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Overall Presentation Goal

Learn about the capabilities of
COM+ and EJB

access control mechanisms
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Konstantin
• Worked for end-user, consulting, and

developer organizations
• Co-authored CORBA Security specification

proposals
– Resource Access Decision
– Security Domain Membership Management (SDMM)
– CORBA Security

• Co-authored



Conclusions

• Access control capabilities in both COM+
and EJB suck!

• One of them, however, is extensible
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distributed security basics
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requirements due to distribution

• centralized administration
• localized run-time decisions



object paradigm & security (1/2)

• objects
– small amounts of data ==> large numbers

o R: Scale on large numbers of objects and
methods

– diverse methods ==> complex semantics
o R: Security administrators should not have

to understand semantics of methods
• collections

– R: Similar names or locations should NOT
impose membership in same collection(s).

– R: For an object to be assigned to the same
collection, name similarity and/or co-location
should not be required.



object paradigm & security (2/2)

• many layers of indirection and late
binding

• names
– multi-name, nameless and transient objects

– R: Transient objects should be assigned to
security policies without human intervention.

– less rigid naming hierarchies

– R: No assumptions that administrators know a
name of each object in the system.



distributed access control
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authorization decisions

• which policies?
– which collections

• policy composition
• policy evaluation

– information push vs. pull



evaluation criteria 1/2

• GRANULARITY -- granularity of protected resources
– application, interface, method, arbitrary resource.

• EXPRESSIVENESS -- support for different access
control models

• RICHNESS -- the variety of information available for
making authorization decisions, including application-
specific information

• CONSISTENCY -- support for consistency of
policies across multiple applications



evaluation criteria 2/2

• MANAGEABILITY -- support for insertion
and deletion of applications, changes in
policies, user population and the computing
environment

• SCALABILITY -- performance and
administration scalability

• OBJECT PARADIGM REQUIREMENTS --
satisfying the requirements due to the object
paradigm

• EXTENSIBILITY -- support for unforeseen
policies



COM+



Administering Access Control



COM+ Access Control Architecture
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evaluating COM+ 1/2

• Granularity
+ component method
– but not component instance method

• Expressiveness -- supporting different policies
+ RBAC0

+ RBAC1 through W2K domain nested groups

• Richness -- information for making decisions
– subject group attributes, component type and method

• Consistency -- across multiple applications
– requires application redeployment, or manual changes in each

application instance



evaluating COM+ 2/2

• Manageability -- changes to policies, users, appl-s
+ user population -- Windows domain groups could help
– application population

+ replication -- easy to use packaging
o new -- labor intensive and error prone

– changes in policies -- labor intensive and error prone
– computing environment -- easy to use packaging

• Scalability -- performance and admin. scalability
+ subject groups, several levels of permission granularity, permission

collections
– permissions (collections) local to the application
• bound by the underlying OS scalability

• Object paradigm requirements
+ roles isolate administrators from method semantics
– machine co-located instances of the same component are governed

by one policy

• Extensibility -- support for unforeseen policies
– only through “programmatic security” inside of application



further reading on COM+

• B. Hartman, D. J. Flinn, K. Beznosov, and S.
Kawamoto, chapter 7, Mastering Web Services
Security, 1st ed. New York: John Wiley & Sons, Inc.,
2003.

• K. Brown, Programming Windows Security, First ed.
Upper Saddle River, NJ: Addison-Wesley, 2000.

• M. Howard, M. Levy, and R. Waymire, Designing
Secure Web-based Applications for Microsoft
Windows 2000. Redmond, Washington USA:
Microsoft Press, 2000.

• MSDN Knowledge Base. http://msdn.microsoft.com



EJB



Defining Roles in EJB
<assembly-descriptor>
     <security-role>
          <description>
              blah-blah-blah …
          </description>
          <role-name>member</role-name>
     </security-role>

     <security-role>
          <description>
                blah-blah-blah …
          </description>
          <role-name>customer</role-name>
     </security-role>
     <security-role>
          <description>
               blah-blah-blah …          </description>
          <role-name>staff</role-name>
     </security-role>
          ...
</assembly-descriptor>



Assigning Users to Roles in EJB

<security-role-mapping>
    <role-name>member</role-name>
    <principal-name>jgarcia</principal-name>
    <principal-name>mwebster</principal-name>
    <group-name>team-leads</group-name>
  </security-role-mapping>

  <security-role-mapping>
    <role-name>customer</role-name>
    <principal-name>dsmith</principal-name>
  </security-role-mapping>



Assigning Methods to Roles in EJB

<method-permission>
     <role-name>staff</role-name>
     <method>
          <ejb-name>Product</ejb-name>
          <method-name>*</method-name>
     </method>
</method-permission>

<method-permission>
     <role-name>customer</role-name>
     <role-name>member</role-name>
     <method>
          <ejb-name>Product</ejb-name>
          <method-name>getPrice</method-name>
     </method>
</method-permission>
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Custom Authorization in EJB

• Java Authorization Contract for Containers
(JACC) (formerly known as JSR 115)
– Part of J2EE v1.4
– defines an interface for pluggable authorization providers



Fine-grain authorization in EJB

0..*0..1

0..*

hosts

0..*

0..*

0..1
role-link

0..*

0..*

1
role-name

0..*

security-role

Application

Container

entity

security-role-ref

<<implicit>>
internal role

isCallerInRole(role)



evaluating EJB 1/2

• Granularity
+ bean method in application
– not at bean instance
+ arbitrary resource with security-role-ref

• Expressiveness -- supporting different policies
+ RBAC0
• RBAC1-3 -- product specific

• Richness -- information for making decisions
– any user attributes are reduced to roles -- product specific

• Consistency -- across multiple applications
• product specific
– requires application redeployment, or manual changes in each

application instance



evaluating EJB 2/2

• Manageability -- changes to policies, users, appl-s
• user population -- product specific
– application population

+ replication -- easy to use packaging
o new -- labor intensive and error prone

– changes in policies -- labor intensive and error prone
+ computing environment -- easy to use packaging

• Scalability -- performance and admin. scalability
• subject groups -- product specific
+ three levels of permission granularity, permission collections
– local to the application permissions (collections)

• Object paradigm requirements
+ roles isolate administrators from method semantics
– container co-located instances of the same bean are governed by one

policy

• Extensibility -- support for unforeseen policies
– mostly through “programmatic security” inside of application
+ allows mapping from “external” to “internal” roles
+ JSR 115 “Java Authorization Contract for Containers” JACC



further reading on EJB

• Sun, Enterprise JavaBeans Specification, Version
2.0, Sun Microsystems Inc., October 23 2000.

• E. Roman, S. Ambler, and T. Jewell, Mastering
Enterprise JavaBeans, Second ed: Wiley Computer
Publishing, 2002.

• B. Hartman, D. J. Flinn, and K. Beznosov, Enterprise
Security With EJB and CORBA. New York: John
Wiley & Sons, Inc., 2001.

• B. Hartman, D. J. Flinn, K. Beznosov, and S.
Kawamoto, chapter 7, Mastering Web Services
Security, 1st ed. New York: John Wiley & Sons, Inc.,
2003.

• Sun Microsystems, JSR 115: Java Authorization
Service Provider Contract for Containers, 2002,
http://java.sun.com/aboutJava/communityprocess/jsr/jsr_
115_authorization.html.



Conclusions

• Access control capabilities in both COM+
and EJB suck!

• EJB is extensible through JACC


