and controls on where and when they can be

used. These attributes, once established through principal authentication, are carried from CSS

to TSS in the security-specific service context elements of GIOP messages.

CORBASec administration architecture rests on three constituents—administrative interfaces,

defined on policy objects, each associated with a policy domain. CORBASec specifies adminis-

trative interfaces for managing most security runtime mechanisms described above, except au-

thentication.1 As with anything else in CORBA, these interfaces are defined in IDL. Since the

mechanisms for user-account management are beyond CORBASec’s scope, the interfaces for ad-

ministering user-attribute assignment policies are as well. There are several types of policies; one

of them is access policy.

The policy enforcement code uses three sources of information: (1) the information from the

client’s credentials, (2) the message itself, which specifies the target object and the name of the

method to be invoked, and (3) the policy of the domain to which the target belongs.

Any policy is associated with a policy domain—an abstraction that allows security administra-

tors to group objects in groups and assign policies to the groups. Domains allow the application

of access control and other policies to security-unaware objects without requiring changes to their

implementations or interfaces. Policy domains are also the means by which CORBASec runtime

and administration mechanisms achieve scalability on the number of objects in a system. Policies

of more than one type (for example, access, audit, message protection) can be associated with the

same policy domain.

The policy domain abstraction is represented in CORBASec by DomainManager objects. Whereas

the management of domain membership is implementation dependent, an application can invoke

the get domain managers operation on an object reference to obtain a list of the immediately en-
1For authentication, an administrator can still specify whether a target can be authenticated and/or requires its

clients to authenticate.

16

2.1. Overview of CORBA Security

closing domain managers for that object. The structure of the domain organization is determined

by the relationships among DomainManagers. Even though an object can belong to more than one

policy domain, CORBASec v1.8 specification states that it “does not require support for overlap-

ping or hierarchical security policy domains” [OMG02, p. F-6]. As a result, there is no standard

semantics for making access control decisions for object belonging to several domains or for do-

main hierarchies. Before describing access control architecture of CORBASec in detail, we review

related work.

This work builds on an earlier analysis of support for RBAC96 in CORBASec [BD99], where

Beznosov and Deng suggest how RBAC0−3 models could be implemented in CORBA. Similarly

to this work, their results indicate that—aside from conforming to the CORBASec specification—

additional functionality needs to be implemented in order to support RBAC96 data models in

CORBA. The main differences with [BD99] are in (1) the target model and, as a consequence,

the outcomes of the analysis, and (2) extension and correction of the previous analysis. While the

data models (e.g., roles, users, permissions, assignments of users and permissions to roles) defined

for ANSI RBAC and RBAC96 are largely the same, ANSI RBAC additionally provides a detailed

functional specification, which constitutes about 3/4 of the standard. Results of our analysis show

that it is the functional specification of ANSI RBAC that CORBASec mostly fails to support. As

summarized in Section 4.4, only 3 out of 21 defined functions can be completely supported by a

CORBASec implementation.

We extend and correct analysis by Beznosov and Deng as follows. First, we extend their defini-

tion of the CORBA protection state with the operational definition of the function access allowed,

demonstrating that the definition of the protection state is sufficient for computing access con-

trol decisions in CORBA (Section 2.4). Second, we introduce a formal translation from RBAC

to CORBASec (Section 2.7). Third, we identify three major shortcomings of CORBASec (Sec-

tions 2.8 and 4.4), specifically (1) the lack of a standard mechanism for enumerating all objects

that implement the DomainAccessPolicy interface in a CORBA deployment, (2) the lack of the

notion of user accounts and support for their management, as well as the lack of explicit user

representation, and (3) the inability to enumerate all CORBA principals related to a specific user.

Based on these findings, we conclude, unlike [BD99], that CORBASec is largely inadequate for im-

plementing ANSI RBAC functions without resorting to vendor-specific extensions of a CORBAsec

17

2.2. CORBA Protection State

implementation.

2.2 CORBA Protection State

One of the two major contributions of this thesis is a formalization of the CORBA protection state,

which is defined in Section 2.4. We explain first the architecture of the access control mechanisms

in CORBA.

2.3 CORBA Access Control Architecture

Due to its general nature, CORBASec is not tailored to any particular access control model.

Instead, it defines a general mechanism that is supposed to be adequate for the majority of cases

and can be configured to support various access control models. For example, implementing

lattice-based mandatory access control (MAC) using CORBASec is shown in [Kar00].

Access control policies in CORBASec are expressed through security attributes of principals,

attributes of objects, and operations implemented by those objects. Because CORBASec defines

an extensible attribute model, it enables access control policies based on roles, groups, clearance,

and any other security-related attributes of the principal. From the access control model point

of view, a Credentials object is nothing but a set of authenticated attributes. An attribute is a

four-tuple (a = {τ, α, υ, δ}) with certain type τ , defining authority α, value υ, and delegation state

δ, where δ ∈ DS = {i , d}. State i indicates an attribute possessed by the immediate invoker, and

d – by the intermediate one (i.e., delegated). Attribute types are partitioned into two families:

privilege attributes and identity attributes. The family of privilege attributes enumerates attribute

types that identify principal privileges: access id, primary and secondary groups the principal

is a member of, clearance, capabilities, etc. Identity attributes, if present, provide additional

information about the principal: audit id, accounting id, and non-repudiation id, reflecting the

fact that a principal might have various identities used for different purposes. Principal credentials

may contain zero or more attributes of the same family or type. The role attribute is one of the

standard CORBA attribute types. Due to the extensibility of the schema for defining security

attributes, an implementation of CORBASec can support attribute types that are not defined by

the CORBASec standard. Although the normative part of CORBASec does not mandate the way

18

2.3. CORBA Access Control Architecture

Figure 2.2: A model of CORBASec access control architecture in UML notation.

attributes are managed, assignment of such attributes to users is meant to be performed by user

administrators.

In the CORBA computational model, all a principal does is to invoke operations on corre-

sponding objects. In order to make a request, one needs to know two things: object reference,

which uniquely identifies an object, and operation name. An operation name is unique for an

interface.2 Thus, any operation is uniquely identified by its name and by the name of the interface

it is defined in. In this thesis, we use the notation i .m, to refer to operation (a.k.a. method) m

on interface i . There is a global3 set of required rights for each operation defined by its interface’s

required rights mapping. The required rights set, together with a combinator (all or any rights),

defines what rights a principal has to have in order to invoke the operation. Table 2.1b provides

an example of required rights for operations on three interfaces, i1 , i2 , i3 . It is assumed that

required rights are defined and that their semantics are precisely documented by application de-

velopers who best know what each operation does. CORBASec Level 2 API defines the operation

set required rights(operation, interface, rights, rights combinator) for managing required rights.
2Interface inheritance in CORBA does not allow inheritance from interfaces with operations of the same name.

This rule resolves the problem of operation name overloading.
3“Global” in the context of required rights means that they are independent of the policy domain in which the

object is located.

19

2.3. CORBA Access Control Architecture

Figure 2.2 is useful for illustrating our discussion. Depending on the access policy (DomainAc-

cessPolicy) enforced in a particular access control policy domain, a principal is granted different

rights (GrantedRights) according to what SecurityAttributes it has.4 Each DomainAccessPolicy de-

fines what rights are granted for each security attribute. An example of a mapping between

principal privilege attributes and granted rights is provided in Table 2.1c. Security adminis-

trators are responsible for defining what rights are granted to what security attributes in what

delegation state on a domain by domain basis. CORBASec Administrative API defines opera-

tions grant rights(attribute, rights) (as well as revoke rights, and replace rights) for managing rights

granted for an attribute in the scope of a particular policy domain.

Whenever a principal attempts to invoke an operation, its effective rights are computed via

operation AccessPolicy::get all effective rights(. . .). CORBASec purposely does not define how the

operation combines rights granted through the different privilege attribute entries in Table 2.1c.

The specifiers let CORBASec implementors define the operation’s semantics ([OMG02, p. 2-123]).

The simplest implementation of get all effective rights would be when the set of rights granted to

a principal is a union of rights granted to every security attribute possessed by the principal. For

the rest of this chapter, we will assume these semantics for the operation. If we use our example

of security attributes assigned to principals p1 , p2 , p3 , and p4 (Table 2.1a), and granted rights

(Table 2.1c), then Table 2.1d shows what “effective” rights the principals have in each domain.

The use of effective rights and policy domains makes the correspondence between the ANSI

RBAC OBS set and CORBA objects nontrivial. Note that the effective rights of the invoking

principal are computed for the object’s policy domain. At the same time, all instances of the same

interface implementation that belong to the same domain are indistinguishable for the purpose

of making access control (and other policy) decisions. That is, a principal has exactly the same

permissions on all objects that implement the same interface(s) and belong to the same domain.

To accommodate this important detail, we defined the ANSI RBAC OBS set as a cross-product

between CORBA interfaces and access policy domains: I ×D .

Once the principal’s effective rights are determined, they are compared to the rights required

for the operation. If the match is successful, the request is authorized. Given the required rights in
4For the sake of brevity, we omit the delegation state qualifier for granted rights. This omission does not change

the correctness of the discussion, as we show below.

20

2.3. CORBA Access Control Architecture

Principal Attributes
p1 a1

p2 a2 , a6

p3 a2 , a3

p4 a4 , a5

(a) An example of security at-
tributes possessed by authenti-
cated principals.

Ope- Required Combi- Meaning
rations Rights nator
i1 .m1 r1 all Only a principal who is granted right r1

can invoke the operation.
i1 .m2 r1 , r2 any Any principal who is granted either r1 or

r2 right can invoke the operation.
i2 .m1 r2 , r3 all Only a principal who is granted both r2

and r3 rights can invoke the operation.
i2 .m2 r2 , r3 , r4 all Only a principal who is granted all r2 , r3 ,

r4 rights can invoke the operation.
i3 .m1 r1 , r2 , r3 , r4 all Only a principal who is granted r1 , r2 , r3 ,

and r4 rights can invoke the operation.
(b) Required rights matrix

Attri- Granted Rights
butes Domains

d1 d2

a1 r1 r2

a2 − r1

a3 r2 , r3 −
a4 r3 r1 , r4

a5 r1 , r2 , r3 r2 , r3 , r4

a6 r6 r1

(c) Granted rights per attribute

Principal Granted Rights
Domains

d1 d2

p1 r1 r2

p2 r6 r1

p3 r2 , r3 r1

p4 r1 , r2 , r3 r1 , r2 , r3 , r4

(d) Effective rights of principals in each of the
two domains

Permitted Operations
Principals Domains

d1 d2

p1 i1 .m1 , i1 .m2 i1 .m2

p2 − i1 .m1 , i1 .m2

p3 i1 .m2 , i2 .m1 i1 .m1 , i1 .m2

p4 i1 .m1 , i1 .m2 , i2 .m1 i1 .m1 , i1 .m2 , i2 .m1 , i2 .m2 , i3 .m1

(e) Operations that principals from the example can invoke

Table 2.1: Sample CORBASec configuration (adapted from [BD99])

21

2.4. Formalization of the Protection State

Table 2.1b and the rights granted to the principals in Table 2.1d, Table 2.1e shows what operations

can be invoked by the principals from our example.

2.4 Formalization of the Protection State

In this section, we formalize the semantics of the CORBA access control architecture.

Definition 2 [CORBA privilege attributes] CORBA privilege attributes are

A ⊆ T ×AUTH ×V ×DS, where T ,AUTH ,V ,DS are interpreted as follows:

• T = { Public,AccessId , PrimaryGroupId , GroupId ,Role, AttributeSet , Clearance, Capability}

is the set of types.

• AUTH is the set of authorities.

• V is the set of values.

• DS = {i , d} is the set of delegation states.

Definition 3 [CORBA Protection State] A configuration of a CORBA system protection state

is a tuple (I , OPS, IOPS, RIGHTS, RR, D, DOBS, A, GR, get all effective rights) interpreted

as follows:

• I is the set of interfaces.

• OPS is the set of operations on CORBA objects.

• IOPS ⊆ I ×OPS specifies which operations are defined on which interfaces.

• RIGHTS is the set of rights.

• RR ⊆ IOPS × 2 RIGHTS defines rights required for invoking operations on interfaces.

• D is the set of security policy domains.

• Inst is the set of CORBA objects.

• DOBS ⊆ Inst ×D associates each object with zero or more policy domains.

22

2.4. Formalization of the Protection State

• A is the set of privilege attributes as specified in Defintion 2.

• GR ⊆ A× (D × RIGHTS) associates an attribute with a domain and a right; (a, d , r) ∈ GR

means that attribute a is granted right r in domain d.

• get all effective rights: D × 2 A → 2 RIGHTS , a function computing rights that are in effect

for a given set of privilege attributes in a given domain. Although this function uses GR to

obtain rights granted for each attribute, the semantics of combining the granted rights are

implementation-specific.

An implementation of security service compliant with CORBASec is supposed to yield the

same access control decision as that described by Algorithms 1 and 2. Employed by Algorithms 1

and 2, functions get domain policy and get all effective rights are defined by CORBASec.

access allowed(u : 2A,m : OPS, o : Inst, i : I)→ {true, false}
Require: (i ,m) ∈ IOPS

1: for all (o, d) ∈ DOBS do
2: {Find an access policy domain.}
3: p ← get domain policy(d ,“AccessPolicy”)
4: if p 6= NULL then
5: return is authorized(u, i ,m, d)
6: end if
7: end for
8: return is authorized(u, i ,m,NULL)

Algorithm 1: Operational definition of function access allowed. This function makes the
access control decision with regard to principal u accessing operation m on instance o of
interface i . If no policy domain with an access policy found, then this case is signaled with
NULL for the domain parameter.

CORBASec standard is unclear about cases when an object does not belong to any domain

that has AccessPolicy or it belongs to several such domains. To resolve the ambiguity, we chose

Algorithm 1 to use first domain of the object that has AccessPolicy. Because a policy domain

might not have AccessPolicy, the algorithm iterates until it finds a domain that does (lines 1-7). If

no such domain is found, then the algorithm passes NULL for the domain argument to is authorized

(line 8), which will result in the empty set of effective rights. Whether this would lead to a denial

of access, depends on the required rights. If an object has no required rights specified, the request

would be denied to all users, as Karjoth points out [Kar00].

23

2.4. Formalization of the Protection State

is authorized(u : 2A, i : I,m : OPS, d : D)→ {true, false}
1: er ← get all effective rights(d , u)
2: if ∃ (i ,m, rr) ∈ RR : rr ⊆ er then
3: return true
4: else
5: return false
6: end if

Algorithm 2: Operational definition of function is authorized.

We separated authorization logic into two functions. This separation is purely syntactical and

its only purpose is to demonstrate in Section 2.8 to the reader the capability of the CORBASec to

provide an implementation of ANSI RBAC’s CheckAccess in the form of is authorized. This function

is the same as access allowed, except that it makes an authorization decision for a given domain d

and particular operation m on CORBA interface i to be accessed by principal u. In Algorithm 2,

the operation get all effective rights retrieves granted rights and combines them according to its

implementation semantics. Effective rights of the principal in the object’s domain are checked

then against RR. If the match succeeds, then access is granted. Otherwise, access is denied. An

example of an algorithm for get all effective rights that returns a union of the rights granted per

each attribute are shown in Algorithm 3.

get all effective rights(d : D,u : 2A)→ 2RIGHTS

1: if d ≡ NULL then
2: return ∅
3: end if
4: er ← ∅
5: for all a ∈ u do
6: for all (a, d , r) ∈ GR do
7: er ← er ∪ r
8: end for
9: end for

10: return er
Algorithm 3: Operational definition of a sample function get all effective rights that returns
a union of all rights granted to principal u in domain d .

We simplified the semantics of the support for the required rights combinator in the defi-

nition of RR and Algorithm 2. Combinator value “any” is supported via separate elements of

RR. For example, if either r1 or r2 are required for operation i .m, then (i .m, {r1}) ∈ RR and

(i .m, {r2}) ∈ RR. Whereas, combinator value “all” is supported by listing all the required rights

24

2.4. Formalization of the Protection State

Subjects Interfaces
i1 i2 i3

p1 i1 .m1

p2 i1 .m1 , i1 m2

p3 i1 .m1 , i1 .m2

p4 i1 .m1 , i1 .m2 i2 .m1 , i2 .m2 i3 .m1

Table 2.2: Access matrix for domain d2

in one element of RR, e.g., (i .m, {r1 , r2}).

For each domain, a Lampson’s access matrix [Lam71], such as that one in Table 2.2, can be

constructed. Three general observations are worth noting regarding an access matrix constructed

for any CORBASec system. First, subjects cannot be objects, i.e., the CORBA access control

model does not support the concept of operations on principals. It only has the concept of opera-

tions on interfaces, which are objects according to the terminology of the access matrix [Lam71].

Second, since ik .mp ≡ il .mq ⇐⇒ k ≡ l ∧ p ≡ q (i.e., just p ≡ q is not enough for ik .mp ≡ il .mq),

the semantics of the operations with same names but defined on different interfaces in a general

case might be different. Thus, for each subject s and object o, the content of cell [s, o] is specific to

the object. That is, no operations permitted on one object can be permitted on another, because

operations are semantically different for every interface unless the interfaces are related through

inheritance. Third, since those implementations of the same interface that are located in the same

access policy domain are indistinguishable from the access control point of view, all such interface

implementations are represented by the same object in the access matrix. This is one of the reasons

policy domains are important in the CORBA access control model.

Before we proceed to our analysis of the support for ANSI RBAC in CORBA, we would like

to note that not all sets from Definition 3 can be enumerated. Particularly, we could not find

operations in CORBA specifications that allow enumerating RIGHTS , Inst ,A,D ,OPS , I , IOPS

sets. As a consequence, a number of ANSI RBAC functions cannot be supported without resorting

to implementation specifics. However, membership in the last three sets can be tested through the

operation get required rights specified on the interface RequiredRights.

The lack of standard mechanisms for enumerating all objects (Inst) in a given CORBA deploy-

ment accounted for the inability of CORBASec to support RolePermissions and, consequently,

25

2.5. Analysis of ANSI RBAC support in CORBA

SessionPermissions functions of the ANSI RBAC functional specification. The implementation

of these two functions requires enumeration of effective rights for a given role or principal. In

order to do so, it is necessary to obtain a reference to every object that implements interface

DomainAccessPolicy and to invoke the operation get all effective rights on it.

2.5 Analysis of ANSI RBAC support in CORBA

Recall that among the four sets of ANSI RBAC features (also referred as model components), Core

RBAC is the required minimum for any implementation compliant with the standard. A system

supporting Core RBAC must implement functions for administering user accounts, roles, sessions,

objects, operations, and permissions. Hierarchical RBAC has hierarchies of roles in addition to

everything Core RBAC has. The last two standard’s components, Static Separation of Duty (SSD)

Relations and Dynamic Separation of Duty (DDS) Relations, define relations among roles with

respect to user assignments as well as role activation in user sessions.

We first examine in Section 3.3.1 the extent to which a CORBA protection state—as formalized

in Definition 3—can support each of the four ANSI RBAC model components. Second, we describe

in Section 2.7 steps for translating an ANSI RBAC policy into a CORBA protection state. Two

examples that illustrate the results of our analysis can be found in [BD07, Section 5.3]. Finally,

we analyze in Section 2.8 the degree to which the programming interfaces defined in CORBASec

and other related parts of the CORBA specification support the functional specification of ANSI

RBAC. We discuss results of our analysis in Section 4.4.

2.6 Reference Model

2.6.1 Core RBAC

The five sets of Core RBAC identities are represented in CORBA Security as follows: Users in

RBAC map to user accounts in CORBASec; Roles are represented by a set of privilege attributes

of type role; each RBAC object is a collection of CORBA objects that implement the same

interface(s) and belong to the same access policy domain(s), and are thus indistinguishable from

the point of view of a CORBA protection system; Permissions are operation-object pairs; RBAC

26

2.6. Reference Model

Figure 2.3: RBAC (with white background) and CORBA (with light grey background) sets and
relations.

Sessions are equivalent to CORBA principals, which can be reduced for the purpose of this thesis

to just sets of security attributes. We do not mention CORBASec access control domains because,

as shown in [BD07], ANSI RBAC models can be supported in CORBA using either a single domain

or multiple domains. To aid with the understanding of the correspondence between elements in

the RBAC model and CORBASec, we present in Figure 2.3 RBAC (with white background) and

CORBA (with light grey background) sets and relations. The reader is encouraged to compare it

to the diagram in Figure 1.1.

The Core RBAC in the language of CORBA Security is formally defined as follows:

Definition 4 [Core RBAC in CORBASec] Core RBAC in the language of CORBA Security

is defined by the CORBA system protection state outlined in Definition 3, as well as the following

additional elements:

• USERS is the set of user accounts.

• ROLES ⊆ A roles, which are CORBA privilege attributes of type role.

Formally: ROLES = {a|a ∈ A ∧ T (a) ≡ Role}.

• OBS ⊆ I ×D set of objects distinguishable from the point of view of access control in CORBA.

That is, for any two elements of OBS, there could be a CORBA protection system state in

which the same principal p have different access rights on these elements, even if they both

27

2.6. Reference Model

implement the same interface(s). An ANSI RBAC object is mapped into a tuple (i , d), i.e.,

a CORBA interface and the access policy domain it is a member of.

• UA ⊆ USERS × ROLES, a many-to-many user-account-to-role assignment relation.

• assigned users(r : ROLES)→ 2 USERS , the mapping of role r onto a set of user accounts, as

in ANSI RBAC.

• PRMS ⊆ OPS ×OBS the set of permissions. A permission can be considered as a three-tuple

(op, i , d), i.e., operation, interface, and domain.

• assigned permissions(r : ROLES)→ 2 PRMS , the mapping of role r onto a set of permissions.

Function assigned permissions is specified operationally by Algorithm 4.

• Op(p : PRMS)→ OPS, the permission to operation mapping, which gives the operation as-

sociated with permission.

• Ob(p : PRMS)→ OBS, the permission to RBAC object mapping, which gives the object

associated with permission.

• domain(p : PRMS)→ D, the permission to CORBA access policy domain mapping, which

gives the domain associated with the permission. The mapping is used by Algorithm 4.

• interface(p : PRMS)→ I , the permission to CORBA interface mapping, which gives the

interface associated with the permission.

• PA ⊆ PRMS × ROLES, a many-to-many permission-to-role assignment relation, defined

through the function assigned permissions.

• SESSIONS ⊆ 2 A. RBAC sessions are represented by CORBA principals, which in their turn

can be treated for the purpose of access control as sets of security attributes from A.

• session users(s : SESSIONS)→ USERS, the mapping of a session onto the corresponding

user account.

• session roles(s : SESSIONS)→ 2 ROLES , the mapping of a session onto a set of roles.

Formally: session roles(si) ⊆ {r ∈ ROLES |(session users(si), r) ∈ UA}.

28

2.6. Reference Model

• avail session perms(s : SESSIONS)→ 2 PRMS , the permissions available to a

session =
⋃

r∈session roles(s)

r ∈ assigned permissions(r).

assigned permissions(r : ROLES)→ 2PRMS

1: AP ← ∅ {Initialize the set of assigned permissions to return}
2: for all p ∈ PRMS do
3: i ← interface(p)
4: m ← Op(p)
5: d ← domain(p)
6: if is authorized({r}, i ,m, d) then
7: AP ← AP ∪ p
8: end if
9: end for

10: return AP
Algorithm 4: Operational definition of function assigned permissions, which determines
permissions assigned to a given role in a CORBA system.

Definition 4 specifies all elements of Core RBAC. The elements PRMS , Op, and Ob require

further elaboration. The definition of PRMS in ANSI RBAC allows each permission to com-

prise multiple operation-object pairs. A CORBA permission, on the other hand, consists of only

one such pair, which can be considered as a more restricted case of ANSI RBAC PRMS , i.e.,

OPS ×OBS ⊂ 2 OPS×OBS . The ranges of functions Op and Ob are elements, not subsets, of OPS

and OBS , respectively. Given that an element of a set also comprises a subset of the set, ANSI

RBAC versions of Op and Ob functions can be substituted by their counterparts from Definition 4.

Thus, PRMS , Op, and Ob from Definition 4 can be used instead of the corresponding elements of

Core ANSI RBAC.

In the rest of this section, we explain how elements of Definition 4 are or can be supported by

CORBASec. Because the notion of user accounts is missing from CORBASec, the set USERS , re-

lation UA, and functions assigned users and session users have to be implementation-dependant.

The enumeration of elements from SESSIONS , which we have defined as a set of CORBA prin-

cipals (Definition 4), was found to be not supported by CORBA specifications either. However,

CORBASec’s SecurityLevel1.Current interface does define the operation get attributes, which re-

turns a list of security attributes of the principal responsible for the current invocation. For the

purposes of our analysis, the returned list of security attributes was sufficient to represent the

current principal and therefore the current session.

29

2.6. Reference Model

An implementation of function session roles is straightforward because an ANSI RBAC session

is a principal in CORBA, and a principal is a set of security attributes, each of a particular type.

Thus, all session roles needs to do is to return those principal’s attributes whose type is role.

As we explained at the end of Section 2.4, the CORBA specification does not define operations

sufficient for enumerating all CORBA objects in a given CORBA deployment. An affirmative

answer is necessary in order to enumerate the elements of the PRMS set, on which our operational

definition of the assigned permissions function depends (specifically, line 3). Thus, the function-

ality necessary for enumerating the PRMS set would have to be implementation-dependent.

The interfaces and data structures defined by CORBASec enable, however, the construction of

individual elements of set PRMS . To demonstrate, consider data used for making access control

decisions in CORBA. For any given request on a CORBA object, the CORBA security subsystem

intercepts the request and invokes access allowed (Algorithm 1) with the following parameters:

subject’s credentials, object’s reference, the operation to be invoked, and the name of the interface

on which the operation is defined. In its turn, access allowed obtains the access policy domain that

object o is a member of, before invoking is authorized (defined by Algorithm 2). Thus, at the time

when is authorized is invoked, all data necessary for constructing a corresponding permission, as

specified in Definition 4, are available to the CORBASec subsystem.

Due to the structure of permission, (op, i , d), valid implementations of the functions Op, Ob,

domain, as well as interface, could just return the corresponding parts of the permission argument.

For example, Ob needs to return the (i , d) tuple.

The function avail session perms is operationally defined by Algorithm 5. Also, see the caveat

about the related function SessionRoles in Section 2.8.

avail session perms(s : SESSIONS)→ 2PRMS

1: AP ← ∅ {Initialize the set of available permissions to return}
2: for all r ∈ session roles(s) do
3: AP ← AP ∪ assigned permissions(r)
4: end for
5: return AP

Algorithm 5: Operational definition of the function avail session perms, which determines
permissions available to a given session.

As can be seen from the above analysis of Definition 4, most elements of ANSI Core RBAC can

30

2.6. Reference Model

be provided by any implementation compliant with CORBA Security Main Functionality Level 2.

However, support for user-specific elements of the Core RBAC, as well as for enumerating such

sets as SESSIONS and PRMS , must be implementation-specific.

2.6.2 Hierarchical RBAC

In order to implement ANSI RBAC role hierarchies, a system—in addition to Core RBAC—has

to provide support for modifying and reviewing a partial-order relation on roles, RH , and the

functions authorized users and authorized permissions that are defined on RH . CORBASec does

not provide direct support for RH and the two functions. An implementation, however, can

emulate the support for role hierarchies—either general or limited—in three different ways.

First, PrincipalAuthenticator can activate not only those roles that can be activated through

direct user-to-role assignment but also the roles junior to those activated. For example if r ′ � r ,

and r ′ has been activated, then r is also activated. Proposals by [SA98, AS01] follow a similar

path. In this case, the RH logic can be encapsulated into PrincipalAuthenticator, whereas the

target security service and other CORBASec components provide no special support for role hi-

erarchies. A valid implementation of Hierarchical RBAC using PrincipalAuthenticator could be

one (a) that allows a user to specify any role junior to those the user is a member of; and (b) in

which PrincipalAuthenticator activates the specified role(s) as well as all roles junior to the specified

one(s).

The second choice is to shift support for role hierarchies to the TSS. Specifically,

get all effective rights would be required to return not only effective rights for the activated

roles, but also for all roles junior to the activated ones, as in [Giu99]. Using the above ex-

ample, a call to the modified version of get all effective rights(d , {r ′}), would be equivalent to

get all effective rights(d , {r ′, r}). This option requires maintenance of RH and run-time access to

it by the TSS. Since in CORBASec, the credentials of the principal are always “pushed” from

the client to the server, we found no opportunity to support Hierarchical RBAC by adding role

attributes to the client’s credentials by TSS, as proposals [Bar97, FBK99, Ahn00, PSA01, CO02,

ZM04] do.

The third option is to modify the administrative tools—similarly to [PSA01]—to ensure that

the CORBASec rights that are granted to every role include the rights this role inherits from the

31

2.7. Translating RBAC Policies to CORBA

junior roles. No special run-time support for role hierarchies would then be needed. However,

this option requires not only maintaining RH but also keeping track of the reason(s) a right was

assigned to a role, i.e., because of direct assignment or through inheritance from a particular

role. Such assignment details would be necessary in order to perform right revocation and RH

administration properly.

No matter which of the three options is selected, support for RH , authorized users, and

authorized permissions would be implementation-specific.

2.6.3 Constrained RBAC

The Constrained RBAC component of ANSI RBAC [ANS04] introduces static and dynamic separa-

tion of duty relations to the RBAC reference model. In essence, SSD constrains user-to-role assign-

ment (UA set and assigned users function) and the role hierarchy (RH set and authorized users

function). DSD, on the other hand, constrains the role activation (SESSIONS set and session roles

function). Since user accounts, role hierarchies, and role activation are beyond the scope of

CORBASec, the Constrained RBAC component, if supported, would have to be implementation-

dependant.

2.7 Translating RBAC Policies to CORBA

An interesting and practical question is the translation of an arbitrary ANSI RBAC policy into

a CORBA protection state. The key elements of an RBAC policy are the user-to-role (UA) and

permission-to-role assignment (PA) relations. Given that the management of user accounts and

their security attributes is beyond the scope of CORBA standards, the question boils down to the

PA relation. In Algorithm 6, we define a sequence of steps that allows a given PA defined in ANSI

RBAC terms to translate into the required (RR) and granted (GR) rights assignments and the

assignment (DOBS) of CORBA objects (Inst) to policy domains (D).

For this purpose and without loss of generality, we assume that sets and relations I, OPS,

IOPS, and Inst are defined by the virtue of developers creating a CORBA system. Our approach

requires that (1) all elements of PRMS are “atomic”, i.e., each permission comprises only one

object-operation pair, and (2) operations and objects of PRMS match the CORBA system at

32

2.7. Translating RBAC Policies to CORBA

hand. The former requirement can be lifted by translating compound permissions into atomic

ones before executing Algorithm 6. The second requirement is necessary for eliminating manual

mapping between RBAC operations and objects and those of the target CORBA system.

1: {Initialize CORBASec sets and relations.}
2: D ← ∅
3: DOBS ← ∅
4: RIGHTS ← ∅
5: RR← ∅
6: A← ∅
7: GR← ∅
8: for all p ∈ PRMS do
9: o← Ob(p)

10: if ¬∃(o, do) ∈ DOBS then
11: create a separate access policy domain do for o
12: D ← D ∪ {do}
13: DOBS ← DOBS ∪ {(o, do)}
14: end if
15: create new right rightp
16: RIGHTS ← RIGHTS ∪ {rightp}
17: RR ← RR ∪ {(interface(p),Op(p), {rightp})}
18: for all (p, r) ∈ PA do
19: A← A ∪ {r}
20: GR ← GR ∪ {(r , do , rightp)}
21: end for
22: for all (r ′ � r) ∈ RH do
23: GR ← GR ∪ {(r ′, do , rightp)}
24: end for
25: end for
26: return AP

Algorithm 6: Operational definition of translating from an ANSI RBAC system state to the
one of CORBA. Lines 22-24 are only necessary for the third option of supporting Hierarchical
RBAC in CORBA, as discussed in Section 2.6.2

The main advantage of the above approach is the straightforwardness of the initial translation

and the simplicity of future incremental modifications to the policy. Granting/revoking a per-

mission to/from a role requires adding/removing an association between a right and a role in the

object’s domain in the GR relation. Adding/removing an object results in creation/deletion of a

policy domain (and possibly several rights, if the object implements a unique interface). The main

disadvantage of this approach is the proliferation of rights and domains. The above steps result

in the creation of as many rights as the number of unique interface-operation pairs and as many

access policy domains as interface instances. Optimizations of this approach to policy translation,

33

2.8. Functional Specification

although conceivable, are not discussed further due to space limitations. Another complementary

question—which could be a subject of future research—is how to determine if a given CORBA

protection state enforces a given ANSI RBAC policy. To illustrate the results of our analysis of

the ANSI RBAC reference model support in CORBA systems, we show in [BD07, Section 5.3] how

a CORBA-based distributed system could be configured to enforce a sample RBAC policy using

single and multiple policy domains.

Having analyzed the support for the reference model of the ANSI RBAC in CORBA, we move

on to presenting results of our analysis with regard to the support of ANSI RBAC functions.

2.8 Functional Specification

This section reports on the the results of our analysis of CORBASec support for system and admin-

istrative functional specifications of ANSI RBAC. We examined each ANSI RBAC function defined

in Section 6 of [ANS04] on the subject of its support by a CORBASec implementation conform-

ing to Security Functionality Level 2. That is, we did not assume any CORBASec functionality

other than that required for Level 2 conformance [OMG02, p.374]. Particular implementations of

CORBASec might provide additional functionality, and, as a result, support more ANSI RBAC

functions. Examining support for ANSI RBAC on an implementation-by-implementation basis

was, however, beyond the scope of this thesis.

Results of our examination suggest that the CORBASec functionality, as defined through the

data structures and interfaces in Version 1.8, is largely insufficient for implementing ANSI RBAC

functions. Specifically, Hierarchical and Constrained RBAC functions cannot be supported without

extending an implementation beyond what CORBASec defines.

Even for Core RBAC, we found that most functions cannot be supported as is, as the sum-

mary of our analysis in Table 2.3 indicates. Because the CORBASec specification is not concerned

with the administrative and run-time management of user accounts, user attributes, and principals

(which are sessions in RBAC terms), the following functions prescribed for Core RBAC implemen-

tations cannot be supported without implementation-specific extensions: AddUser , DeleteUser ,

AssignUser , DeassignUser , AddRole, DeleteRole. The rest of this section discusses implementation

of the other Core RBAC functions using CORBASec and its application programming interfaces

34

2.8. Functional Specification

(APIs), and identifies the functionality necessary for supporting these functions that is missing

from CORBASec.

GrantPermission((i, d) : OBS,m : OPS, role : ROLES)
1: (rr , combinator)← get required rights(i ,m)
2: if combinator is “any” then
3: R ← any right from rr
4: else
5: {Combinator is “all”}
6: R ← rr
7: end if
8: grant rights(d, role,R)

Algorithm 7: Operational definition of the function GrantPermission, which grants a role
the permission to perform an operation on an ANSI RBAC object.

GrantPermission, RevokePermission functions enable changes to the permission assignment

(PA) set. The CORBASec operations set required rights, grant rights, revoke rights, and re-

place rights (described in Section 2.3) allow modifications to RR and GR, and therefore

PA, leading us to conclude that these CORBASec operations are sufficient for implement-

ing GrantPermission and RevokePermission functions. As an illustration, we provide in

Algorithm 7 an operational definition of the function GrantPermission, using CORBASec

API. RevokePermission can be defined likewise, except that more care needs to be exercised

in making sure that granted rights are revoked in all domains associated with the given

permission.

CreateSession function creates a given session with a given user account as the owner. COR-

BASec utilizes the notion of the PrincipalAuthenticator—described in Section 2.3—whose

functionality is expected to encompass the authentication of the CORBA principal, and cre-

ate the principal’s credentials, the equivalent of the ANSI RBAC session. Thus, even though

CORBASec does not define an operation for creating sessions, a functional implementation

of CORBASec would either rely on the underlying security infrastructure or implement an

equivalent of CreateSession utilized by PrincipalAuthenticator. Since the notion of user ac-

counts is missing from CORBA, this function cannot be completely supported without an

implementation-specific extension.

DeleteSession function deletes a given session with a given user account as the owner. Even

35

2.8. Functional Specification

Core RBAC Functions Functionality that
needs to be defined to
support this function

co
m

p
le

te
ly

su
p
p

o
rt

ed

u
se

r
m

a
n
a
g
em

en
t

u
se

r
re

p
re

se
n
ta

ti
o
n

a
tt

ri
b
u
te

m
a
n
a
g
em

en
t

cr
ed

en
ti

a
ls

d
el

et
io

n

en
u
m

er
a
ti

o
n

o
f

p
o
li
cy

d
o
m

a
in

s

a
tt

ri
b
u
te

to
cr

ed
en

ti
a
l

tr
a
n
sl

a
ti

o
n

re
tr

ie
v
in

g
p
ri

n
ci

p
a
l’
s

a
tt

ri
b
u
te

s

Administrative Commands

AddUser
√

DeleteUser
√

AssignUser
√

DeassignUser
√

AddRole
√

DeleteRole
√

GrantPermission
√

RevokePermission
√

Supporting System Functions

CreateSession
√

DeleteSession
√ √

AddActiveRole
√

DropActiveRole
√

CheckAccess
√

Review Functions

AssignedUsers
√

AssignedRoles
√

Advanced Review Functions

RolePermissions
√

SessionPermissions
√

UserPermissions
√ √

SessionRoles
√

RoleOperationsOnObject
√

UserOperationsOnObject
√

Table 2.3: Functions defined by ANSI Core RBAC and their support in CORBA

though CORBASec’s Credentials interface defines the operation destroy, this and other op-

erations on Credentials can be invoked only within the operating system process where the

Credentials object resides. Another limitation stems from the fact that there can be multiple

copies of the same Credentials object, making their complete deletion difficult to implement;

the CORBA specification does not provide a means for enumerating all copies of a given

Credentials object. For the above reasons, and because the notion of user accounts is missing

36

2.8. Functional Specification

from CORBA, we concluded that DeleteSession would have to be implementation-specific.

AddActiveRole, DropActiveRole functions add/delete a role as an active role of a session

whose owner is a given user account. Even though CORBASec does not define a function with

semantics compatible to AddActiveRole/DropActiveRole according to Liskov’s substitution

principle [LW94], it does specify the set attributes operation on the SecurityLevel2.Credentials

interface, enabling a privileged caller to modify attributes on a credential associated with a

particular principal. However, the logic for checking the preconditions session ∈ user sessions(user)

and (user 7→ role) ∈ UA would have to be implementation-specific due to the lack of stan-

dardized support for user-account management in CORBA deployments.

CheckAccess returns a Boolean value indicating whether the subject of a given session is allowed,

or not, to perform a given operation on a given object. This function is equivalent to

is authorized, which is defined by Algorithm 2.

AssignedUsers, AssignedRoles return the set of users/roles assigned to a given role/user, re-

spectively. Both functions require the notion of user, which is missing from CORBASec,

making these functions implementation-specific.

RolePermissions, SessionPermissions return the set of permissions (op, obj) granted to a

given role or session, respectively. Implementations of these functions would require query-

ing each instance of the DomainAccessPolicy interface in the given CORBA deployment in

order to determine the content of the role’s row in the granted rights matrix (see Table 2.1c).

However, due to the lack of standard mechanisms for enumerating all objects in a CORBA

deployment in general and all DomainAccessPolicy objects in particular, the querying would

have to be implementation-specific.

UserPermissions returns the permissions a given user gets through his/her assigned roles. This

function would be implementation-specific due to the lack of both standard mechanisms

for enumerating all access-policy domains and a standardized support for managing user

accounts.

SessionRoles returns the active roles associated with a session. This function is partially sup-

ported by the CORBASec. Any compliant implementation of CORBASec must implement

37

2.9. Discussion

the Current.get attributes operation, which allows retrieving security attributes of a specific

type (e.g., role) for the principal associated with the current execution thread. However, the

standard does not define an operation for retrieving attributes for an arbitrary principal or

associating it with the current execution thread.

RoleOperationsOnObject returns the set of operations a given role is permitted to perform on

a given RBAC object. Unlike the case of RolePermissions, support for this function does

not require enumerating all DomainAccessPolicy objects. A reference of the corresponding

CORBA object in question is sufficient for employing the AccessDecision.access allowed op-

eration for determining if a given role is allowed to invoke a particular operation on a given

object. In order to determine the rights of a given role on all operations of the RBAC object,

the CORBA Reflection facility [OMG06] can be used for enumerating operations imple-

mented by the object. CORBASec, however, does not define operations for creating a valid

credential—a required format of the input parameter for access allowed—out of a security

attribute (e.g., particular role). Therefore, the translation would have to be implementation-

specific.

UserOperationsOnObject returns the set of operations a given user is permitted to perform

on a given RBAC object. This function would be implementation-specific due to the lack of

a standardized notion of user.

2.9 Discussion

The results of our analysis suggest that the CORBASec functionality—as defined through the

data structures and interfaces in Version 1.8—is largely inadequate for implementing ANSI RBAC

functions without resorting to vendor-specific extensions of the CORBAsec implementation. Even

in the case of Core RBAC alone—the mandatory part of any compliant implementation of ANSI

RBAC—there are three major causes of this inadequacy.

One is the lack of a standard mechanism for enumerating all objects that implement the

DomainAccessPolicy interface in a CORBA deployment, which is necessary for enumerating all

permissions granted to the corresponding user/principal/role. This limitation is due to the lack of

support for enumerating all CORBA objects in a deployment. CORBA was originally positioned

38

2.9. Discussion

as a generic middleware architecture scalable to Internet-wide deployments [Sie00]—where partial

failures that are hard to detect and recover from are endemic—of potentially massive numbers of

fine-grained objects. Such objects would range from intermittent (e.g., shopping cart for an online

store customer) to long-lived and persistent (e.g., Parlay [3GP07]). Thus, its design intention-

ally avoids requirements for maintaining a view of the global state of a CORBA deployment—a

prerequisite for a standardized capability to enumerate (and therefore register) all objects, or

just all instances of DomainAccessPolicy. Although maintaining a view of the global state of an

Internet-wide deployment for any application is clearly unfeasible, the reality is that CORBA de-

ployments enjoy small-to-moderate scale [Hen06], are confined by enterprise boundaries—with the

notable exception of Parlay—and commonly feature only course-grained [YD96], persistent ob-

jects. It seems reasonable to expect a standardized capability for enumerating all instances of the

DomainAccessPolicy interface given that recent results demonstrate the feasibility of distributed

lock [Bur06], table [CDG+06], and hash table [ZHS+04] data structures capable of holding tens

of thousands of records and serving similar-sized populations of active clients. Such a capability

might be featured, for example, only in enterprise-scale deployments of CORBA.

However, even with scalable data structures, strict consistency among multiple views of the

system’s global state is commonly believed to be essentially impossible [TS01], leaving only weaker

consistency models to choose from. The semantics of these models, however, varies widely, from

data-centric linearizability [HW90]—which requires a globally available clock—to client-centric

eventual consistency [TS01]—which guarantees that all views eventually become consistent, but

only if no updates take place for a long time. The choice of the acceptable consistency model(s)

has to be explicit in ANSI RBAC in order for it to be applicable to those distributed systems

where the protection state is distributed, as is the case with CORBA.

Another caveat is that other commercial-grade distributed technologies—e.g., COM+ [Obe00],

EJB [DYK01], Grid [JBFT05], Web Services, and the HTTP-based Web—also lack a standardized

capability for enumerating all resources (or just resources of a particular type) in a deployment.

If most mainstream distributed technologies do not define this capability, is the reliance of ANSI

RBAC on it realistic? Can the ANSI RBAC standard be revised to avoid the assumption that it

is possible to enumerate all resources (and therefore permissions) in a system?

The second major limitation of CORBASec is its lack of the notion of user accounts and

39

2.9. Discussion

support for their management (i.e., adding, deleting, (un)assigning to/from roles), as well as the

lack of user representation. According to our analysis, which is summarized in Table 2.3, this

limitation results in over one-half of Core RBAC functions being dependent on vendor-specific

extensions. The architects of CORBASec intentionally left the notion of user and support for

user management beyond the scope of the specification. The abstraction of PrincipalAuthenticator

serves as an implementation-specific and technology-specific bridge between CORBASec run-time,

which is concerned with principal credentials, and users, on behalf of which CORBA clients invoke

operations on objects. PrincipalAuthenticator also performs user authentication and, if successful,

activates roles at run-time. In order to provide standard support for administering and reviewing

user accounts, their roles and their sessions, the corresponding administrative interfaces would

need to be added to CORBASec. However, such a revision would be contrary to the emerging

state of practice for application systems.

The notable trend in IT systems design is to re-allocate functionality for administering user

accounts, and in some cases permissions, to single sign-on (SSO) [PM03] solutions for new appli-

cations [Got05] and to identity management (IDM) solutions for existing applications [BS03]. As

a result, user accounts, and sometimes permissions, are administered across multiple application

instances and types “outside” of the applications themselves. Therefore, an application system can

only be successfully evaluated for compliance with ANSI RBAC when the application is considered

together with the corresponding SSO or IDM solution. This condition makes evaluation of support

for ANSI RBAC prohibitively expensive for systems designed to work in conjunction with multiple

SSO or IDM solutions, as the evaluation would have to be performed for every combination of

the system and the supporting SSO/IDM. Defining a separate ANSI RBAC profile for SSO/IDM

solutions is a possible alternative to explore.

Even if CORBASec supported user accounts and their management, the inability to enumerate

all CORBA principals related to a specific user (e.g., those with the same value of the auditId or

accessId attributes) would still prevent CORBASec from providing complete support for such Core

RBAC functions as AddUser, CreateSession, DeleteSession, AddActiveRole, DropActiveRole. All

of their definitions use the helper function user sessions, which can only be implemented if a

CORBA deployment keeps track of all principals—CORBASec surrogates of sessions—for every

user. However, principal tracking is prohibitively expensive for CORBA, and we believe for other

40

2.10. Conclusion

distributed systems, as well, due to the need for maintaining a view of the global state in the

presence of partial failures. Thus, we echo the suggestion made by Li et al. [LBB06] to remove

the notion of sessions from Core RBAC and introduce it in a separate, optional ANSI RBAC

component.

Results of our analysis discussed in Sections 2.6.2 and 2.6.3 indicate that most functions for

Hierarchical and Constrained RBAC options of the ANSI RBAC standard cannot be supported

without extending a CORBASec implementation with additional operations. Even though there

are at least three options for supporting role hierarchies, additional operations would have to be

added to CORBASec in order to provide standard support for modification and review of the

role hierarchy and for the functions authorized users and authorized permissions. Since support

for Constrained RBAC is contingent on the support for user accounts, role hierarchies, and role

activation, the standardization of support for these three is a prerequisite for standardization of

Constrained RBAC in CORBASec.

In summary, while generic and versatile, the access control architecture of CORBASec does

not define standard functionality for enumerating all DomainAccessPolicy objects in a deployment

and all sessions for a given user. It also lacks the notion of user accounts and their run-time

representation, as well as support for their management. These are three major roadblocks on

the path of CORBASec conforming to ANSI RBAC. Our results are not conclusive, however,

as to whether this mismatch between CORBASec and ANSI RBAC is exclusively due to the

shortcomings of the former or also involves the failure of the latter to be sufficiently general.

2.10 Conclusion

Understanding middleware access control mechanisms is critical for protecting the resources of

enterprise applications. In this chapter, we described in detail the architecture of access control

mechanisms in CORBA Security and defined a configuration of the CORBA protection system in

precise and unambiguous terms of set theory. Using the configuration definition, we suggested an

algorithm that formally specifies the semantics of authorization decisions in CORBASec.

We analyzed CORBASec in relation to its support for ANSI RBAC components and discussed

what functionality needs to be implemented, besides compliance with the CORBASec standard,

41

2.10. Conclusion

in order to support Core and Hierarchical RBAC. We suggested steps for translating an arbitrary

ANSI RBAC policy into CORBA protection state. Finally, we analyzed CORBASec support for

the functional specification of ANSI RBAC.

The results indicate that CORBASec falls short of supporting even functional Core RBAC

due to (1) the lack of a standard mechanism for enumerating all DomainAccessPolicy objects in

a CORBA deployment, (2) the lack of explicit user representation as well as the notion of user

accounts and support for their management, and (3) the inability to enumerate all CORBA prin-

cipals related to a specific user. Custom extensions are necessary in order for implementations

compliant with CORBASec to support ANSI RBAC required or optional components. These re-

sults can be interpreted as either a demonstration of the inadequacy of CORBASec in supporting

ANSI RBAC, or as an indication of ANSI RBAC not being sufficiently general. Examination of

other representative systems on the subject of their support for ANSI RBAC may clarify this

question.

The work presented in this chapter establishes a framework for assessing implementations

of ANSI RBAC using CORBA Security. The results provide directions for CORBA Security

developers implementing ANSI RBAC in their systems, and offer criteria to users for selecting

such CORBA Security implementations that support required and optional components of ANSI

RBAC.

42

Chapter 3

Analysis of ANSI RBAC Support in

EJB

In this chapter we provide an overview of the access control architecture of EJB. We analyze

access control mechanisms of EJB and define a configuration of the EJB protection system in

a more precise and less ambiguous language than the corresponding EJB specification. Using

this configuration, we suggest an algorithm that formally specifies the semantics of authorization

decisions in EJB. We then analyze the level of support for the ANSI RBAC components and

functional specification in EJB. We then conclude with a discussion of our results.

3.1 Overview of EJB Security

In this section we provide an overview of the EJB architecture, the main parts comprising an

EJB system, as well as the declarative and runtime aspects of EJB systems. We also provide a

description of the EJB security architecture.

3.1.1 EJB

This section provides a brief and informal overview of EJB. More information can be found in

the corresponding EJB specification. Readers familiar with EJB are advised to proceed to Sec-

tion 3.1.2.

The Enterprise Java Beans standard [DK06] defines an architecture for developing and de-

ploying server-side components written in the Java programming language. The EJB architecture

specifies the contracts that ensure the interoperability between various EJB components, clients,

and deployment environments. These contracts ensure that an EJB product developed by one

vendor is compatible with an EJB product provided by another vendor.

43

3.1. Overview of EJB Security

The EJB architecture, similar to other middleware technologies, allows application developers

to implement their business logic without having to handle transactions, state management, multi-

threading, connection pooling, and other deployment platform-dependent issues.

The EJB architecture consists of the following basic parts. These parts are also shown in

Figure 3.1 for ProductBean, an example Enterprise Java Bean.

Enterprise Java Bean A server-side software component that is composed of one or more Java

objects. The enterprise bean exposes certain interfaces that allow clients to communicate

with the bean in compliance with the EJB specification. This is shown in Figure 3.1 as

ProductBean. The EJB specification [DK06] defines three main types of enterprise beans:

entity, session (which include stateful and stateless session beans), and message-driven beans.

Depending on the type of the enterprise bean, its functionality ranges from a mere object-

oriented abstraction of an entity that exists in persistent storage (such as a record in a

database), to a web service implementing certain business logic.

EJB Container Provides services—such as persistence, concurrency, bean lifecycle, resource

pooling, and security—to the enterprise beans it hosts. Multiple enterprise beans typically

exist inside a single container. The container vendor provides necessary tools, which are

specific to their container, to help in the deployment of enterprise beans, as well as runtime

support for the deployed bean instances.

EJB Server Provides runtime environment to one or more containers. Since EJB specification

does not explicitly define the separation of roles between containers and servers, they usually

come inseparable as one system.

EJB Client A software component that invokes methods on the Enterprise Java Bean. The

EJB architecture allows a variety of client applications to utilize the business logic that the

beans provide. Servlets or Java Server Pages (JSP), Java stand-alone applications or applets

are common types of EJB clients. EJBs can also be clients of other EJBs. CORBA-based

applications, which are not necessarily developed in Java, may also be clients of EJBs. All

EJB clients access enterprise beans logic through predefined protocols and software interfaces.

These interfaces define the methods that can be invoked on the bean.

44

3.1. Overview of EJB Security

Figure 3.1: Basic parts of EJB architecture for an example Enterprise Java Bean Product

Remote Business Interface Java interfaces that are provided by the Enterprise Java Bean and

marked with the @Remote Java language metadata annotation. [DK06] The EJB container

tools handle the generation of required logic in order to support remote access to methods

defined by this interface.

Local Business Interface A Java interface that is provided by the Enterprise Java Bean and

that supports local access. Clients that utilize this type of interface have to be collocated in

the same Java Virtual Machine (JVM) as the Enterprise Java Bean.

Although Enterprise Java Beans are written in the Java programming language, fully com-

pliant EJB deployment environments support the Internet Inter-ORB Protocol (IIOP) [OMG04],

leveraging IIOP and the Common Secure Interoperability Protocol Version 2 (CSIv2) [OMG04]

capabilities which allow CORBA clients (which can be written in languages other than Java) to

access enterprise bean objects.

Declarative Part Defining remote, and local interfaces as well as implementing the business

logic in EJB is as easy as in standard Java. Figure 3.2 shows an example of an enterprise bean

remote interface definition, and Figure 3.3 illustrates an example of the corresponding implemen-

tation for that interface.

In EJB 3.0, the metadata annotations defined in Java Development Kit (JDK) 5.0 and later

are used to create annotated Enterprise Java Beans. The tools provided by the EJB Container

45

3.1. Overview of EJB Security

import javax . e jb . Remote ;

@Remote public interface Product {
public f loat ge tPr i c e () ;
public void s e t P r i c e (f loat newPrice)

throws Inva l idPr i c eExcept i on ;
} ;

Figure 3.2: Defining a remote interface for the Product enterprise bean (Product.java)

import javax . e jb . S t a t e f u l ;

@State fu l public class ProductBean implements Product {
private f loat p r i c e = 0 ;

public f loat ge tPr i c e () {
return p r i c e ;

}

public void s e t P r i c e (f loat newPrice) {
i f (p r i c e < 0) {

throw new Inva l idPr i c eExcept i on () ;
}

p r i c e = newPrice ;
}

}

Figure 3.3: Implementing the remote interface for the Product enterprise bean (ProductBean.java)

vendors utilize these annotations to automatically generate proper Java classes as well as other

required EJB interfaces.

As an alternative to metadata annotations, a bean developer can also specify transactional,

security, and other requirements for the application using the deployment descriptor—an XML file

with predefined syntax that holds all the explicit metadata for the assembly. The descriptor can

be later augmented and altered by an application assembler and deployer, who play specific roles

in the life cycle of enterprise beans predefined by the EJB specification.

Runtime Part While the remote object model for EJB components is based on the Remote

Method Invocation (RMI) API [Sun07], all invocations between J2EE components are performed

using IIOP. The use of the RMI remote invocation model over the IIOP protocol is usually referred

to as RMI-IIOP. When EJB components use the RMI-IIOP (mandatory for EJB 2.0 and higher),

46

3.1. Overview of EJB Security

the standard mapping of the EJB architecture to CORBA enables interoperability with multi-

vendor ORBs, other EJB servers, and CORBA clients written in languages other than Java.

Because of the IIOP, the same object reference used for CORBA is used in the EJB. The

similarities between CORBA and EJB lie in their use of a secure channel, as well as their client

and server security layer architectures. For more detailed explanation of EJB technology please

refer to [RSB05].

3.1.2 EJB Security Subsystem

The EJB protection architecture is conceptually simple: When the client program invokes a method

on a target EJB object, the identity of the subject associated with the calling client is transmitted

to the EJB object’s container. The container checks whether the calling subject has a right to

invoke the requested method. If so, the container permits the invocation on the method.

Client Security Service

Because of the use of IIOP and CSIv2, the responsibilities of an EJB client security service (CSS)

are similar to those of a CORBA CSS:

1. creating a secure channel with the target security service (TSS), and

2. obtaining the user’s authenticated credentials or passing username and password over the

CSIv2 context to TSS, as well as

3. protecting request messages and verifying response messages.

Treated by the EJB specification as an integral part of the server container, a TSS establishes

and maintains a secure channel with the clients, verifies authenticated credentials or performs client

authentication itself, implements message protection policies, and performs access checks before

an invocation is dispatched to an enterprise bean. Depending on the application configuration,

which is done through the deployment descriptor, the container associates the runtime security

context of the dispatched method either with the identity of the calling client or with some other

subject. Other security-related responsibilities of a container include the following:

47

3.1. Overview of EJB Security

• Isolating the enterprise bean instances from each other and from other application compo-

nents running on the server,

• Preventing enterprise bean instances from gaining unauthorized access to the system infor-

mation of the server and its resources,

• Ensuring the security of the persistent state of the enterprise beans,

• Managing the mapping of principals on calls to other enterprise beans, or on access to resource

managers, according to the defined security policy,

• Allowing the same enterprise bean to be deployed independently multiple times, each time

with a different security policy.

Implementation of Security Functions

The security parts of EJB specification focus largely on authentication and access control. The

specification relies on CSIv2 level 0 for message protection, and it leaves support for security

auditing to the discretion of container vendors. We describe EJB access control architecture in

Section 3.2.1.

Authentication User authentication is either performed by the client’s infrastructure (such as

Kerberos), or by the EJB server itself. In the latter case, the EJB server receives user authen-

tication data (only username and password for CSIv2 level 0) or credentials from a client and

authenticates the client using local authentication service, which is not predefined by the specifi-

cation. Once the container authenticated the client (or verified its credentials), it enforces access

control policies. The notion of a principal is used in the EJB specification to refer to authenticated

clients.

Administration Some security administration tasks of EJB servers are performed through

changes in deployment descriptors. This includes definition of security roles, method permissions,

and specification of security identity, either delegated or predetermined, for dispatching calls to

bean methods. Other tasks, such as mapping users to roles, specifying message protection, admin-

48

3.2. EJB Protection State

istering an audit, and authentication mechanisms, are beyond the scope of the EJB specification

and are therefore left up to the vendors of container products and deployment tools.

3.2 EJB Protection State

In this section, we first introduce the EJB access control architecture. Then, we formally define a

configuration of the EJB protection state.

3.2.1 EJB Access Controls

An EJB container controls access to its beans at the level of an individual method on the bean

class, not the bean object instances. That is, if different instances of the same bean have different

access control requirements, they should be placed in different application assemblies, which are

defined by JAR files. This means that the scope of the EJB’s policy domain is the application

assembly.

The EJB access control architecture provides two ways for enforcing access control decisions.

One approach, known in EJB terminology as declarative security, is to configure the container to

enforce authorization policy. The other is achieved by coding authorization decision and enforce-

ment logic into the bean methods. In the former case, access permissions of principals are defined

either using deployment descriptors, or through code annotations. The declarative approach de-

couples business logic from security logic. In the latter approach, also known as programmatic

security, the application developers utilize methods such as IsCallerInRole and getCallerPrincipal

to obtain necessary information about the caller, which can be used to enforce access control

policies that cannot be expressed using the declarative approach.

Authorization to invoke enterprise bean’s methods is enforced by the container. It grants or de-

nies clients’ requests to execute the methods in conformance with access control policies described

in the deployment descriptor and/or through bean’s metadata annotations. Since bean’s meta-

data annotations are equivalent in the expressiveness to the policies supported by the deployment

descriptor, we use only the latter in the rest of the chapter.

Access control decisions are based on the security roles (or just “roles” for short) of the prin-

cipal that represents the calling client. The security role is defined in the EJB specification as “a

49

3.2. EJB Protection State

Figure 3.4: Relationships among the sections of deployment descriptor used for expressing access
control policy and the elements of an EJB application

semantic grouping of permissions that a given type of users of the application must have in order to

successfully use the application” [DK06, page 456]. As defined by the specification, there are three

types of deployment descriptor sections relevant to the declarative access control: security-role,

method-permission, and exclude-list. The exclude-list section specifies the methods that

cannot be called by any principal, no matter which roles are assigned to the principal. Figure 3.4

uses Unified Modeling Language (UML) [OMG07a, OMG07b] notation to summarize the relation-

ships among authorization-related sections of the deployment descriptor and the elements of an

EJB application. In the rest of this section, we describe syntax and semantics of the two other

sections.

Each security-role section lists a role with optional human-readable unstructured description

of the role. This role can be referenced in other sections of the deployment descriptor. In essence,

these sections define a set of roles for an EJB application.

Assignment of permissions to roles is done in method-permission sections. Each such section

lists roles permitted to invoke one or more methods. Special role name “unchecked” can be used to

50

3.2. EJB Protection State

indicate that all roles are permitted to invoke the listed method(s). Each method is defined by the

name of the bean class, method name, and, optionally, the formal parameter types to distinguish

methods with overloaded names. Special method name “*” refers to all methods on a given bean.

An example of an assignment done through method-permission sections is shown in Table 3.1.

First row illustrates an assignment of a permission to invoke method m1 on bean b1 (b1·m1) to role

r1. The second row shows how several roles (r1 and r2) can be granted permissions to invoke any

of the listed methods (b1·m2 and b1·m4). This means that any principal that has any of theses two

roles can invoke any of these two methods. Last row provides an example of using “unchecked”

and “*” keywords. It states that any principal can invoke method b2m1 as well as any method on

bean b3. The overall set of methods a principal can invoke on a given EJB application is the union

of all the methods the principal’s roles are permitted to invoke. For example, if a deployment

descriptor contains only the three method-permission sections listed in Table 3.1, then a principal

with role r2 is granted permission to invoke methods b1·m2, b1·m4, b2·m1, and any method on

bean b3.

If a method (1) is not listed in any of the method-permission and exclude-list sections of

a deployment descriptor, and (2) has no @DenyAll annotation in the code, then it is accessible by

any principal.5 For instance, if b1·m3 is such a method then any principal would be able to invoke

it.

Even though the syntax of method-permission section allows listing more than one role and

method, we will assume without the loss of generality that each section contains only one role

and one method, as shown in the first row of Table 3.1. It is easy to define an algorithm for

converting any number of method-permission sections in a deployment descriptor to this form.

This assumption will simplify the definition of the protection state and the algorithm for making

access control decisions in Section 3.2.2.

In addition to the above deployment descriptor sections, EJB server vendors (or container

providers) define container-specific sections of deployment descriptors that map users and/or

groups to roles. Table 3.2 shows additional deployment descriptor sections for major commer-

cial EJB servers. Since the notions of users, groups, and the mapping from them to roles are
5According to Section 17.3.2.3 of the EJB specification [DK06], methods with unspecified permissions must be

treated by the container as “unchecked.”

51

3.2. EJB Protection State

Roles Methods
r1 b1·m1

r1, r2 b1·m2, b1·m4

“unchecked” b2·m1, b3·*

Table 3.1: Examples of method-permission sections of EJB deployment descriptor. For clarity
sake, the data representation is converted from XML notation to human-understandable form,
with each row corresponding to an individual section.

App. Server Section(s) Comments
Oracle users, groups A security-role-mapping XML tag

maps logical roles defined in the ap-
plication deployment descriptor to en-
tities defined in the users and groups
sections

Sun ONE principal-
name, group-
name

A security-role-mapping tag defines
mapping between principal-names
and roles, and/or between group-
names and roles

BEA WebLogic principal-
name

A security-role-assignment XML tag
declares mapping between principal-
names and roles

IBM WebSphere users, groups Tools establish user-group member-
ships and mapping between groups
and roles

Table 3.2: Additional authorization-related sections used in deployment descriptors of commercial
EJB servers

lacking from the EJB v3.0 specification, these vendor-specific additions to the EJB system will not

be used for defining the EJB protection state.

3.2.2 Formalization of the Protection State

In this section, we formalize the semantics of the EJB access control architecture.

Definition 5 [EJB Protection State] A configuration of an EJB system protection state is a

tuple (R,B,OPS,M,MP,X) interpreted as follows:

• R is a set of roles defined in the assembly-descriptor part of of the deployment descriptor

provided with the EJB application. These roles are defined using the security-role tags.

This set also includes special role “unchecked”.

52

3.3. Analysis of Support for ANSI RBAC

• B is a set of enterprise beans listed in the enterprise-beans section of the deployment

descriptor.

• OPS is a set of methods defined by the enterprise beans of the application. Members of this

set are denoted as mi. The set also includes special method “*” for any bean defined by the

application and signifying any method on that bean; for example, OPS = {m1,m2, ...}
⋃
{∗}.

• M ⊆ B ×OPS is the set of available uniquely identifiable methods. Members of this set are

denoted bi ·mj.

• MP ⊆ R ×M is a many-to-many permission assignment of EJB application roles to in-

voke methods, as specified in method-permission sections of the application’s deployment

descriptor.

• X ⊆M is a subset of methods—defined by exclude-list sections of the deployment descriptor—

invocation of which is denied to any role.

Note that the implementations of EJB containers and servers commonly have extensions to

the deployment descriptors, which enable defining sets of users and groups, as well as assigning

them to roles. Such vendor-specific extensions result in additional elements of the protection state.

However, all elements defined in Definition 5 are present in any EJB implementation compliant

with the specification. When analyzing in Section 3.3 EJB support for RBAC, we will identify

additional elements of EJB protection state that are necessary for the support.

Given the protection state of an EJB application, Algorithm 8 defines the outcome of an access

control decision. First, a check is performed on the membership of the requested method in the list

of blocked methods. If the method is found in the list, then the access is denied. If not, then the

method permissions are checked for every role of the principal and the special role “unchecked.”

If no appropriate element is in MP , then access is denied.

3.3 Analysis of Support for ANSI RBAC

As described in Section 1.2, the ANSI RBAC Reference Model defines four major components. In

order for a system to conform to ANSI RBAC, Core RBAC must be implemented at a minimum.

53

3.3. Analysis of Support for ANSI RBAC

Authorize(p : 2R, bi ·mj : M)→ {allow, deny}
if bi ·mj ∈ X then

return deny
end if
for all r ∈ p ∪ {“unchecked”} do

if (r, bi ·mj) ∈MP ∨ (r, bi∗) ∈MP then
return allow

end if
end for
return deny

Algorithm 8: Authorization decision in EJB. Decide authorization for principal p ≡
{r1, r2, . . . rn} invoking method mj on bean bi, where r1, r2, . . . rn ∈ R, and bimj ∈M

ANSI compliant RBAC system can also implement Hierarchical RBAC, which defines hierarchies

of roles in addition to everything Core RBAC has. The other two optional components of the

standard, Static Separation of Duty (SSD) and Dynamic Separation of Duty (DDS), define relations

among roles with respect to user assignments as well as role activation in user sessions.

In Section 3.3.1, we first examine the extent to which an EJB protection state—as formalized

in Definition 5—can support each of the four ANSI RBAC model components. In Section 3.3.3

we provide an example that illustrates the abilities of an EJB system to support ANSI RBAC.

In Section 3.3.4 we then analyze the degree to which the structures defined in EJB specification

support the functional specification of ANSI RBAC. In Section 4.4 we discuss results of our analysis.

3.3.1 Reference Model

Core RBAC

Various Core RBAC data elements are mapped readily into EJB using the sets defined in Sec-

tion 3.2. For example, the ROLES set in RBAC maps directly to R, which defines the EJB

security roles; RBAC objects (OBJ) are equivalent to EJB beans (B); RBAC operations (OPS)

are represented by EJB OPS. The representation of other relations defined in Core RBAC is

outside the scope of the EJB standard, as we will discuss later in this section. To aid with the

understanding of the correspondence between elements in the RBAC model and EJB, we present

in Figure 4.3 the sets and relations of EJB (with light grey background) and RBAC (with white

background). Shapes with white background and dashed lines show mapped RBAC sets. The

reader is encouraged to compare it to the diagram in Figure 1.1. We first define Core RBAC in

54

3.3. Analysis of Support for ANSI RBAC

(a) EJB protection state sets

(b) Mapped and unmapped RBAC sets

Figure 3.5: EJB (with light grey background) and RBAC (with white backround) sets and relations.

the language of the EJB protection system more formally as follows:

Definition 6 [Core RBAC in EJB] Core RBAC in the language of EJB is defined by the EJB

system protection state outlined in Definition 5, as well as the following additional elements:

• USERS is the set of users, where members of this set are defined in the operational envi-

ronment of the EJB system.

• ROLES = R, is the set of roles as defined in Definition 5.

• OBS = B is a set of enterprise beans.

• UA = USERS ×ROLES, is a many-to-many assignment of users to roles.

• assigned users(r : ROLES) = {u ∈ USERS|(u, r) ∈ UA}, is a function that returns the

set of users in USERS that are assigned to the given role r.

• PRMS ⊆M−X, is a set of permissions to invoke EJB methods provided that these methods

do not exist in the exclusion set X. The existence of bi · mj, or bi · ∗ in PRMS provides

permission to invoke a specific method mj, or all methods on bean bi, respectively.

55

3.3. Analysis of Support for ANSI RBAC

• PA ⊆ PRMS ×ROLES, a many-to-many assignment of permissions to roles.

• assigned permissions(r : ROLES) = {p ∈ PRMS|(p, r) ∈ PA}, is a function that returns

the set of permissions in PRMS that are assigned to the given role r.

• Op(p : PERMS) → {op ∈ OPS}, a function that returns a set of operations that are

associated with the given permission p.

• Ob(p : PERMS)→ {ob ∈ OBS}, a function that returns a set of objects that are associated

with the given permission p.

• SESSIONS is a set of sessions for a specific application. Members of this set are mappings

between authenticated users and their activated roles for a specific EJB application.

• session users(s : SESSIONS)→ USERS, the mapping of session s onto the corresponding

user.

• session roles(s : SESSIONS) → 2ROLES, the mapping of session s onto a set of roles.

Formally: session roles(si) ⊆ {r ∈ ROLES|(session users(si), r) ∈ UA}.

• avail session perms(s : SESSIONS) → 2PRMS, the permissions available to a user in a

session =
⋃

r∈session roles(s)

assigned permissions(r).

In order to support Core RBAC in EJB systems, Definition 6 identifies additional elements to

those identified in Definition 5. These additional elements are related to users and sessions. In

the rest of this section we discuss how elements of Definition 6 are or can be supported in an EJB

system.

Although the EJB standard [DK06] does not mandate how users must be supported in an

EJB system, various implementations of EJB servers and containers implement extensions to

deployment descriptors, as described to in Section 3.2.2. These extensions provide support for

adding users to the system, as well as mapping those users to roles. The USERS set in Definition 6

abstracts this support; however, this support is implementation-dependent. By the same token,

support for UA and assigned users is also implementation-dependent.

The SESSIONS set is another element of Definition 6. In relation to support for users,

the EJB standard does not specify a mapping of authenticated users to roles, or more precisely,

56

3.3. Analysis of Support for ANSI RBAC

role activation. Hence, EJB server’s support for sessions is outside the scope of the EJB stan-

dard and is implementation-dependent. Similarly, in order to fully support Core RBAC, EJB

implementations’ support for session-related functions such as session users, session roles, and

avail session perms are outside the scope of the EJB standard.

On the other hand, the sets ROLES, OPS, and OBS; the relations PRMS and PA; and the

functions Op and Ob are all supported by the EJB standard as these can be readily obtained from

the deployment-descriptor.

To summarize, about half the elements of ANSI Core RBAC can be provided by any imple-

mentation compliant with the EJB standard; however, support for USERS, UA, assigned users,

SESSIONS, session users, session roles, and avail session perms, which relate to users and

sessions, if provided, can only be implementation-dependent.

Hierarchical RBAC

The Hierarchical RBAC component specifies two types of role hierarchies: general and limited.

Both types are formally defined using elements of Core RBAC. In addition to role hierarchies,

Hierarchical RBAC defines two functions: authorized users and authorized permissions, as de-

scribed in Section 3.3.1. Although the EJB standard does not provide direct support for Hierar-

chical RBAC, an EJB implementation can still emulate both types of role hierarchies. The rest of

this section discusses ways of emulating Hierarchical RBAC in EJB.

EJB server administrative tools can be modified in order to support role hierarchy. First, the

administrative tools must maintain hierarchy relationships between roles in a repository. Second,

the tools must ensure that when method permissions are granted to a certain role in a deployment

descriptor, those method permissions are also appropriately and consistently granted to all junior

roles. Finally, the administrative tools must also keep track of whether a permission has been

directly assigned to a role or the role inherited this permission through a role hierarchy. No special

run-time support for role hierarchies would then be needed. This approach is similar to the ones

used in [AS01] and [SA98] in order to support role hierarchy in various operating systems.

An alternative is an approach in which inherited permissions are determined at run-time.

This approach would require the EJB server—or more specifically the Target Security Service

(TSS) described in Section 3.1.2—to examine the role hierarchy repository during run-time. A

57

3.3. Analysis of Support for ANSI RBAC

certain role is then granted permission to invoke a specific method not only based on direct

permission-to-role assignment, but also based on permissions granted to a junior role. In addition

to a repository that maintains role hierarchy relationship, a run-time computation of inherited

permissions would be required. A similar approach is adopted in [FBK99] for Common Gateway

Interface (CGI) based Web applications, and in [Giu99] for Java Authentication and Authorization

Service (JAAS) [Sun01] based access control.

With either of the above approaches, support for this role hierarchy—and the authorized users

and authorized permissions functions required for Hierarchical RBAC—is implementation-dependent

and is not specified by the EJB standard.

Constrained RBAC

The Constrained RBAC component introduces separation of duty relations to the RBAC reference

model. As with Hierarchical RBAC, these relations are defined in terms of Core RBAC constructs.

In essence, SSD constrains user-to-role assignment (UA set and assigned users function) and the

role hierarchy (RH set and authorized users function). DSD, on the other hand, constrains the

role activation (SESSIONS set and session roles function). Since user accounts, role hierarchies,

and role activation are beyond the scope of EJB, the Constrained RBAC component, if supported,

would have to be implementation-dependent.

3.3.2 Translating RBAC Policies to EJB

In Definition 5 and Definition 6 we presented a protection state for EJB systems, and how Core

RBAC can be modeled in the language of the EJB protection state, respectively. In this section,

we present an algorithm that translates an arbitrary RBAC policy into an EJB protection state.

Algorithm 9 formalizes the translation from an RBAC policy to the EJB protection state

defined in Definition 5. For clarity, we identify the RBAC sets in the algorithm with an RBAC

subscript.

3.3.3 Example

In this section we present an example that illustrates the abilities of an EJB system to support

ANSI RBAC. As discussed in Section 3.3.1, the EJB standard does not provide direct support

58

3.3. Analysis of Support for ANSI RBAC

1: {Initialize EJB sets and relations.}
2: R← ROLESRBAC

3: B ← OBSRBAC

4: OPS ← OPSRBAC

5: M ← ∅
6: MP ← ∅
7: X ← ∅
8: for all p ∈ PRMSRBAC do
9: for all (opr , obj) ∈ p do

10: M ←M ∪ {(objȯpr)}
11: end for
12: end for
13: for all pa ∈ PARBAC do
14: for all ((opr , obj), r) ∈ pa do
15: MP ←MP ∪ {(r, (objȯpr))}
16: end for
17: end for

Algorithm 9: Operational definition of translating from an ANSI RBAC system state to
the one of EJB.

for role hierarchy; however, emulation of such support is possible as discussed earlier, and is

straightforward. Hence, role hierarchy is not illustrated in this example.

The example in this section consists of a simple system that maintains employee and engi-

neering project records in an engineering company. The system allows different users to perform

various operations on the project and employee records, based on the users’ roles in the company.

The system handles the manipulation of various records through enterprise beans of two types:

EngineeringProject and Employee. These enterprise beans are depicted in Figure 3.6. The figure

shows the methods that can be invoked on the beans. The system also defines seven different user

roles. Based on these roles and according to the policies listed in Figure 3.7, users are allowed to

invoke various methods on a specific EJB. These roles are defined as follows:

• Employee represents a company employee.

• Engineering Department represents an employee of the engineering department.

• Engineer performs various engineering tasks in the company.

• Product Engineer is responsible for managing a product line.

• Quality Engineer is a quality assurance engineer.

59

3.3. Analysis of Support for ANSI RBAC

(a) EngineeringProject
bean

(b) Employee bean

Figure 3.6: Example session beans

Roles Methods
EngineeringProject Bean Employee Bean

m
a
k
eC

h
a
n
g
es

()

re
v
ie

w
C

h
a
n
g
es

()

in
sp

ec
tQ

u
a
li
ty

()

re
p

o
rt

P
ro

b
le

m
()

cl
o
se

P
ro

b
le

m
()

cr
ea

te
N

ew
R

el
ea

se
()

g
et

D
es

cr
ip

ti
o
n
()

cl
o
se

()

g
et

B
a
si

cI
n
fo

()

a
ss

ig
n
T

o
P

ro
je

ct
()

u
n
a
ss

ig
n
F

ro
m

P
ro

je
ct

()

a
d
d
E

x
p

er
ie

n
ce

()

g
et

E
x
p

er
ie

n
ce

()

fi
re

()

Employee
√ √

Engineering Department
√ √ √ √

Engineer
√ √ √ √

Product Engineer
√ √ √

Quality Engineer
√ √ √

Project Lead
√ √ √

Director
√ √ √ √ √ √ √

Table 3.3: Permission-to-role assignment for the example

• Project Lead overseas and leads the development of a project.

• Director is an engineering department director.

The access control policy that defines what actions each role is allowed to perform are sum-

marized in Table 3.3, where a check mark (“
√

”) denotes a granted permission for a specific EJB

role to execute the corresponding enterprise bean method. Table 3.4 shows an example of sys-

tem users, and their group memberships. Tables in Figure 3.8 show examples of user-to-role and

group-to-role assignments. The following is a formalization of this example system’s protection

state as in Definition 5.

• R = {Employee, Engineering Department, Engineer, Product Engineer,

60

3.3. Analysis of Support for ANSI RBAC

1. Anyone in the organization can look up an employee’s basic information, such as their name,
department, phone number, and office location.

2. Everyone in the engineering department can get a description of and report problems regard-
ing any project and look up experience of any employee.

3. Engineers, assigned to projects, can make changes and review changes related to their
projects.

4. Quality engineers, in addition to being granted engineers’ rights, can inspect the quality of
projects they are assigned to.

5. Product engineers, in addition to possessing engineers’ rights, can create new releases.

6. The project lead, in addition to possessing the rights granted to product and quality engi-
neers, can also close problems.

7. The director, in addition to being granted the rights of project leads, can manage employees
(assign them to projects, un-assign them from projects, look up experience, add new records
to their experience, and fire them) and close projects.

Figure 3.7: Authorization policy for the example EJB system describing what actions are allowed.
All other actions are denied.

User Group
Alice accounting
Bob hardware

Carol software
Dave software
Eve software
Fred management

Table 3.4: Example users, groups, and group memberships

User Role
Alice Employee
Bob Engineer

Carol Quality Engineer
Dave Product Engineer
Eve Project Lead
Fred Director
(a) User-to-role assignment

Group Role
hardware Engineering Department
software Engineering Department

(b) Group-to-role mapping

Figure 3.8: Example EJB system role mappings

61

3.3. Analysis of Support for ANSI RBAC

Quality Engineer, Project Lead, Director}

• B = { EngineeringProject, Employee }

• OPS = { makeChanges, reviewChanges, inspectQuality, reportProblem,

closeProblem, createNewRelease, getDescription, close, getBasicInfo, assignToProject,

unassignFromProject, addExperience, getExperience, fire}

• M = {EngineeringProject.makeChanges, EngineeringProject.reviewChanges,

EngineeringProject.inspectQuality, EngineeringProject.reportProblem,

EngineeringProject.closeProblem, EngineeringProject.createNewRelease,

EngineeringProject.getDescription, EngineeringProject.close

Employee.getBasicInfo, Employee.assignToProject,

Employee.unassignFromProject, Employee.addExperience,

Employee.getExperience, Employee.fire }

• MP = { (Employee, Employee.getBasicInfo),

(Employee, Employee.getExperience),

(Engineering Department, EngineeringProject.reportProblem),

(Engineering Department, EngineeringProject.getDescription),

(Engineering Department, Employee.getBasicInfo),

(Engineering Department, Employee.getExperience),

(Engineer, EngineeringProject.makeChanges),

(Engineer, EngineeringProject.reviewChanges),

(Engineer, Employee.getBasicInfo),

(Engineer, Employee.getExperience),

(Product Engineer, EngineeringProject.createNewRelease),

(Engineering Department, Employee.getBasicInfo),

(Engineering Department, Employee.getExperience),

(Quality Engineer, EngineeringProject.inspectQuality),

(Quality Engineer, Employee.getBasicInfo),

(Quality Engineer, Employee.getExperience),

62

3.3. Analysis of Support for ANSI RBAC

(Project Lead, EngineeringProject.closeProblem),

(Project Lead, Employee.getBasicInfo),

(Project Lead, Employee.getExperience),

(Director, EngineeringProject.close),

(Director, Employee.getBasicInfo),

(Director, Employee.assignToProject),

(Director, Employee.unassignFromProject),

(Director, Employee.addExperience),

(Director, Employee.getExperience),

(Director, Employee.fire) }

• X = Φ

The R and Bsets contain the roles and beans defined in the system. OPS defines all operations

available to various roles. These methods are further qualified by the M set, where each method is

qualified with the name of the bean for which it is defined. The MP set represents Table 3.3, and

as described in Section 3.2.2, MP is a many-to-many permission assignment of EJB application

roles to invoke defined methods. These permissions are listed in the method-permission sections

of the application’s deployment descriptor. This example does not require any methods to be in

the exclude-list sections of the deployment descriptor for the application;hence, set X is empty.

We use the above formalization of the example system’s protection state in order to support

the ANSI Core RBAC reference model. Considering Definition 6, the content of ROLES, OPS,

and OBS is straightforward. The rest of the sets are defined as follows.

• USERS = {Alice, Bob, Carol, Dave, Eve, Fred, accounting, hardware, software, manage-

ment}

• UA = { (Alice, Employee), (Bob, Engineer), (Carol, Quality Engineer), (Dave, Product En-

gineer), (Eve, Project Lead), (Fred, Director), (hardware, Engineering Department), (soft-

ware, Engineering Department), (Bob, Engineering Department), (Carol, Engineering De-

partment), (Dave, Engineering Department), (Eve, Engineering Department) }

• PRMS = M

63

3.3. Analysis of Support for ANSI RBAC

• PA = MP

The EJB 3.0 standard does not specify how EJB roles should be mapped to the user groups

and accounts that exist in the bean’s operational environment. This makes the USERS and

UA sets dependent solely on the EJB container’s operational environment, and the way users are

managed there. For example, the UA set contains assignments that exist only due to user-group

memberships. In this example, Carol is assigned to the Engineering Department role through her

software group membership.

3.3.4 Functional Specification

This section reports on the results of our analysis of the support that the EJB standard [DK06]

can provide for ANSI RBAC system and administrative functional specifications. For the purpose

of this analysis, we examined every function specified in Section 6 of [ANS04] on the subject of its

support by an EJB container conforming to the EJB standard.

Results of our examination suggest that the software interfaces that the EJB standard mandates

are insufficient for implementing most of ANSI RBAC functions as is. Furthermore, the XML data

structures defined in the EJB deployment descriptor, are incapable of fully supporting an ANSI

RBAC compliant system. These data structures can provide support for implementing a limited

number of Core RBAC functions. Other system and administrative Core RBAC functions, as well

as all additional functions for Hierarchical and Constrained RBAC, cannot be supported without

extending an EJB system implementation beyond what the EJB standard defines.

The following is an examination of various Core RBAC functions and their level of support in

the EJB standard.

AddUser, DeleteUser operations allow users to be added to the USERS set and to be re-

moved from it. In an EJB environment, these are realized in a implementation-dependent

manner. For example, the IBM WebSphere Application Server [SCH+04] allows EJB appli-

cation deployers to use various user registries to maintain the USERS set. WebSphere can

be configured to use the local operating system user accounts, an LDAP [WHK97] server, or

a custom user registry.

64

3.3. Analysis of Support for ANSI RBAC

AddRole, DeleteRole add roles to and delete roles from the RBAC system. EJB data structures

provide direct support for implementing these functions. They can be implemented by adding

or removing a role definition using the security-role tags in the assembly-descriptorsection

of the deployment descriptor file.

AssignUser, DeassignUser allow assignment relationships to be established between roles and

users. Similar to the AddUser and DeleteUser, these operations need to be implemented in

an implementation-dependent manner.

GrantPermission, RevokePermission allow invocation permissions to be granted to or re-

voked for a certain role. These operations can be implemented by adding or removing the

corresponding method-permission section of the deployment descriptor.

CreateSession, DeleteSession, AddActiveRole, DropActiveRole allow for the creation and

deletion of sessions, as well as activation of user roles. In an EJB environment, these opera-

tions are likely to be implemented in a proprietary manner and would differ from one EJB

application server to another.

CheckAccess make an access control decision. The Authorize method in Algorithm 8 can be

used to implement CheckAccess.

AssignedUsers, AssignedRoles return users assigned to a given role, and roles assigned to a

given user, respectively. Since these functions are not supported in EJB 3.0, they need to be

provided by the EJB application server.

Advanced Review Functions for Core RBAC

RolePermissions returns the permissions granted to a given role. This function can be im-

plemented by examining the method-permission sections, where method permissions are

granted to roles.

UserPermissions returns permissions assigned to users. Given the permissions assigned to roles

(using the RolePermissions function), and knowing the roles the user is assigned to (using

AssignedUsers), the implementation of this function is straightforward.

65

3.4. Discussion

SessionRoles, SessionPermissions return the roles and permissions associated with a specific

user session. These can be provided by the EJB application server assuming that the server

implementation alreadysupport the notion of sessions.

RoleOperationsOnObject, UserOperationsOnObject return a set of operations that can be

invoked on an object given a certain role or a certain user, respectively. The operations that

a certain role is permitted to invoke can be obtained directly from the method-permission

sections of the deployment descriptor. The operations that a user is permitted to invoke, on

the other hand, can be obtained given the implementation of the RoleOperationsOnObject

as well as the AssignedRoles functions.

Table 3.5 provides a summary of the above results. The table classifies support for ANSI Core

RBAC functions in two main categories. The first category contains functions that are supported

directly by EJB data structures, whereas the second category identifies the supplemental compo-

nents that must be implemented in an EJB system—outside the scope of the EJB specifications—in

order to support the specified ANSI Core RBAC functions. These components are identified as

related to user management, session and role activation. The user management related compo-

nents are required to handle the addition/deletion of users from the system, as well as user-to-role

assignments. On the other hand, the session and role activation related components are required

to handle the management of user sessions and activation of permissions.

3.4 Discussion

The results of our analysis suggest that the EJB functionality—as defined through the data struc-

tures and interfaces—falls short of fully supporting ANSI RBAC without resorting to vendor-

specific extensions. Even in the case of Core RBAC alone—the mandatory part of any compliant

implementation of ANSI RBAC—there are two major causes of this inadequacy.

The two major limitations of EJB are its lack of the notion of user accounts and support

for their management (i.e., adding, deleting, (un)assigning to/from roles), as well as the lack of

support for user sessions and role activation. According to our analysis, which is summarized in

Table 3.5, this limitation results in two thirds of Core RBAC functions being dependent on vendor-

specific extensions (see column “Additional Required Components”). The architects of EJB might

66

3.4. Discussion

Core RBAC Functions Additional
Required

Components

E
J
B

D
a
ta

S
tr

u
ct

u
re

s
S
u
p
p

o
rt

U
se

r
M

a
n
a
g
em

en
t

S
es

si
o
n
s

a
n
d

R
o
le

A
ct

iv
a
ti

o
n

Administrative Commands

AddUser
√

DeleteUser
√

AssignUser
√

DeassignUser
√

AddRole
√

DeleteRole
√

GrantPermission
√

RevokePermission
√

Supporting System Functions

CreateSession
√

DeleteSession
√

AddActiveRole
√

DropActiveRole
√

CheckAccess
√

Review Functions

AssignedUsers
√

AssignedRoles
√

Advanced Review Functions

RolePermissions
√

SessionPermissions
√

UserPermissions
√

SessionRoles
√

RoleOperationsOnObject
√

UserOperationsOnObject
√

Table 3.5: Functions defined by ANSI Core RBAC and their support by EJB data structures

have intentionally left the notion of user and support for user management as well as session

and role activation beyond the scope of the specification. In order to provide standard support

for administering and reviewing user accounts, their roles and their sessions, the corresponding

administrative interfaces would need to be added to EJB. However, such a revision would be

contrary to the emerging state of practice for application systems.

The notable trend in IT systems design is to “outsource” the functionality for administering

67

3.5. Conclusion

user accounts, and in some cases permissions, to single sign-on (SSO) [PM03] solutions for new

applications [Got05] and to identity management (IdM) solutions for existing applications [BS03].

As a result, user accounts, and sometimes permissions, are administered across multiple application

instances and types “outside” of the applications themselves. Therefore, an application system can

only be successfully evaluated for compliance with ANSI RBAC when the application is considered

together with the corresponding SSO or IdM solution. This condition makes evaluation of support

for ANSI RBAC prohibitively expensive for systems designed to work in conjunction with multiple

SSO or IdM solutions, as the evaluation would have to be performed for every combination of

the system and the supporting SSO/IdM. Defining a separate ANSI RBAC profile for SSO/IdM

solutions is a possible alternative to explore.

The other limitations of the EJB specification relate to Hierarchical and Constrained RBAC

components of ANSI RBAC. The EJB specification does not define support for either role hierar-

chies or separation of duty. In Sections 3.3.1 and 3.3.1, we sketch approaches for supporting the two

components. However, additional data must be maintained outside of the standard deployment

descriptor in order to implement role hierarchies.

3.5 Conclusion

In this chapter, we analyzed support for ANSI RBAC in EJB 3.0 compliant systems. Specifically,

we defined a configuration of the EJB protection system in precise and unambiguous terms using set

theory. Based on this configuration definition, we formally specified the semantics of authorization

decisions in EJB. We analyzed support for various ANSI RBAC components in EJB, and illustrated

our discussion with an example.

Our analysis shows a mismatch between the access control architectures of EJB and ANSI

RBAC. Although, the specification of access controls in EJB does employ roles, it does not fully

support even Core ANSI RBAC. The limitations are mainly due to the lack of support for (1) user

accounts and their management, (2) user sessions, and (3) role activation. While these limitations

can be easily worked around through vendor-specific and implementation dependent extensions,

each EJB implementation would have to be evaluated for ANSI RBAC separately. In order to

provide standard support for administering and reviewing user accounts, their roles and their

68

3.5. Conclusion

sessions, the corresponding administrative interfaces would need to be added to EJB, which would

be contrary to the emerging practice of “outsourcing” such functions to enterprise-wide single

sign-on and identity management solutions.

This chapter establishes a framework for analyzing support for ANSI RBAC in EJB imple-

mentations. The results provide directions for EJB developers implementing ANSI RBAC in their

systems, and criteria application owners in selecting such EJB implementations that support re-

quired and optional components of ANSI RBAC.

69

Chapter 4

Analysis of ANSI RBAC Support in

COM+

In this chapter, we provide an overview of, and analyze the access control architecture of COM+.

We formalize the protection system state for COM+ in a less ambiguous language than the corre-

sponding COM+ documentation. Using this formalization, we suggest an algorithm that specifies

the semantics of authorization decisions in COM+. This is followed by analysis of the level of sup-

port for the ANSI RBAC components and functional specification in COM+. Finally, we discuss

our findings.

4.1 Overview of COM+ Security

The following sub-section provides a brief informal overview of COM+. More information can be

found on the Microsoft MSDN Library web site [Mic08], or various COM+ books, such as [Edd99].

4.1.1 COM+

The Microsoft Component Object Model (COM), Distributed COM (DCOM), and COM+ are all

programming frameworks that provide a model for creating component based software.

The Component Object Model (COM) [Box97] provides an architecture for simple interprocess

communication. COM is an object-based programming model and a binary standard that enables

components written in different languages to interoperate. Like CORBA, EJB, and Web Services,

COM is based on the principles of information hiding and design by contract [Som06]. This enables

software components to be reused without any dependencies on the way a component interface is

implemented, as long as the implementation satisfies the component’s specification. The reuse of

these components is based on compiled, binary code. This allows COM components to be upgraded

70

4.1. Overview of COM+ Security

in already deployed systems without having to recompile the applications that use them. Various

languages such as C++, Visual Basic and others can be used to develop COM components.

DCOM [BK98] extends COM with the support for distributed interprocess communication

between COM applications; that is, the DCOM architecture enables components or processes to

communicate across a computer network. The DCOM communication protocol consists of a set of

extensions, layered on the distributed computing environment (DCE) RPC specification [TOG97],

providing object-oriented remote procedure call (ORPC).

Built on top of COM, and using the DCOM communication protocol, COM+ provides services

that handle object and connection pooling, thread synchronization, security, and other resource

management tasks. The goal of COM+, like other middleware technologies, is to facilitate applica-

tion development and deployment without requiring application developers to deal with low-level

tasks such as load balancing, distributed transactions, remote method invocation, and so forth.

The following are definitions of various COM+ terms.

Interface defines a set of public operations (a.k.a. methods) that can be invoked by client ap-

plications. The interface does not provide any implementation for those methods. In other

words, the interface defines a specific way for using the COM+ component. Each interface

is identified by a globally unique identifier (GUID).

Class is a software construct that provides a concrete implementation of one or more interfaces.

These classes are compiled into binary files called servers.

Object An executable instance of a COM class.

Component is a software unit of composition with specified interfaces [SGM02]. In COM, a

component is compiled code (usually in the form of a library) that complies with the COM

standard, and can create COM objects.

Server is a collection of one or more classes that provide services to clients. These services are

provided through the methods of the COM classes. In addition to containing the implemen-

tation logic for the classes, servers also support standard COM methods for object activation.

Client is software code that requests creation of server objects, invokes methods on those objects

in order to utilize the services offered by the server, and releases those objects.

71

4.1. Overview of COM+ Security

Application is a group of of one or more components. An application can be a server, a client,

or a collection of both. There are two types of COM+ applications: Server Applications

and Library Applications. Server Applications run in their own processes whereas Library

Applications run in the same process as their clients.

Given these definitions, we proceed to describe two aspects of a COM+ system: the declarative

part, and the runtime part.

Declarative Part Since various programming languages are used to develop COM components,

a means to describe COM classes and interfaces in a programming language independent manner

is required. The Microsoft Interface Definition Language (MIDL) [Mic05a] is used for this purpose.

Once COM+ interfaces are defined in MIDL, an MIDL compiler is used to generate the software

code required to implement each interface.

Figure 4.1 illustrates the definition of an example interface IEmployee and class CEmployee

using MIDL. The first three lines include IDL definitions for the base interface of all COM in-

terfaces, IUnknown; and two custom interfaces used in the example IProject and IExperience .

Lines 5-10 define a custom structure for the EmployeeInfo data type. The BSTR keyword defines

a string. Lines 12-15 define all attributes for the IEmployee interface. The object keyword informs

the MIDL compiler to generate C++ code to be used to implement COM objects; when this key-

word is not used, the MIDL compiler generates code suitable for DCE RPC programs. Since each

interface should be uniquely identified, a Universally Unique Identifier (UUID) [TOG97] is used

on line 4 to identify this interface.6

Lines 16-23 in the example contain the actual definition of the IEmployee interface, which

inherits from IUnknown, as required for all COM interfaces. In addition to the methods specified

on lines 17-22, the IEmployee interface also inherits the AddRef, Release, and QueryInterface

methods defined in the base interface IUnknown. The former two methods are used for maintaining

the life cycle of COM+ objects, and since a single class may implement more than one interface,

QueryInterface() method is used to obtain a reference to a specific interface implementation. For

each method parameter, in or out attributes define parameters to be set by the caller or returned to
6A UUID is equivalent to a GUID. Although the latter is more commonly used in COM+, the keyword uuid is used

in IDL files. GUIDs are either created using the guidgen.exe utility, or programmatically using the CoCreateGuid
function.

72

4.1. Overview of COM+ Security

1 import ”unknwn . i d l ”
2 import ” p r o j e c t . i d l ”
3 import ” expe r i ence . i d l ”
4
5 typedef struct EmployeeInfoStruct
6 {
7 BSTR familyName ;
8 BSTR∗ middleNames ;
9 BSTR givenName ;

10 } EmployeeInfo ;
11
12 [
13 object ,
14 uuid (72 d797d5−9f5d−4673−bf7b−ba1955ccb343) ,
15]
16 interface IEmployee : IUnknown {
17 HRESULT GetBas ic In fo ([out] EmployeeInfo∗ pInfo) ;
18 HRESULT AssignToProject ([in] I P r o j e c t p r o j e c t) ;
19 HRESULT UnassignFromProject ([in] I P r o j e c t p r o j e c t) ;
20 HRESULT AddExperience ([in] IExper i ence expe r i ence) ;
21 HRESULT GetExperience ([out] IExper i ence ∗ pExperience) ;
22 HRESULT Fire () ;
23 }
24
25 [uuid (82 f19809−e2c4−4ac3−a7f7−b22da586f906)]
26 l ibrary EmployeeLib {
27 [uuid (4 a317abe−f759−4b5b−81e1−a34a3a7a927c)]
28 coclass CEmployee
29 {
30 interface IEmployee ;
31 }
32 } ;

Figure 4.1: An example employee.idl file

73

4.1. Overview of COM+ Security

the caller, respectively. The HRESULT is a type that encapsulates a 32-bit return value indicating

either successful method execution or a specific error. Lines 27-31 define the class that will be

included in the EmployeeLib library and what interfaces the class implements, along with the class

attribute(s), such as its uuid.

Runtime Part COM+ objects have certain attributes that specify their runtime requirements

for using various COM+ services, such as synchronization, transactions, security, and so on. These

attributes are maintained in a repository referred to as the COM+ catalog. When a client applica-

tion creates an instance of a COM+ server object, the COM+ catalog is consulted for information

required to instantiate the server.

Each COM+ component has a set of attributes that defines the component’s run-time needs,

such as transactional, threading, security, and other requirements. A context is a set of runtime

constraints associated with one or more COM objects. Each object is associated with only a single

context for the duration of the object’s life cycle; and each context is associated with exactly one

apartment. If the caller and the target object are located in the same context, no constraint checks,

including those related to security, are performed; however, if they are running in different contexts,

the incoming call goes through an interceptor. The interceptor can do whatever is necessary to

satisfy the runtime constraints.

Some of the runtime constraints are related to application’s security. COM+ security controls

the invocation of object methods in order to allow only authorized users to execute those methods.

Several COM+ security features can be used to protect applications. The following section provides

an informal description of various COM+ security aspects.

4.1.2 Security Subsystem

The security model in COM+ employs roles for expressing access control policies. A COM+ role

identifies a group of users that share the same permissions to access services provided by a COM+

application. Once roles are defined for an application, the administrator assigns individual users

or user groups to roles. Permissions are granted to roles to access certain components, interfaces,

or methods in the application.

COM+ security functions are enforced outside of the application through security interceptors,

74

4.1. Overview of COM+ Security

which are lightweight object proxies. These interceptors ensure that the role attempting to access

the server component is authorized to do so. And before clients are authorized to invoke server

methods, they may have to be authenticated. COM+ provides various levels of authentication

that can be used to secure calls into an application.

Similar to other middleware technologies, a client-side layer (we refer to this layer as the Client

Security Service, or CSS) and server side layer (Target Security Service, or TSS) are responsible

for enforcing COM+ security. The following is a list of various functions provided by these layers.

Client Security Service

The CSS is responsible for providing an interface for clients to examine or modify the security

settings of a particular connection with an out-of-process COM+ object. For example, the CSS

informs the client application what authentication levels are acceptable by the server. The CSS

is also responsible for passing client credentials to TSS, when required. On the other hand,

if the client application requires the server identity to be authenticated, CSS will enforce this

requirement. When a connection is established between the client and the server, CSS protects

request messages and verifies response messages.

Target Security Service

In addition to participating in the authentication protocol negotiation with the client, the TSS

supports administration of the server security. TSS can also be given a security descriptor con-

taining a discretionary access control list (DACL) and perform process-wide coarse-grained access

checks against the DACL and security tokens of the clients on all incoming calls. TSS interceptor

enforces access policies whenever a call is to be dispatched to the application.

Implementation of Security Functions

COM+ provides applications with security features, such as authorization and authentication.

In order to secure COM+ applications, authorization and authentication features of COM+ are

required at a minimum. COM+ also offers other security features, such as auditing. Based on the

security requirements for each application, various COM+ security features can be utilized. The

75

4.1. Overview of COM+ Security

following is a brief description of the minimum requirements to secure a COM+ application; we

elaborate more on access control in Section 4.2.1.

Authentication In COM+, Security Service Providers (SSPs) offer authentication services to

both clients and servers. SSPs are implemented as DLLs, and can support a variety of authen-

tication protocols: Kerberos [MNSS87], Windows NT LAN Manager (NTLM) challenge-response

authentication protocol [Mic05b], public/private key [AL02] based authentication protocols, and

some other authentication protocols.

COM+ allows server applications to be configured to require different levels of client authen-

tication. The names of these levels and their descriptions are as follows:

• None: no client authentication is required

• Connect: authentication is required when a connection between the client and server appli-

cations is established

• Call: authentication is required on every method invocation

• Packet: authentication is required for each network packet

• Packet Integrity: authentication is required for each packet, and data integrity is also checked;

and

• Packet Privacy: authentication is required for each packet; data encryption and integrity

checking are also required

Once the client is authenticated, the COM+ roles to which the client’s principal or group are

assigned become all activated.

Administration The Microsoft Component Services administrative GUI can be used to deploy

and configure COM+ applications. The GUI allows administrators to do the following:

• create application specific roles,

• assign users and groups to roles,

76

4.2. COM+ Protection State

• assign permissions to roles,

• specify the minimum level of authentication and message protection a COM+ application

would accept,

• enable authorization checks.

The Component Services GUI is built on top of the Component Services Administration Library

(COMAdmin) [Mic06a]. This means that the functionality provided by the GUI can be also

achieved programmatically, allowing administrative tasks to be automated through, for example,

scripting.

4.2 COM+ Protection State

In this section, we informally describe access control architecture for COM+. Then, we formally

define a configuration of the COM+ protection state. The COM+ concepts presented here are

common to both COM+ versions 1.0 [Obe00] and 1.5 [Low01].

4.2.1 COM+ Access Control

Authorizations in COM+ can be specified at the granularity of the component (all class instances),

interface, or method. If a client is permitted to access a component as a whole, then that client can

invoke any of the component’s methods. If the client is permitted to access only certain interfaces

in the component, the client will be able to invoke only the methods in those interfaces. The

scope of rights on interfaces is limited to the components implementing them, which means that

different clients could have different access rights to the same interface implemented by different

components. Furthermore, the client can be permitted to invoke only certain methods in an

interface.

The built-in security of COM+ provides several features that can be used to protect COM+

applications. COM+ provides two methods of controlling access to resources: declarative and

programmatic. The declarative method can be used to control access to components, interfaces, or

even methods. Using the declarative approach, access control can be achieved without having to

write code. As various application attributes are stored in the COM+ catalog, administrative tools

77

4.2. COM+ Protection State

can be used to manipulate the COM+ catalog and configure access control for various application

components. This approach facilitates the decoupling between application logic and security logic.

On the other hand, the programmatic approach can be used to achieve finer granularity of

control. Interface methods can be implemented to check role memberships of clients using functions

such as IsCallerInRole(). In addition, the following interfaces provide extra information pertaining

to security as follows:

ISecurityCallContext provides access to information on the current method invocation.

ISecurityCallersColl provides access to information about individual callers in the collection

of callers.

ISecurityIdentityColl provides access to the collection of information pertaining to the caller’s

identity.

The TSS controls client access to COM+ server applications. Based on the server application’s

access policy, security checks are performed before a client’s call is successfully dispatched to a

server object. For example, if the COM+ server is not running, the client needs to have sufficient

permissions to launch the server application before any method can be invoked. TSS checks client

permissions to activate the server process. In addition, when a call enters the running server

process, further access checks are performed.

Access permissions are enforced using roles. The Component Services GUI allows administra-

tors to create roles for a specific application when deploying it, and to map users to those roles.

Once the roles are created, the administrator can choose which components, interfaces and methods

in the COM+ application can be accessed by the users assigned to those roles. Figure 4.2 uses the

Unified Modeling Language (UML) notation to summarize the relationships among authorization-

related elements of the COM+ access control architecture, where account and group in the figure

refer to Microsoft Windows based user account and users group, respectively.

An example of role-permission assignments in a COM+ application is shown in Table 4.1. The

first row illustrates assignments of permissions to invoke method m1 on interface i1 in component

c1 to roles r1 and r2. This indicates that only principals with roles r1 and/or r2 are allowed to

invoke method m1 on c1. The second row in the table illustrates an assignment of permission

78

4.2. COM+ Protection State

Figure 4.2: UML model of COM+ access control architecture

Roles Methods
r1, r2 c1i1m1

r3 c2i1*, c2i2*
r1, r2, r3 c3*

Table 4.1: Examples of role-permission assignment in a COM+ Application

to invoke all methods on interfaces i1 and i2 in component c2 to role r3. The last row shows an

example of allowing roles r1, r2, and r3 to invoke all methods provided by component c3.

4.2.2 Formalization of the Protection State

In this section, we formalize the protection state of a COM+ system. In this formalization, we

attempt to preserve the COM+ terminology.

Definition 7 [COM+ Protection State] A configuration of a COM+ system protection state

for a given application is a tuple (R,U,G,UGA,C, I,M,UA,GA,PA, isSecurityEnabled, user roles)

interpreted as follows:

• R is a set of the COM+ security roles as defined in the COM+ catalog for a specific appli-

cation.

• U is a set of users.

79

4.2. COM+ Protection State

• G is a set of user groups.

• UGA ⊆ U ×G is a many-to-many relation of users to groups.

• C is a set of COM+ components for a specific application.

• I is a set of COM+ interfaces provided by the COM+ components in a specific application.

• M ′ is a set of COM+ method signatures, {m1, m2, ...}

• M ⊆ C×I×M ′ is a set of COM+ methods implemented for the provided interfaces. Members

of this set are denoted cj .ik.ml, where cj ∈ C, ik ∈ I, and ml ∈ M . The set also includes

the elements cj .ik.m∗, which are all methods in interface ik provided by component cj; and

the elements cj .i∗.m∗, which are all methods in all interfaces provided by component cj.

• UA ⊆ R× U is a relation of COM+ security roles to users.

• GA ⊆ R×G is a relation of COM+ security roles to groups.

• PA ⊆ R×M is a role-to-method relation.

• isSecurityEnabled is a boolean indicating whether access control should be enforced.

• direct user roles(u : U) : U → 2R is a function mapping each user u to a set of roles that u

is directly assigned to. Formally, direct user roles(u : U) ⊆ {r|(r, u) ∈ UA}.

• group roles(g : G) : G → 2R is a function mapping each group g to a set of roles that g is

directly assigned to. Formally, group roles(g : G) ⊆ {r|(r, g) ∈ GA}.

• user groups(u : U) : U → 2G is a function mapping each user u to a set of groups that u is

a member of. Formally, user groups(u : U) ⊆ {g|(u, g) ∈ UGA}.

• indirect user roles(u : U) is a function mapping user groups to a set of roles. Formally,

indirect user roles(u : U) ⊆
⋃

g∈user groups(u){r|(r, g) ∈ GA}, where these roles are indirectly

assigned to the user because the roles are (directly) assigned to the groups to which the user

belongs.

• user roles(u : U) ≡ direct user roles(u) ∪ indirect user roles(u) is a set of all user roles.

80

4.3. Analysis of ANSI RBAC Support in COM+

Given the protection state of a COM+application, Algorithm 10 defines the outcome of an

access control decision. If isSecurityEnabled is true, it means that the application deployer or ad-

ministrator explicitly enabled component level access checks. In such case, the algorithm proceeds

to check the calling user’s role membership. If any of the roles the user is assigned to has explicit

permission to invoke the method ml in interface ik in component cj, the algorithm will authorize

the user to invoke the method in question. Furthermore, if any of the roles the user is assigned

to has implicit permission to invoke the method in question, the algorithm will also authorize the

user to invoke the method. By implicit permission we mean a permission that is inferred from

either allowing the role to invoke all methods in the specific interface ik that ml belongs to, or

allowing the role to invoke all methods in all interfaces in a specific component cj that ml is part

of. If none of these conditions (either explicit or implicit permissions) is true, the authorization

algorithm denies the user its request to invoke the method.

Authorize(p : 2R, c.i.m : M)→ {allow, deny}
if isSecurityEnabled 6= true then

return allow
else

for all r ∈ p do
if (r, c.i.m) ∈ PA ∨ (r, c.i.m∗) ∈ PA ∨ (r, c.i∗.m∗) ∈ PA then

return allow
end if

end for
return deny

end if
Algorithm 10: Authorization decision in COM+

4.3 Analysis of ANSI RBAC Support in COM+

For a system to comply with ANSI RBAC, Core RBAC must be implemented at a minimum;

the other three RBAC components (Hierarchical RBAC, Static Separation of Duty Relations,

and Dynamic Separation of Duty) as defined in Section 1.2 are optional. In Section 4.3.1 we first

examine the extent to which a COM+ protection state—as formalized in Definition 7—can support

each of the four ANSI RBAC model components. In Section 4.3.3 we illustrate our formalization

with an example. In Section 4.3.4, we then analyze the degree to which COM+ supports the

81

4.3. Analysis of ANSI RBAC Support in COM+

functional specification of ANSI RBAC.

4.3.1 Reference Model

Core RBAC

The COM+ protection state configuration provided in Section 4.2 can realize security policies

that are based on Core RBAC as follows. Core RBAC ROLES map directly to COM+ security

roles (R). Since permissions in COM+ can be assigned to users as well as individual groups, the

USERS set in RBAC readily maps to the union of U and G. RBAC permission assignments (PA)

are equivalent to those in COM+ (PA). UA in RBAC is equivalent to UA in COM+. To aid

with the understanding of the correspondence between elements in the RBAC model and EJB,

we present in Figure ?? the sets and relations of COM+ (with light grey background) and RBAC

(with white background). Shapes with white background and dashed lines show mapped RBAC

sets. The reader is encouraged to compare it to the diagram in Figure 1.1. More formally, we

define Core RBAC in the language of the COM+ protection system as follows:

Definition 8 [Core RBAC in COM+] Core RBAC in the language of COM+ is defined by

the COM+ system protection state outlined in Definition 7, as well as the following additional

elements:

• USERS = U
⋃
G is a set of users and groups, where members of USERS are MS Windows

based user accounts and groups.

• ROLES = R is a set of roles, where members of ROLES are the roles defined for a specific

COM+ application.

• OPS is a set of operations, where members of this set are operations that can be invoked on

COM+ components; for example, OPS = {mx,my,m∗, ...}.

• OBS ⊆ C × I is a set of objects, where these objects are defined to be specific interfaces

on certain components, or all interfaces on a certain component; for example, OBS =

{c1iy, c1iz, c1i∗, c2ix, c2i∗, ...}.

• UA = USERS ×ROLES, is a many-to-many assignment of users to roles.

82

4.3. Analysis of ANSI RBAC Support in COM+

(a) COM+ protection state sets

(b) Mapped and unmapped RBAC sets

Figure 4.3: COM+ (with light grey background) and RBAC (with white backround) sets and
relations.

83

4.3. Analysis of ANSI RBAC Support in COM+

• assigned users(r : ROLES) = {u ∈ USERS|(u, r) ∈ UA}, is a function that returns the

set of users in USERS that are assigned to the given role r.

• PRMS ⊆ OPS×OBS is a set of permissions to invoke COM+ interface methods for certain

components. The existence of cjikml, cjikm∗ or cji∗m∗ in PRMS provides permission to

invoke a specific method ml, all methods in interface ik or all methods in all interfaces in

component cj, respectively; for example, PRMS = {c1iymx, c1izm∗, c2ixmy, ...}

• PA ⊆ PRMS ×ROLES, a many-to-many assignment of permissions to COM+ roles.

• assigned permissions(r : ROLES) = {p ∈ PRMS|(p, r) ∈ PA}, is a function that returns

the set of permissions in PRMS that are assigned to the given role r.

• Op(p : PERMS) → {op ∈ OPS}, a function that returns a set of operations that are

associated with the given permission p. For example, Op(cjikml) = ml.

• Ob(p : PERMS)→ {ob ∈ OBS}, a function that returns a set of objects that are associated

with the given permission p. For example, Ob(cjikml) = {cjik}.

• SESSIONS is a set of sessions for a specific application. Members of this set are mappings

between authenticated users and their activated roles for a specific COM+ application. Like

many other systems, in a COM+ application environment, all roles and permissions are

activated or turned on for a user once the user is authenticated.

• session users(s : SESSIONS)→ USERS, the mapping of session s onto the corresponding

user.

• session roles(s : SESSIONS) → 2ROLES, the mapping of session s onto a set of roles.

Formally: session roles(si) ⊆ {r ∈ ROLES|(session users(si), r) ∈ UA}.

• avail session perms(s : SESSIONS) → 2PRMS, the permissions available to a user in a

session =
⋃

r∈session roles(s)

assigned permissions(r).

As shown in Definition 8, most of the elements required to support Core RBAC are already pro-

vided in the COM+ protection state (Definition 7). However, the elements related to SESSIONS

are not addressed in Definition 7. This is due to the fact that user sessions are specific to the MS

84

4.3. Analysis of ANSI RBAC Support in COM+

Windows platform and are not specific to COM+. Since all operating system processes on an

MS Windows platform must be associated with a logon session, these sessions are handled by the

operating system and are transparent to the COM+ application.

Hierarchical RBAC

General Role Hierarchies and Limited Role Hierarchies comprise the Hierarchical RBAC component

of the ANSI RBAC Reference Model. Both role hierarchies are formally defined in terms of the

sets and relations of the Core RBAC component. These components are described in Section 3.3.1.

Neither the COM+ catalog nor the administrative tool that is part of the COM+ environment

directly support creating hierarchical relationships between roles.

Constrained RBAC

Static separation of duty (SSD) and dynamic separation of duty (DSD) relations are part of the

Constrained RBAC component of ANSI RBAC [ANS04]. Similar to the Hierarchical RBAC com-

ponent, these relations are defined in terms of Core RBAC elements. Essentially, SSD constrains

user-to-role assignment (UA set and assigned users function) and the role hierarchy (RH set and

authorized users function). DSD, on the other hand, constrains the role activation (SESSIONS

set and session roles function). The COM+ catalog does not allow for specifying any constraints

on user-to-role assignments, whether static or dynamic; neither does it allow for specifying any

constraints on role activation. As such, SSD and DSD are not supported in COM+.

4.3.2 Translating RBAC Policies to COM+

In Definition 7 and Definition 8 we presented a protection state for COM+ systems, and how Core

RBAC can be modeled in the language of the COM+ protection state, respectively. In this section,

we present an algorithm that translates an arbitrary RBAC policy into an COM+ protection state.

Algorithm 11 formalizes the translation from an RBAC policy to the COM+ protection state

defined in Definition 7. For clarity, we identify the RBAC sets in the algorithm with an RBAC

subscript. The algorithm requires the following two functions defined as follows:

• component(o : OBS)→ c: returns the component corresponding to a given object o.

85

4.3. Analysis of ANSI RBAC Support in COM+

• interface(o : OBS)→ i: returns the interface corresponding to a given object o.

1: {Initialize COM+ sets and relations.}
2: R← ROLESRBAC

3: U ← USERSRBAC

4: G← ∅
5: UGA← U
6: C ← ∅
7: I ← ∅
8: M ← ∅
9: UA← ∅

10: GA← ∅
11: PA← ∅
12: isSecurityEnabled← true
13: for all p ∈ PRMSRBAC do
14: for all (opr , obj) ∈ p do
15: c← component(obj)
16: i← interface(obj)
17: C ← C ∪ {c}
18: I ← C ∪ {i}
19: M ←M ∪ {opr}
20: end for
21: end for
22: for all pa ∈ PARBAC do
23: for all ((opr , obj), r) ∈ pa do
24: UA← UA ∪ {r} × assigned users(r)
25: PA← PA ∪ {(r, opr)}
26: end for
27: end for

Algorithm 11: Operational definition of translating from an ANSI RBAC system state to
the one of COM+.

4.3.3 Example

In this section we present an example that illustrates how ANSI RBAC can be supported in a

COM+ system as discussed earlier. This example is a simple COM+ application that maintains

employee and engineering project records in an engineering company. The application allows users

to perform various operations on the project and employee records, based on the users’ roles in the

company. The application consists of a single component, EngineeringProjectService (EPS), which

supports the following COM+ interfaces: EngineeringProject, and Employee. These interfaces are

shown in Figure 4.4. In this example, we define seven different user roles. Based on these roles

86

4.3. Analysis of ANSI RBAC Support in COM+

(a) EngineeringProject
interface

(b) Employee interface

Figure 4.4: Example COM+ interfaces

and according to the policies listed in Figure 4.6, users are allowed to invoke various methods in

this application. These roles are defined as follows:

• Employee represents a company employee.

• Engineering Department represents an employee of the engineering department.

• Engineer performs various engineering tasks in the company.

• Product Engineer is responsible for managing a product line.

• Quality Engineer is a quality assurance engineer.

• Project Lead overseas and leads the development of a project.

• Director is an engineering department director.

• Administrator represents all employees who belong to upper management as well as opera-

tions.

System access control policy that defines what actions each role is allowed to perform is sum-

marized in Table 4.2, where a check mark (“
√

”) denotes a granted permission for a specific COM+

role to execute the corresponding method. Tables in Figure 4.5 show examples of users-to-roles

assignments, groups-to-roles assignments, and an example of system users, and their group mem-

berships from the underlying MS Windows operating system environment. The following is a

formalization of this example system’s protection state as in Definition 7.

87

4.3. Analysis of ANSI RBAC Support in COM+

User Role
Alice Employee
Bob Engineer

Carol Quality Engineer
Dave Product Engineer
Eve Project Lead
Fred Director
(a) User-to-role mappings

Group Role
hardware Engineering Department
software Engineering Department

accounting Administrator
management Administrator

(b) Group-to-role mappings

User Group
Alice accounting
Bob hardware

Carol software
Dave software
Eve software
Fred management

(c) User-to-group mappings

Figure 4.5: Example COM+ application user, group, and role mappings

1. Anyone in the organization can look up an employee’s name.

2. Everyone in the engineering department can get a description of and report problems regard-
ing any project and look up experience of any employee.

3. Engineers, assigned to projects, can make changes and review changes related to their
projects.

4. Quality engineers, in addition to being granted engineers’ rights, can inspect the quality of
projects they are assigned to.

5. Product engineers, in addition to possessing engineers’ rights, can create new releases.

6. The project lead, in addition to possessing the rights granted to production and quality
engineers, can also close problems.

7. The director, in addition to being granted the rights of project leads, can manage employees
(assign them to projects, un-assign them from projects, look up experience, add new records
to their experience, and fire them) and close engineering projects.

8. Everyone who is an administrator can get the description of a project, and look up the name
and experience of any employee.

Figure 4.6: Sample authorization policy for the example COM+ application describing what ac-
tions are allowed. All other actions are denied.

88

4.3. Analysis of ANSI RBAC Support in COM+

COM+ Roles COM+ Methods
EngineeringProject Employee

M
a
k
eC

h
a
n
g
es

()

R
ev

ie
w

C
h
a
n
g
es

()

In
sp

ec
tQ

u
a
li
ty

()

R
ep

o
rt

P
ro

b
le

m
()

C
lo

se
P

ro
b
le

m
()

C
re

a
te

N
ew

R
el

ea
se

()

G
et

D
es

cr
ip

ti
o
n
()

C
lo

se
()

g
et

b
a
si

c
in

fo
()

A
ss

ig
n
T

o
P

ro
je

ct
()

U
n
a
ss

ig
n
F

ro
m

P
ro

je
ct

()

A
d
d
E

x
p

er
ie

n
ce

()

G
et

E
x
p

er
ie

n
ce

()

F
ir

e(
)

Employee
√ √

Engineering Department
√ √ √ √

Engineer
√ √ √ √

Product Engineer
√ √ √

Quality Engineer
√ √ √

Project Lead
√ √ √

Director
√ √ √ √ √ √ √

Administrator
√ √ √

Table 4.2: Example COM+ role-method permissions

• R = {Employee, Engineering Department, Engineer, Product Engineer,

Quality Engineer, Project Lead, Director, Administrator}

• U = {Alice, Bob, Carol, Dave, Eve, Fred}

• G = {hardware, software, accounting, management}

• UGA = {(Alice, accounting), (Bob, hardware), (Carol, software), (Dave, software), (Eve,

software), (Fred, management)}

• C = {EPS}

• I = {EngineeringProject, Employee}

• M = {EPS.EngineeringProject.MakeChanges, EPS.EngineeringProject.ReviewChanges,

EPS.EngineeringProject.InspectQuality, EPS.EngineeringProject.ReportProblem,

EPS.EngineeringProjcet.CloseProblem, EPS.EngineeringProject.CreateNewRelease,

EPS.EngineeringProject.GetDescription, EPS.EngineeringProject.Close,

EPS.Employee.GetBasicInfo, EPS.Employee.AssignToProject,

EPS.Employee.UnassignFromProject, EPS.Employee.AddExperience,

EPS.Employee.GetExperience, EPS.Employee.Fire }

89

4.3. Analysis of ANSI RBAC Support in COM+

• UA = {(Employee, Alice), (Engineer, Rob), (Quality Engineer, Carol), (Product Engineer,

Dave), (Project Lead, Eve), (Director, Fred)}

• GA = {(Engineering Department, hardware), (Engineering Department, hardware), (Ad-

ministrator, accounting), (Administrator, management)}

• PA= { (Employee, EPS.Employee.GetBasicInfo), (Employee, EPS.Employee.GetExperience),

(Engineering Department, EPS.EngineeringProject.ReportProblem), (Engineering Depart-

ment, EPS.Employee.GetBasicInfo), (Engineering Department, EPS.Employee.GetExperience)

(Engineer, EPS.EngineeringProject.MakeChanges), (Engineer,

EPS.EngineeringProject.ReviewChanges), (Engineer, EPS.Employee.GetBasicInfo), (Engi-

neer, EPS.Employee.GetExperience), (Product Engineer, EPS.EngineeringProject.CreateNewRelease),

(Product Engineer, EPS.Employee.GetBasicInfo), (Product Engineer, EPS.Employee.GetExperience),

(Quality Engineer, EPS.EngineeringProject.InspectQuality), (Quality Engineer,

EPS.Employee.GetBasicInfo), (Quality Engineer, EPS.Employee.GetExperience), (Project

Lead, EPS.EngineeringProject.CloseProblem), (Project Lead, EPS.Employee.GetBasicInfo),

(Project Lead, EPS.Employee.GetExperience), (Director, EPS.EngineeringProject.Close),

(Director, EPS.Employee.*), (Administrator, EPS.EngineeringProject.GetDescription), (Ad-

ministrator, EPS.Employee.GetBasicInfo), (Administrator, EPS.Employee.GetExperience)}

• isSecurityEnabled = true

In this example, the user roles(u : U) function, as formalized in Definition 7, returns the roles

assigned to a specific user whether this assignment is direct as specified in UA, or by inference using

the information from the user’s group assignment as specified in UGA and the user’s group’s role as-

signment as specified in GA. For example, user roles(Fred) = {Director,Administrator}, where

the (Director, Fred) ∈ UA, and (Fred,management) ∈ UGA and (Administrator,management) ∈

GA. In accordance with Definition 8, we also identify the following sets in order to support Core

RBAC.

• USERS = { Alice, Bob, Carol, Dave, Eve, Fred, hardware, software, accounting, manage-

ment }

90

4.3. Analysis of ANSI RBAC Support in COM+

• OPS = {MakeChanges, ReviewChanges, InspectQuality, ReportProblem, CloseProblem,

CreateNewRelease, GetDescription, Close, GetBasicInfo, AssignToProject, UnassignFromPro-

ject, AddExperience, GetExperience, Employee.Fire }

• PRMS = M

4.3.4 Functional Specification

In this section, we examine the COM+ middleware ability to support ANSI RBAC administrative

operations for the creation and maintenance of RBAC element sets and relations, administrative

review functions for performing administrative queries, and system functions for creating and

managing RBAC attributes on user sessions and making access control decisions.

The COM+ Component Services Administration Library (COMAdmin) [Mic06a] provides a

variety of classes and interfaces for managing COM+ applications, as well as for manipulating

various attributes stored in the COM+ catalog.

The COMAdminCatalog class is one of the classes used to access COM+ configuration data

stored in the COM+ catalog. The class implements two interfaces: ICOMAdminCatalog and

ICOMAdminCatalog2; the latter is available only in COM+ version 1.5. The COMAdminCatalog

provides the GetCollection method which can be used to retrieve COMAdminCatalogCollection

objects that represent COM+ applications, COM+ components, and so on. Furthermore, each

COM+ COMAdminCatalogCollection can be further queried for “sub-collections,” more informa-

tion, or manipulated as required.

Figure 4.7, illustrates the relationships amongst various collections. The arrows indicate

the ability to navigate from one collection to another using the GetCollection method of the

COMAdminCatalogCollection object .

In addition to the GetCollection method, the COMAdminCatalogCollection class also provides

Add and Remove methods, which can be used to add or remove objects from a certain collection.

For example, to add a new COM+ role to a certain application, an algorithm similar to the one

outlined in Figure 4.8 can be used. The example omits common steps using custom methods such

as GetCatalogObject, FindApplication, and CreateRoleObject.

In addition to COMAdmin, the Microsoft Windows operating system provides Network Man-

91

4.3. Analysis of ANSI RBAC Support in COM+

Figure 4.7: COM+ Administration Collections

agement APIs [Mic06b] that provide the ability to manage user accounts and network resources.

In the rest of this section we explore how the COMAdmin library APIs and the Network

Management APIs can be used to implement administrative functional specifications for an ANSI

RBAC system.

Administrative Commands for Core RBAC

AddUser, DeleteUser create a new user and delete an existing user from the system. These

commands can be implemented using the NetUserAdd, and the NetUserDel methods of the

Win32 Network Management APIs. The NetUserAdd method adds a new user account

to a system given the system’s Domain Name Service (DNS) [Moc87] name, or its Net-

BIOS [Gro87] name. On the other hand, the NetUserDel method deletes a user account

from the system.

Considering Definition 7, the NetUserAdd and NetDelUser methods can be used to manip-

ulate U by adding or deleting elements. In addition to these methods, the Win32 Network

Management APIs NetGroupAdd, NetGroupAddUser, NetGroupDel, and NetGroupDelUser

can be used to manipulate G, and UGA.

AddRole, DeleteRole methods are defined in ANSI RBAC to allow roles to be created and

deleted from the RBAC system. These methods can be implemented by manipulating the

92

4.3. Analysis of ANSI RBAC Support in COM+

AddRole (in ro l e , in a p p l i c a t i o n)
{

COMAdminCatalog comAdminObj ;
COMAdminCatalogCollection appsColl , r o l e s C o l l ;
COMAdminCatalogObject roleObj , appObj ;

/∗ g e t the com admin o b j ∗/
comAdminObj = GetCatalogObject () ;

/∗ g e t a r e f e r e n c e to the a p p l i c a t i o n s c o l l e c t i o n ∗/
appsCol l = comAdminObj . GetCollection (‘ ‘ App l i ca t i on s ’ ’) ;

/∗ f i n d the s p e c i f i c a p p l i c a t i o n in the c o l l e c t i o n ∗/
app = FindAppl icat ion (appsColl , a p p l i c a t i o n) ;

/∗ g e t the r o l e s c o l l e c t i o n f o r t h a t a p p l i c a t i o n ∗/
r o l e s C o l l = app . GetCollection (‘ ‘ Roles ’ ’) ;

/∗ c r e a t e a r o l e o b j e c t and add i t to
∗ the Roles c o l l e c t i o n f o r t h a t a p p l i c a t i o n ∗/

ro leObj = CreateRoleObject (r o l e) ;
r o l e s C o l l .Add(ro leObj) ;

}

Figure 4.8: Psudo-code for adding a COM+ role to an application

93

4.3. Analysis of ANSI RBAC Support in COM+

COM+ catalog using the Add and Remove methods on the Roles COM+ collection. As

shown in Figure 4.7, this collection objects can be accessed by first getting a reference to the

Applications collection, then obtaining a reference to the Roles collection.

AssignUser, DeassignUser allow user-to-role assignments to be created and deleted. These

commands can be implemented by manipulating the UsersInRole COM+ collection. A ref-

erence to this collection can be obtained through the Roles collection, which can be obtained

from the Applications collection, which in turn can be obtained from the COM+ catalog.

Once the reference to this collection is obtained, the Add or Remove method can be used to

assign a user to a role, or to remove a user to role assignment.

GrantPermission, RevokePermission are used to grant or revoke the permission to invoke an

operation on an object to a role. These methods can be implemented by manipulating the

RolesForComponent, RolesForInterface, and RolesForMethod COM+ collections. Figure 4.7

shows how to navigate from the Applications collection to one of these role related collections.

Using the Add and Remove methods provided by each one of these collections, a role object

can be added to or removed from the collection. By adding a role to the RolesForComponent

collection, for example, the role is granted permission to invoke all of the COM+ component’s

methods. On the other hand, adding a role to the RolesForMethod collection allows the role

to invoke only a specific method (assuming the role is not added to the RolesForComponent

or RolesForInterface collections).

CreateSession, DeleteSession, AddActiveRole, DropActiveRole are used to create and

delete a session for a user, and activate or deactivate a role for a user in a given session,

respectively. Sessions are handled by the Windows operating system, and are created upon

user authentication. Role activation and deactivation are also handled by the Windows

operating system, and are transparent to the user application. However, once the session is

established, and throughout the session, roles cannot be deactivated and other roles cannot

be activated for that session.

CheckAccess indicates whether a user is allowed or is not allowed to perform a given operation on

a given object. Algorithm 10 defined in Section 4.2.2 can be used to implement CheckAccess.

94

4.3. Analysis of ANSI RBAC Support in COM+

However, since user sessions are handled transparently by the Windows operating system,

the Authorize function in Algorithm 10 doesn’t take a user session as an input parameter.

AssignedUsers, AssignedRoles return the set of users assigned to a specific role, and the set

of roles assigned to a specific user, respectively. These functions can be implemented by

querying various COM+ collections for their items. Besides the Add and Remove methods

provided by the COM+ collections, the Count and Item methods are also provided, allowing

administrative applications to query the collection for its items. AssignedUsers can be imple-

mented directly by querying the UsersInRole collection; AssignedRoles can be implemented

by searching for all roles assigned to a given user also using the UsersInRole collection.

Advanced Review Functions for Core RBAC

RolePermissions, UserPermissions return the set of permissions granted to a given role and

user, respectively. RolePermissions can be implemented by identifying which roles are as-

signed to which component, interface, or method. This is done by querying the RolesForComponent,

RolesForInterface, and RolesForMethod collections. UserPermissions, on the other hand, can

be implemented by identifying which users are assigned to which roles using the UsersInRole

collection; then RolePermissions can be used for each one of the user’s roles to identify all

permissions assigned to the user by knowing which roles the user is assigned.

SessionRoles, SessionPermissions return the active roles and permissions associated with a

session. Since sessions are handled by the Windows operating system, and once a user is

authenticated, a session is created for them, the AssignedRoles and UserPermissions meth-

ods discussed previously can be used to implement SessionRoles and SessionPermissions,

respectively.

RoleOperationsOnObject, UserOperationsOnObject return the operations that a given

role or user can perform on an object. These functions can be implemented by query-

ing the RolesForComponent, RolesForInterface and RolesForMethod collections to identify

which methods the given role is allowed to invoke. Similarly, the UserOperationsOnObject

can be implemented by first identifying which roles are assigned to the given user using the

95

4.4. Discussion

UsersInRole collection, then identifying which methods each one of the user’s roles is allowed

to invoke.

Table 4.3 provides a summary of the above discussion. Support for ANSI Core RBAC functions

are classified in two categories as follows: the first category identifies the functions that can be

supported using APIs built into the COM+ operating environment; the second category contains

the functions that are not supported. Even if the operating environment provides APIs that are

capable of implementing sessions and role activation related functionality, such implementation

would be proprietary and completely outside the scope of the COM+ standard. As such, the

ANSI Core RBAC functions in the last column of the table are flagged as unsupported.

4.4 Discussion

Results of our investigation suggest that COM+ falls short of fully supporting all functions required

by the ANSI RBAC standard. As summarized in Table 4.3, COM+ supports 60% of ANSI Core

RBAC functions. Fundamentally, all functions that relate to session management or role activation

are not supported. This is mainly due to the fact that COM+ is tightly integrated with the

underlying operating system. Based on the COM+ application access control policy, the operating

system user accounts and groups are assigned to appropriate roles. If authentication is enabled for

the COM+ application, the authentication of these users is performed in a transparent manner

to the COM+ clients or servers. The ANSI RBAC functions that are not supported in COM+

are mainly a function of the underlying operating system. The following is a discussion of the

consequences of the lack of this support.

As explained in Section 4.1.2, the authentication of users is the responsibility of the Security

Service Provider (SSP). From a practical aspect, we believe that the concept of a session as

discussed in the ANSI RBAC standard is really the login session with some extra attributes.

These attributes would describe the roles of the authenticated users. In order to achieve this,

we suggest a ”role-aware” SSP that would implement the CreateSession and DeleteSession ANSI

RBAC functions. These functions would now be part of the authentication system, and not the

access control system. We suggest that the concept of session creation, maintenance, and deletion

be part of a role-aware authentication system, and not the access control system.

96

4.4. Discussion

Core RBAC Functions Built-in
API

Support

S
u
p
p

o
rt

ed
b
y

C
O

M
A

d
m

in
L

ib
ra

ry
A

P
Is

S
u
p
p

o
rt

ed
b
y

W
in

3
2

N
et

w
o
rk

M
a
n
a
g
em

en
t

A
P

Is

U
n
su

p
p

o
rt

ed

Administrative Commands

AddUser
√

DeleteUser
√

AssignUser
√

DeassignUser
√

AddRole
√

DeleteRole
√

GrantPermission
√

RevokePermission
√

Supporting System Functions

CreateSession
√

DeleteSession
√

AddActiveRole
√

DropActiveRole
√

CheckAccess
√

Review Functions

AssignedUsers
√

AssignedRoles
√

Advanced Review Functions

RolePermissions
√

SessionPermissions
√

UserPermissions
√

SessionRoles
√

RoleOperationsOnObject
√

UserOperationsOnObject
√

Table 4.3: Functions defined by ANSI Core RBAC and their support in COM+

Beside the session creation and deletion functions, COM+ does not support the AddActiveRole

or DropActiveRole ANSI RBAC functions, either. The activation of roles, just like authentication,

is handled transparently to the application. Upon authentication, all user roles are activated and

97

4.4. Discussion

can be accessed programmatically using the IsCallerInRole method of the ISecurityCallContext

COM+ interface. Ferraiolo et al argue that the fact that all roles are activated in a system

potentially violates the principle of least privilege [FKS07]. However, how practical is it to achieve

this principle in real systems? Activation of roles can be achieved in three ways: user-driven

activation, system-driven activation, or perhaps a hybrid of both. In the first option, which is

user-driven activation, the user is responsible for choosing which roles to activate in order to

access various system functions. We believe this approach is impractical and has usability issues

especially if the user is assigned multiple roles, and also requires the user to know the access control

policy for the system. In the second option, a system-driven role activation scenario comes with

its own challenges. This automation of role activation requires an algorithm that addresses many

issues, such as when to activate a role, which role to activate if the same permissions are assigned

to multiple roles, when should roles be deactivated during a session, how does the algorithm

guarantee the prevention of information leak, and many other non-trivial issues. Some research

that tackles system-driven role activation exists [AC06]; however, a formal approach to evaluate

such algorithms is required. And finally, the third option of having a hybrid system also poses

non-trivial issues of when the system should be responsible for activating roles, and when control

is passed to the user.

Given the fact that all roles for a user are activated upon authentication and throughout their

session, one can argue that some level of support for the SessionPermissions and SessionRoles

functions is available, since the already supported AssignedRoles and UserPermissions functions

return equivalent sets. However, since the session concept is not supported in COM+, support for

the semantics of those functions is not available.

In addition to the lack of support for the aforementioned functions, role hierarchy is not ad-

dressed in COM+, and the Microsoft Component Services GUI described in Section 4.1.2 does not

support role hierarchy. Nonetheless, role hierarchy is still possible though programmatic extensibil-

ity using the flexibility of the COMAdmin [Mic06a] library. A custom administrative application

can be created to replace the Component Services GUI and provide support for role hierarchy.

This application is required to maintain role hierarchy relations and manipulate various COM+

collections, such as the UsersInRole collection (see Figure 4.7). For example, when a role hierarchy

is introduced, the custom administrative application is required to manipulate the RolesForCom-

98

4.5. Conclusion

ponent, RolesForInterface, and the RolesForMethod COM+ collections to ensure that appropriate

roles are added to these collections to reflect the fact that roles would inherit permissions based

on the role hierarchy.

Static separation of duty constraints are not supported by in a COM+; however, the custom

administrative application that we discussed earlier would allow for this support. The application

would implement functions such as AssignUser, for example, in a manner that would ensure that

static separation of duty constraints are met before a user is assigned to a certain role. On the

other hand, dynamic separation of duty constraints may not be implementable since role activation

and sessions are handled by the operating system.

In summary, the role-based access control provided by COM+ falls short of supporting all of

the functions mandated by the ANSI RBAC standard. The limitations that prevent full support

of ANSI RBAC in COM+ are mainly related to the underlying operating system. A suggestion to

improve the practicality of the ANSI RBAC standard would be to move the concept of the session

to a “role-aware” authentication system.

4.5 Conclusion

In this chapter, we analyzed support for ANSI RBAC in COM+. Using set theory, we defined a

configuration of the COM+ protection system in precise and unambiguous terms using set theory.

Based on this definition, we formalized the semantics of authorization decisions in COM+. We

analyzed support for various ANSI RBAC components in COM+, and illustrated our discussion

with an example. Our result indicate that 40% of the ANSI RBAC functions are not supported

due to the tight integration of the COM+ architecture with the underlying operating system, and

the lack of the support for these functions in the operating system.

99

Chapter 5

Conclusions

In this chapter, we discuss the significance and contributions of the thesis, as well as a discussion

of the results. We then state potential applications of our research, followed by a discussion on

the limitations of our approach. We finally suggest directions for future research.

5.1 Contributions

This thesis provides analysis of support for the ANSI RBAC components and functional specifica-

tion [ANS04] in three different commercial middleware technologies: CORBA [OMG02], EJB [DK06],

and COM+ [Obe00]. The access control architecture of all these technologies is defined in different

forms and formats. For example, CORBA is specified in the form of open application programming

interfaces (APIs), whereas EJB is defined through APIs as well as the syntax and semantics of the

accompanying eXtensible Markup Language (XML) files used for configuring an EJB container.

COM+, on the other hand, is defined through an implementation of APIs as well as graphical

user interfaces (GUI) for configuring the behavior of a COM+ server on Windows NT, 2000, 2003,

XP, and Vista operating systems. Despite this disparity in the definitions for the security sub-

system for the middleware technologies under study, we provide a unified approach for assessing

implementations and support for ANSI RBAC for each middleware. Using this approach, we an-

alyze the access control mechanisms of each middleware technology, and define a configuration

of that middleware’s protection system in a more precise and less ambiguous language than the

corresponding middleware specification. Using these configurations, we suggest algorithms that

formally specify the semantics of authorization decisions in each middleware technology.

The results of our analysis indicate that all three middleware technologies fall short of support-

ing even Core RBAC. Custom extensions are necessary in order for implementations compliant

with CORBA Security to support ANSI RBAC required or optional components. EJB extensions

100

5.2. Discussion

dependent on the operational environment are required in order to support ANSI RBAC required

components. Other vendor-specific extensions are necessary in order to support ANSI RBAC op-

tional components. Fundamental limitations exist, however, due to impracticality of some aspects

in the ANSI RBAC standard itself. COM+ also falls short of supporting even Core RBAC. The

main limitations exist due to the tight integration of the COM+ architecture with the underlying

operating system. Other limitations exist due to impracticality of some aspects in the ANSI RBAC

standard itself.

5.2 Discussion

Role-based access control (RBAC) has been studied for more than two decades. The ANSI RBAC

standard, however, is relatively recent. There has also been growing interest in enterprise adoption

of RBAC due to improved security, more efficient administration, and easier enforcement of busi-

ness policies [Kam06]. In this thesis, we analyzed support for ANSI RBAC in different middleware

technologies.

We started our analysis studying the access control architecture of CORBA. CORBA Security

provides a very flexible framework for various different access control security policies, not just

RBAC based policies. Secion 2.10, and Table 2.3 summarize our findings. Despite the flexibil-

ity of the CORBA Security architecture, it fell short of supporting even the functional model of

Core ANSI RBAC. This lack of support was attributed in our analysis to the absence of support

for user accounts and their management in CORBASec, and to the inability to enumerate Do-

mainAccessPolicy objects and user sessions. These factors merely indicated a mismatch between

CORBASec and ANSI RBAC, and were not conclusive in terms of whether the ANSI RBAC

standard was sufficiently general.

Next we analyzed the access control architecture of a middleware that employs roles to make

authorization decisions, namely EJB. The authorization architecture of EJB was analyzed as it is

less general than that of CORBASec and only allows role-based access control. Section 3.5, and

Table 3.5 summarize our findings. With EJB, the reasons for the lack of support for even Core

ANSI RBAC were due to the lack of support in EJB specification for user accounts7 and their
7Although various EJB server and component vendors provide support for mapping user accounts to security

roles, the EJB specification does not address how support for user accounts should be accomplished.

101

5.2. Discussion

management, user sessions, and role activation. The common factors between CORBASec and

EJB that prevented support for ANSI RBAC, were related to user accounts, their management

and the lack of support for sessions.

Based on these observations, we studied the access control architecture for a middleware that

does provide support for user accounts and their management, namely COM+. Even though

COM+ came the closest to supporting ANSI RBAC functions, it still failed to fully support Core

ANSI RBAC, as indicated in Section 4.5 and Table 4.3. This failure was due to the lack of support

for ANSI RBAC sessions and role activation.

To better understand this lack of full support for ANSI RBAC in all middleware technologies,

it helps to categorize the functions of ANSI RBAC into static and dynamic functions. We can

define the functions that do not change ANSI RBAC sets frequently during runtime of the system

as static. Examples of static functions are AddRole and AddUser. On the other hand, the dynamic

functions change ANSI RBAC sets frequently during runtime of the system. The dynamic functions

are all those related to sessions and role activation, which are the unsupported functions in COM+,

as indicated in Table 4.3; the static functions are the supported ones. It’s apparent that the lack

of support is always related to the dynamic functions.

When addressing role engineering in enterprise environments, [Kam06] indicated that the

challenge with the NIST/ANSI RBAC standard is that it is theoretical in nature and provides little

guidance about how to design and implement a roles-based approach in organizations. Our analysis

also suggest that the dynamic functions of ANSI RBAC are theoretical in nature and do not take

into account the dynamic aspects of real systems. We suggest that the sessions and role activation

aspects of the ANSI RBAC standard should be mandated as part of a role-aware authentication

system, with a defined interface to the authorization system.

The suggested role-aware authentication system component must have proper support for role

activation and deactivation in order to adhere to the principle of least privilege [SS75]. On one

extreme, an implementation of this component would allow one role to be active at a time. In this

type of implementation [Fad99], once a role is activated, further requests to activate additional roles

are done in a noncumulative fashion. That is, the activation of a new role, would automatically

deactivate the previously activated role. This type of implementation does not provide proper role

activation as in the absence of role hierarchy, for example, the user may need permissions assigned

102

5.3. Applications

to more than one role in order to invoke a certain operation. On another extreme, all roles of a user

would be activated upon establishing a login session [AS01]. However, the proper implementation

of role activation, should allow users to have one or more roles activated in a cumulative fashion.

The suggested role-aware authentication system may activate roles with, or without user in-

tervention. Furthermore, the roles may be activated either upon login session establishment, or

upon method invocation. In the former approach, a set of roles that are assigned to the user, or

a default set of roles [FBK99] can be activated with or without user intervention. In the latter

approach, roles are activated as necessary.

In summary, for practical purposes, we suggest that the dynamic functions of ANSI RBAC be

mandated in a separate role-aware authentication system component, with a defined interface that

can be used with the RBAC authorization system.

5.3 Applications

Our thesis findings and contributions provide more profound understanding of the ability of var-

ious commercial middleware technology to support the ANSI RBAC standard. It describes the

limitations in both the middelware access control architecture under study, as well as the ANSI

RBAC standard itself. The following are direct applications of our research.

• First, our research serves as a basis for implementing and assessing various implementations

of middelware technologies from different vendors—where applicable—for support of ANSI

RBAC.

• Second, the approach developed in our research can be used as a general tool to assess other

technologies for their support for ANSI RBAC

• Third, our research serves as set of recommendations for improving the ANSI RBAC stan-

dard.

5.4 Limitations

Our formal approach using set theory [Ros06] provides a more precise and less ambiguous method

to specify access control elements of various commercial middleware technologies. To help in the

103

5.5. Future Work

analysis of ANSI RBAC support in different middleware access control architectures, the thesis

also provides algorithms for translating an ANSI RBAC policy to the formalized protection system

state of the middleware under study.

The specifications for each one of the middleware technologies under study is mostly written

in natural language. A limitation of our formalization approach exists due to the fact that our

translation from middleware specifications to models based on set theory is based on our under-

standing of the middleware specifications. This limitation can be overcome, however, by verifying

our understanding of the access control specifications of the middleware technology against other

researchers or domain experts.

Another limitation exists due to the fact that our formal model using set theory can only model

the static aspects of the access control architecture under study. Dynamic aspects and interaction

between various components of the access control architecture require a different modeling frame-

work. However, this limitation does not affect the correctness and completeness of modeling the

protection system state for the access control architecture under study.

5.5 Future Work

Our research provides ideas for possible directions for analysis-based and design-based research.

Our work can be extended to further study support for ANSI RBAC in environments employing

Web Services [HFBK03], or using an Enterprise Service Bus [Cha04] architecture. The ability

of middleware technologies to support other access control models, such as UCONABC [PS04],

remains to be studied, as well. Furthermore, instead of using a pure theoretical approach to defining

access control, such as the approach used in ANSI RBAC, studying the use of a more practical

and software design-centric approach using UML [OMG07a] modeling, for example, or Design

Patterns [GHJV95] can be pursued. Finally, the usability of various methods and approaches to

role activation can also be investigated, including the recycling of role activation decisions, based

on authorization recycling concepts [WCBR08].

104

Bibliography

[3GP07] 3GPP. TS 29.198-01, Open Service Access (OSA); Application Programming In-

terface (API); Part 1: Overview, v7.0.0 edition, March 2007.

[AC06] R. Adaikkalavan and S. Chakravarthy. Discovery-based role activations in role-

based access control. Performance, Computing, and Communications Conference,

2006. IPCCC 2006. 25th IEEE International, pages 8 pp.–462, April 2006.

[Ahn00] Gail-Joon Ahn. Role-based access control in DCOM. Journal of Systems Architec-

ture, 46(13):1175–1184, 2000.

[AL02] Carlisle Adams and Steve Lloyd. Understanding PKI: Concepts, Standards, and

Deployment Considerations. Addison Wesley Professional, second edition, Novem-

ber 2002.

[ANS04] ANSI. ANSI INCITS 359-2004 for role based access control, 2004.

[AS01] Gail-Joon Ahn and Ravi Sandhu. Decentralized user group assignment in Windows

NT. The Journal of Systems and Software, 56(1):39–49, 2001.

[Bar97] Larry S. Bartz. hyperDRIVE: leveraging LDAP to implement RBAC on the web.

In Proceedings of the Workshop on Role-based Access Control, pages 69–74, New

York, NY, 1997. ACM Press.

[BD99] Konstantin Beznosov and Yi Deng. A framework for implementing role-based access

control using CORBA security service. In Fourth ACM Workshop on Role-Based

Access Control, pages 19–30, Fairfax, Virginia, USA, 1999.

[BD07] Konstantin Beznosov and Wesam Darwish. Support for ANSI RBAC in

CORBA. Technical Report LERSSE-TR-2007-01, accessible from http://lersse-

105

Bibliography

dl.ece.ubc.ca/search.py?recid=129, Laboratory for Education and Research in Se-

cure Systems Engineering, University of British Columbia, July 27 2007.

[BK98] Nat Brown and Charlie Kindel. Distributed component object model protocol

(DCOM/1.0). Technical Report draft-brown-dcom-v1-spec-03.txt, Microsoft Cor-

poration, January 1998.

[BL75] D. E. Bell and L. J. LaPadula. Secure computer systems: Unified exposition and

multics interpretation. Technical Report ESD-TR-75-306, MITRE, March 1975.

[BLL03] Ruth Baylis, Paul Lane, and Diana Lorentz. Oracle database administrator’s guide,

December 2003. 10g Release 1 (10.1).

[Box97] Don Box. Essential COM. Addison-Wesley Longman Publishing Co., Inc., Boston,

MA, USA, 1997. Foreword By-Grady Booch and Foreword By-Charlie Kindel.

[BR02] David Basin and Frank Rittinger. A formal analysis of the CORBA security service.

In ZB 2002: Formal Specification and Development in Z and B, LNCS 2272, pages

330–349. Springer, 2002.

[BS03] D.A. Buell and R. Sandhu. Identity management. IEEE Internet Computing,

7(6):26–28, Nov.-Dec. 2003.

[Bur06] Mike Burrows. The Chubby lock service for loosely-coupled distributed systems.

In Proceedings of the Seventh Symposium on Operating System Design and Imple-

mentation, pages 335–350, Seattle, WA, USA, November 6-8 2006.

[CDG+06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wallach,

Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber. Bigtable: A

distributed storage system for structured data. In The 7th USENIX Symposium on

Operating Systems Design and Implementation (OSDI06), pages 205–218, Seattle,

WA, USA, November 6-8 2006.

[Cha03] Thomas M. Chalfant. Role based access control and secure shell - a closer look

at two SolarisTMoperating environment security features. Technical report, Sun

BluePrintsTMOnLine, June 2003.

106

Bibliography

[Cha04] David A. Chappell. Enterprise Service Bus. O’Reilly Media, Inc., illustrated edition,

June 2004.

[CO02] David W. Chadwick and Alexander Otenko. The PERMIS X.509 role based privi-

lege management infrastructure. In SACMAT ’02: Proceedings of the Seventh ACM

Symposium on Access Control Models and Technologies, pages 135–140, New York,

NY, USA, 2002. ACM Press.

[DK06] Linda DeMichiel and Michael Keith. JSR-220: Enterprise JavaBeans specification,

version 3.0: EJB core contracts and requirements. Specification v.3.0 Final Release,

Java Community Program, May 2006.

[DYK01] Linda G. DeMichiel, L. Ümit Yalçinalp, and Sanjeev Krishnan. Enterprise Jav-

aBeans Specification, Version 2.0. Sun Microsystems, 2001.

[Edd99] Guy Eddon. Inside COM+ Base Services. Microsoft Programming Series. Microsoft

Press, 1999.

[Fad99] Glenn Faden. RBAC in UNIX administration. In RBAC ’99: Proceedings of the

fourth ACM workshop on Role-based access control, pages 95–101, New York, NY,

USA, 1999. ACM Press.

[FBK99] David F. Ferraiolo, John F. Barkley, and D. Richard Kuhn. A role-based access

control model and reference implementation within a corporate intranet. ACM

Transactions on Information and System Security (TISSEC), 2(1):34–64, February

1999.

[FK92] D. Ferraiolo and R. Kuhn. Role-based access controls. In Proceedings of the 15th

NIST-NCSC National Computer Security Conference, pages 554–563, Baltimore,

MD, USA, 1992. National Institute of Standards and Technology/National Com-

puter Security Center.

[FKS07] D. Ferraiolo, R. Kuhn, and R. Sandhu. RBAC standard rationale: Comments on

“A critique of the ANSI standard on role-based access control”. Security & Privacy,

IEEE, 5(6):51–53, Nov.-Dec. 2007.

107

Bibliography

[FSG+01] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ra-

maswamy Chandramouli. Proposed NIST standard for role-based access control.

ACM Transactions on Information and System Security, 4(3):224–274, 2001.

[GHJV95] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Pat-

terns: Elements of Reusable Object-Oriented Design. Addison-Wesley Professional

Computing Series. Addison-Wesley, Reading, 1995.

[Giu99] Luigi Giuri. Role-based access control on the Web using Java. In Proceedings of

the Fourth ACM Workshop on Role-based Access Control, pages 11–18, New York,

NY, USA, 1999. ACM Press.

[Got05] G. Goth. Identity management, access specs are rolling along. IEEE Internet

Computing, 9(1):9–11, Jan.-Feb. 2005.

[Gro87] NetBIOS Working Group. Protocol standard for a NetBIOS service on a TCP/UDP

transport: Concepts and methods, 1987.

[Gut01] Kurt Gutzmann. Access control and session management in the HTTP environ-

ment. IEEE Internet Computing, 5(1):26–35, 2001.

[Hen06] Michi Henning. The rise and fall of CORBA. ACM Queue, 4(5):28–34, June 2006.

[HFBK03] Bret Hartman, Donald J. Flinn, Konstantin Beznosov, and Shirley Kawamoto.

Mastering Web Services Security. John Wiley & Sons, Inc., New York, 1st edition,

2003.

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condi-

tion for concurrent objects. ACM Transactions on Programming Languages and

Systems, 12(3):463–492, 1990.

[IBM05] IBM. IBM informix dynamic server administrator’s guide, December 2005. Informix

Dynamic Server 10.0; Document ID: G251-2267-02.

[JBFT05] Bart Jacob, Michael Brown, Kentaro Fukui, and Nihar Trivedi. Introduction to

Grid Computing. IBM Press, 2005.

108

Bibliography

[Kam06] Kevin Kampman. The business of roles. Technical report, Burton Group, February

2006.

[Kar00] Gunter Karjoth. Authorization in CORBA security. Journal of Computer Security,

8(2/3):89–108, 2000.

[Lam71] Butler W. Lampson. Protection. In 5th Princeton Conference on Information

Sciences and Systems, page 437, New York, NY, USA, 1971. ACM Press.

[LBB06] Ninghui Li, Ji-Won Byun, and Elisa Bertino. A critique of the ansi standard on

role based access control. CERIAS and Department of Computer Science, March 3

2006.

[Low01] Juval Lowy. Windows xp: Make your components more robust with COM+ 1.5

innovations, August 2001.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping. ACM

Transactions on Programming Languages and Systems, 16(6):1811–1841, November

1994.

[Mic98] Microsoft. DCOM architecture, 1998.

[Mic05a] Microsoft. Microsoft interface definition language, 2005.

[Mic05b] Microsoft. Microsoft NTLM, 2005.

[Mic06a] Microsoft. Automating COM+ administration, 2006.

[Mic06b] Microsoft. Network management, 2006.

[Mic08] Microsoft. COM+ Administration Collections, 2008.

[MNSS87] S. P. Miller, B. C. Neuman, J. I. Schiller, and J. H. Saltzer. Kerberos authentication

and authorization system. Technical report, Massachusetts Institute of Technology,

1987.

[Moc87] P. Mockapetris. Domain names - concepts and facilities, 1987.

109

Bibliography

[MyS07] MySQL AB. MySQL. http://www.mysql.com, 2007.

[NT94] B. Clifford Neuman and Theodore Ts’o. Kerberos: an authentication service for

computer networks. IEEE Communications Magazine, 32(9):33–38, 1994.

[Obe00] Robert J. Oberg. Understanding & programming COM+: a practical guide to

Windows 2000 DNA. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000.

[OF02] Rafael R. Obelheiro and Joni S. Fraga. Role-based access control for CORBA

distributed object systems. In Proceedings of the The IEEE International Work-

shop on Object-Oriented Real-Time Dependable Systems (WORDS 2002), page 53,

Washington, DC, USA, 2002. IEEE.

[OMG99] OMG. The common object request broker: Architecture and specification. Speci-

fication formal/99-10-08, Object Management Group, 1999.

[OMG02] OMG. Common object services specification, security service specification v1.8,

2002.

[OMG04] OMG. Common object request broker architecture: Core specification v3.0.3, 2004.

[OMG06] OMG. CORBA Reflection v.1.0. OMG document# formal/06-05-03, May 2006.

[OMG07a] OMG. Unified Modeling Language: Infrastructure, v2.1.1. OMG document#

formal/07-02-06, February 2007.

[OMG07b] OMG. Unified Modeling Language: Superstructure, v2.1.1. OMG document#

formal/07-02-05, February 2007.

[OSM00] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based ac-

cess control to enforce mandatory and discretionary access control policies. ACM

Transactions on Information and System Security (TISSEC), 3(2):85–106, 2000.

[PM03] Andreas Pashalidis and Chris J. Mitchell. A taxonomy of single sign-on systems.

In Information Security and Privacy, 8th Australasian Conference, ACISP 2003,

Wollongong, Australia, volume 2727 of Lecture Notes in Computer Science, pages

249–264. Springer, July 9-11 2003.

110

Bibliography

[PP95] Tom Parker and Denis Pinkas. Sesame v4 - overview. Technical report, SESAME,

December 1995.

[PS04] Jaehong Park and Ravi Sandhu. The UCONabc usage control model. ACM Trans-

actions on Information and System Security, 7(1):128–174, 2004.

[PSA01] Joon S. Park, Ravi Sandhu, and Gail-Joon Ahn. Role-based access control on the

web. ACM Transactions on Information and System Security (TISSEC), 4(1):37–

71, February 2001.

[Ros06] Kenneth H. Rosen. Discrete Mathematics and its Applications. McGraw-Hill, 6th

edition, July 2006.

[RS98] C. Ramaswamy and R. Sandhu. Role-based access control features in commercial

database management systems. In Proc. 21st NIST-NCSC National Information

Systems Security Conference, pages 503–511, Arlington, VA, USA, 1998. National

Institute of Standards and Technology/National Computer Security Center.

[RSB05] Ed Roman, Rima Patel Sriganesh, and Gerald Brose. Mastering Enterprise Jav-

aBeans. Wiley Publishing, 10475 Crosspoint Boulevard, Indianapolis, IN 46256,

USA, third edition, 2005.

[SA98] Ravi Sandhu and Gail-Joon Ahn. Decentralized group hierarchies in UNIX: An

experiment and lessons learned. In Proc. 21st NIST-NCSC National Information

Systems Security Conference, pages 486–502, Arlington, Virginia, USA, 1998. Na-

tional Institute of Standards and Technology/National Computer Security Center.

[SCFY96] Ravi Sandhu, Edward Coyne, Hal Feinstein, and Charles Youman. Role-based

access control models. IEEE Computer, 29(2):38–47, 1996.

[SCH+04] Carla Sadtler, Lee Clifford, Jeff Heyward, Arihiro Iwamoto, Noelle Jakusz, Lars Bek

Laursen, WonYoung Lee, Isabelle Mauny, Shafkat Rabbi, and Ascension Sanchez.

IBM WebSphere Application Server V5.1 System Management and Configuration

WebSphere Handbook Series. IBM International Technical Support Organizat, Oc-

tober 2004.

111

Bibliography

[SFK00] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for role-based access

control: Towards a unified standard. In Workshop on Role-Based Access Control,

Berlin, 2000. ACM.

[SGM02] Clemens Szyperski, Dominik Gruntz, and Stephan Murer. Component Software:

Beyond Object-Oriented Programming. Addison-Wesley Professional, 2002.

[Sie00] Jon Siegel. CORBA 3 Fundamentals and Programming. John Wiley & Sons, 2000.

[Som06] Ian Sommerville. Software Engineering. Addison Wesley, 8th edition, June 2006.

[SS75] J.H. Saltzer and M.D. Schroeder. The protection of information in computer sys-

tems. Proceedings of the IEEE, 63(6):1278–1308, 1975.

[SS96] Richard Mark Soley and Christopher M. Stone. Object Management Architecture

Guide. John Wiley & Sons, 492 Old Connecticut Path, Framingham, MA 01701

USA, 3 edition, 1996.

[Sun00] Sun Microsystems Inc. RBAC in the SolarisTM operating environment.

http://www.sun.com/software/whitepapers/wp-rbac/wp-rbac.pdf, 2000. White

Paper.

[Sun01] Sun. Java authentication and authorization service (JAAS).

http://java.sun.com/products/jaas/, 2001.

[Sun07] Sun. Remote method invocation, 2007.

[Syb05] Sybase Inc. System administration guide: Volume 1 – Adaptive Server Enterprise

15.0, October 2005. Document ID: DC31654-01-1500-02.

[TM06] Samantha Tran and Manoj Mohan. Security information management challenges

and solutions. http://www.ibm.com/developerworks/db2/library/techarticle/dm-

0607tran/index.html, 2006.

[TOG97] TOG. DCE 1.1: Remote Procedure Call. The Open Group, catalog number c706

edition, August 1997.

112

Bibliography

[TS01] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles

and Paradigms. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[WCBR08] Qiang Wei, Jason Crampton, Konstantin Beznosov, and Matei Ripeanu. Authoriza-

tion recycling in RBAC systems. In Proceedings of the thirteenth ACM Symposium

on Access Control Models and Technologies (SACMAT), pages 63–72, Estes Park,

Colorado, USA, June 11–13 2008. ACM.

[WdSFW+02] C. M. Westphall, Joni da Silva Fraga, M. S. Wangham, R. R. Obelheiro, and

Lau Cheuk Lung. PoliCap—proposal, development and evaluation of a policy ser-

vice and capabilities for CORBA Security. In SEC ’02: Proceedings of the IFIP

TC11 17th International Conference on Information Security, pages 263–274, De-

venter, The Netherlands, The Netherlands, 2002. Kluwer, B.V.

[WF99] C. Westphall and J. Fraga. A large-scale system authorization scheme proposal

integrating Java, CORBA and web security models and a discretionary prototype.

In Latin American Network Operations and Management Symposium, pages 14–25,

Rio de Janeiro, Brazil, December 1999. IEEE Press.

[WHK97] M. Wahl, T. Howes, and S. Kille. RFC 2251: Lightweight directory access protocol

(v3), 1997.

[YD96] Zhonghua Yang and Keith Duddy. CORBA: a platform for distributed object

computing. SIGOPS Oper. Syst. Rev., 30(2):4–31, 1996.

[ZHS+04] BY Zhao, L. Huang, J. Stribling, SC Rhea, AD Joseph, and JD Kubiatowicz.

Tapestry: A resilient global-scale overlay for service deployment. IEEE Journal on

selected areas in communications, 22(1):41–53, 2004.

[ZM04] Wei Zhou and Christoph Meinel. Implement role based access control with at-

tribute certificates. In The 6th International Conference on Advanced Communica-

tion Technology (ICACT2004), volume 1, pages 536–541, Korea, Feb 2004. National

Computerization Agency, Electronics and Telecommunications Research Institute,

Korea.

113

	Abstract
	Contents
	List of Tables
	List of Figures
	Acknowledgements
	Dedication
	Statement of Co-Authorship
	Introduction
	Motivation
	Overview of ANSI RBAC
	Reference Model
	Functional Specification

	Literature Review
	Contributions
	Structure

	Analysis of ANSI RBAC Support in CORBA
	Overview of CORBA Security
	CORBA
	Security Subsystem

	CORBA Protection State
	CORBA Access Control Architecture
	Formalization of the Protection State
	Analysis of ANSI RBAC support in CORBA
	Reference Model
	Core RBAC
	Hierarchical RBAC
	Constrained RBAC

	Translating RBAC Policies to CORBA
	Functional Specification
	Discussion
	Conclusion

	Analysis of ANSI RBAC Support in EJB
	Overview of EJB Security
	EJB
	EJB Security Subsystem

	EJB Protection State
	EJB Access Controls
	Formalization of the Protection State

	Analysis of Support for ANSI RBAC
	Reference Model
	Translating RBAC Policies to EJB
	Example
	Functional Specification

	Discussion
	Conclusion

	Analysis of ANSI RBAC Support in COM+
	Overview of COM+ Security
	COM+
	Security Subsystem

	COM+ Protection State
	COM+ Access Control
	Formalization of the Protection State

	Analysis of ANSI RBAC Support in COM+
	Reference Model
	Translating RBAC Policies to COM+
	Example
	Functional Specification

	Discussion
	Conclusion

	Conclusions
	Contributions
	Discussion
	Applications
	Limitations
	Future Work

	Bibliography

