
JavaPolis 2004

Access Control Architectures:
COM+ vs. EJB

Dr. Konstantin Beznosov
Assistant Professor
University of British Columbia

Overall Presentation Goal

Learn about the capabilities of
COM+ and EJB

access control mechanisms

Speaker’s Qualifications

Konstantin
• Worked for end-user, consulting, and

developer organizations
• Co-authored CORBA Security specification

proposals
– Resource Access Decision
– Security Domain Membership Management (SDMM)
– CORBA Security

• Co-authored

Conclusions

• Access control capabilities in both COM+
and EJB suck!

• One of them, however, is extensible

outline

• Introduction
– distributed security basics
– distributed access control
– evaluation criteria

• COM+
• EJB
• Conclusions

distributed security basics

Middleware Security Stack

Application

RPC Abstraction

Proxy

ORB

Security

Service

Security

Mechanism

Implementation

OS

Network

Application

ORB

Security

Service

OS

Network

Adapter

Skeleton

Actual messages

Client Server

Application

Server

Security

Mechanism

Implementation

Middleware Security

security context
abstraction

requirements due to distribution

• centralized administration
• localized run-time decisions

object paradigm & security (1/2)

• objects
– small amounts of data ==> large numbers

o R: Scale on large numbers of objects and
methods

– diverse methods ==> complex semantics
o R: Security administrators should not have

to understand semantics of methods
• collections

– R: Similar names or locations should NOT
impose membership in same collection(s).

– R: For an object to be assigned to the same
collection, name similarity and/or co-location
should not be required.

object paradigm & security (2/2)

• many layers of indirection and late
binding

• names
– multi-name, nameless and transient objects

– R: Transient objects should be assigned to
security policies without human intervention.

– less rigid naming hierarchies

– R: No assumptions that administrators know a
name of each object in the system.

distributed access control

Access Control at Run-time

Target

Enforcement

Function

Decision

Function
Decision

Request

Decision

Middleware

Middleware Security

Subsystem

Access

Request

Access

Request

Application

authorization decisions

• which policies?
– which collections

• policy composition
• policy evaluation

– information push vs. pull

evaluation criteria 1/2

• GRANULARITY -- granularity of protected resources
– application, interface, method, arbitrary resource.

• EXPRESSIVENESS -- support for different access
control models

• RICHNESS -- the variety of information available for
making authorization decisions, including application-
specific information

• CONSISTENCY -- support for consistency of
policies across multiple applications

evaluation criteria 2/2

• MANAGEABILITY -- support for insertion
and deletion of applications, changes in
policies, user population and the computing
environment

• SCALABILITY -- performance and
administration scalability

• OBJECT PARADIGM REQUIREMENTS --
satisfying the requirements due to the object
paradigm

• EXTENSIBILITY -- support for unforeseen
policies

COM+

Administering Access Control

COM+ Access Control Architecture

0..*

0..*

1..*implements

defines

1..*

0..*

is granted access to

is granted access to

contains

0..*

0..*

0..*

0..*

is granted access to

0..*

0..*

0..*

0..*

hosts

component

Interface

method

role

account

group
COM+ Application

Windows Machine

scaling with collections

groups permission

collections via roles
components,

interfaces

T
a
rg

e
ts

Methods

Subjects

C
lie

n
ts

evaluating COM+ 1/2

• Granularity
+ component method
– but not component instance method

• Expressiveness -- supporting different policies
+ RBAC0

+ RBAC1 through W2K domain nested groups

• Richness -- information for making decisions
– subject group attributes, component type and method

• Consistency -- across multiple applications
– requires application redeployment, or manual changes in each

application instance

evaluating COM+ 2/2

• Manageability -- changes to policies, users, appl-s
+ user population -- Windows domain groups could help
– application population

+ replication -- easy to use packaging
o new -- labor intensive and error prone

– changes in policies -- labor intensive and error prone
– computing environment -- easy to use packaging

• Scalability -- performance and admin. scalability
+ subject groups, several levels of permission granularity, permission

collections
– permissions (collections) local to the application
• bound by the underlying OS scalability

• Object paradigm requirements
+ roles isolate administrators from method semantics
– machine co-located instances of the same component are governed

by one policy

• Extensibility -- support for unforeseen policies
– only through “programmatic security” inside of application

further reading on COM+

• B. Hartman, D. J. Flinn, K. Beznosov, and S.
Kawamoto, chapter 7, Mastering Web Services
Security, 1st ed. New York: John Wiley & Sons, Inc.,
2003.

• K. Brown, Programming Windows Security, First ed.
Upper Saddle River, NJ: Addison-Wesley, 2000.

• M. Howard, M. Levy, and R. Waymire, Designing
Secure Web-based Applications for Microsoft
Windows 2000. Redmond, Washington USA:
Microsoft Press, 2000.

• MSDN Knowledge Base. http://msdn.microsoft.com

EJB

Defining Roles in EJB
<assembly-descriptor>
 <security-role>
 <description>
 blah-blah-blah …
 </description>
 <role-name>member</role-name>
 </security-role>

 <security-role>
 <description>
 blah-blah-blah …
 </description>
 <role-name>customer</role-name>
 </security-role>
 <security-role>
 <description>
 blah-blah-blah … </description>
 <role-name>staff</role-name>
 </security-role>
 ...
</assembly-descriptor>

Assigning Users to Roles in EJB

<security-role-mapping>
 <role-name>member</role-name>
 <principal-name>jgarcia</principal-name>
 <principal-name>mwebster</principal-name>
 <group-name>team-leads</group-name>
 </security-role-mapping>

 <security-role-mapping>
 <role-name>customer</role-name>
 <principal-name>dsmith</principal-name>
 </security-role-mapping>

Assigning Methods to Roles in EJB

<method-permission>
 <role-name>staff</role-name>
 <method>
 <ejb-name>Product</ejb-name>
 <method-name>*</method-name>
 </method>
</method-permission>

<method-permission>
 <role-name>customer</role-name>
 <role-name>member</role-name>
 <method>
 <ejb-name>Product</ejb-name>
 <method-name>getPrice</method-name>
 </method>
</method-permission>

0..*
defines

0..*

0..*

0..1

0..*hosts

0..*0..* permission on

0..*

1..*

grants

0..*

0..* permission on

0..*

Container

Application

entity

security-role

Method

method-permission

roles and permissions in EJB

scaling with collections

attributes
permission collections

via method

permissions

applications, beans

T
a
rg

e
ts

Operations

Subjects

C
lie

n
ts

Custom Authorization in EJB

• Java Authorization Contract for Containers
(JACC) (formerly known as JSR 115)
– Part of J2EE v1.4
– defines an interface for pluggable authorization providers

Fine-grain authorization in EJB

0..*0..1

0..*

hosts

0..*

0..*

0..1
role-link

0..*

0..*

1
role-name

0..*

security-role

Application

Container

entity

security-role-ref

<<implicit>>
internal role

isCallerInRole(role)

evaluating EJB 1/2

• Granularity
+ bean method in application
– not at bean instance
+ arbitrary resource with security-role-ref

• Expressiveness -- supporting different policies
+ RBAC0
• RBAC1-3 -- product specific

• Richness -- information for making decisions
– any user attributes are reduced to roles -- product specific

• Consistency -- across multiple applications
• product specific
– requires application redeployment, or manual changes in each

application instance

evaluating EJB 2/2

• Manageability -- changes to policies, users, appl-s
• user population -- product specific
– application population

+ replication -- easy to use packaging
o new -- labor intensive and error prone

– changes in policies -- labor intensive and error prone
+ computing environment -- easy to use packaging

• Scalability -- performance and admin. scalability
• subject groups -- product specific
+ three levels of permission granularity, permission collections
– local to the application permissions (collections)

• Object paradigm requirements
+ roles isolate administrators from method semantics
– container co-located instances of the same bean are governed by one

policy

• Extensibility -- support for unforeseen policies
– mostly through “programmatic security” inside of application
+ allows mapping from “external” to “internal” roles
+ JSR 115 “Java Authorization Contract for Containers” JACC

further reading on EJB

• Sun, Enterprise JavaBeans Specification, Version
2.0, Sun Microsystems Inc., October 23 2000.

• E. Roman, S. Ambler, and T. Jewell, Mastering
Enterprise JavaBeans, Second ed: Wiley Computer
Publishing, 2002.

• B. Hartman, D. J. Flinn, and K. Beznosov, Enterprise
Security With EJB and CORBA. New York: John
Wiley & Sons, Inc., 2001.

• B. Hartman, D. J. Flinn, K. Beznosov, and S.
Kawamoto, chapter 7, Mastering Web Services
Security, 1st ed. New York: John Wiley & Sons, Inc.,
2003.

• Sun Microsystems, JSR 115: Java Authorization
Service Provider Contract for Containers, 2002,
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_
115_authorization.html.

Conclusions

• Access control capabilities in both COM+
and EJB suck!

• EJB is extensible through JACC

