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Abstract

Traditional authorization mechanisms based on the
request-response model are generally supported by point-
to-point communication between applications and autho-
rization servers. As distributed applications increase in
size and complexity, an authorization architecture based
on point-to-point communication becomes fragile and dif-
ficult to manage. This paper presents the use of the
publish-subscribe (pub-sub) model for delivering autho-
rization requests and responses between the applications
and the authorization servers. Our analysis suggests that
using the pub-sub architecture improves authorization sys-
tem availability and reduces system administration over-
head. We evaluate our design using a prototype implemen-
tation, which confirms the improvement in availability. Al-
though the response time is also increased, this impact can
be reduced by bypassing the pub-sub channel when return-
ing authorizations or by caching coupled with local infer-
ence of authorization decisions based on previously cached
authorizations.

1 Introduction

Modern access control solutions are based on the
request-response model [15, 11, 18, 21, 19, 10], as illus-
trated in Figure 1. In this model, a policy enforcement point
(PEP) intercepts application requests, obtains access con-
trol decisions (a.k.a. authorizations) from a policy deci-
sion point (PDP), and enforces those decisions. The sep-
aration into PEP and PDP in the request-response model
enables using PDPs in the form of authorization servers,
thereby reusing the authorization logic and enforcing con-
sistent policies across multiple PEPs.

The request-response model, however, commonly leads
to a point-to-point communication architecture, where PEPs
obtain decisions from PDPs through synchronous remote
procedure calls (RPC). This point-to-point architecture, in
turn, results in tight coupling between PEPs and PDPs. At
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Figure 1. The request-response model.

the same time, large-scale commodity computing is becom-
ing a reality, with eBay having over 12,000 servers and
15,000 application server instances [23], and Google esti-
mated to have “more than 450,000 servers spread in at least
25 locations around the world” [17]. When a distributed
system evolves to this scale, a tightly-coupled point-to-point
architecture suffers from two drawbacks: fragility and high
management overhead.

Fragility occurs in a large-scale, point-to-point architec-
ture when authorization service is unavailable. In that case,
all applications depending on that authorization server may
not work properly, if at all. The authorization server may be
unavailable due to a failure (transient, intermittent, or per-
manent) of the network, of the software located in the crit-
ical path (e.g., OS), of the hardware, or even due to a mis-
configuration of the supporting infrastructure. A conven-
tional approach to improving the availability of a distributed
infrastructure is failure masking through redundancy (ei-
ther information, time, or hardware). However, redundancy
and other general purpose fault-tolerance techniques for dis-
tributed systems scale poorly and become technically and
economically infeasible when the number of entities in the
system reaches thousands [14, 25].

Additionally, management of large-scale authorization
systems with a point-to-point architecture becomes increas-
ingly costly. Due to the coupling between PEPs and PDPs,
even relatively simple changes made on a PDP might be
difficult to implement. Implementation may involve several



different application development teams sitting down to co-
ordinate and make sure that the necessary changes do not
break anything else. For instance, a failed PDP needs to be
brought back up and possibly relocated. Each PEP depend-
ing on that PDP needs to update its information to reflect
the PDP’s relocation.

This paper presents an authorization system that uses
a publish-subscribe (pub-sub) architecture to replace the
existing point-to-point architecture. Our goals are to re-
duce system administration overhead, thus improving sys-
tem manageability, and to increase the system availabil-
ity, thus improving overall system robustness. Unlike in
a point-to-point architecture, where PEPs are configured to
send their requests to specific PDPs, a pub-sub architecture
enables PEPs to send their requests without knowing which
PDP will receive them. Similarly, the PDPs show interest in
requests without knowing which PEPs generate them. By
using the pub-sub architecture, the coupling between PEPs
and PDPs is removed; as a result, system availability is im-
proved and system administration is simplified.

This paper makes the following contributions. First, we
present the design of an authorization system based on the
pub-sub architecture and examine the requirements for the
supporting event notification service (ENS). Second, we de-
velop a prototype using an open-source ENS and evaluate it
experimentally. Our evaluation suggests that the pub-sub
architecture improves the availability of the authorization
infrastructure. Although the response time is increased, this
overhead can be reduced by returning authorizations by-
passing the ENS, or by caching coupled with local infer-
ence of authorization decisions based on cached authoriza-
tions [8].

The rest of this paper is organized as follows. Section 2
presents background information on access control archi-
tectures and the pub-sub model. Section 3 describes our
system design and analysis. Section 4 evaluates our proto-
type implementation. Section 5 discusses related work. We
conclude in Section 6.

2 Background

This section provides background on the request-
response authorization model and on the pub-sub model.

2.1 The Request-Response Model

In the request-response model, PEP intercepts applica-
tion requests from subjects and enforces decisions from the
PDP. Subjects are the processes that make application re-
quests on behalf of users. A PEP can be a security inter-
ceptor (as in CORBA Security, ASP.NET, and most Web
servers), or can be a part of the component container (as in

COM+ and EJB). A PEP can also be a part of the corre-
sponding application resource, e.g., implemented via static
or dynamic “weaving” using aspect oriented software devel-
opment techniques [16]. The PDP is usually implemented
in the form of authorization servers. It can be designed
specifically for the application or use third party compo-
nents. The PDP stores policy information which is usually
specified by the security administrator.

We distinguish between an application request, which is
generated by the subject and is dependent on the application
logic, and an authorization request, which is generated by
the PEP and is independent from the application logic. This
decoupling, for instance, is performed by the context han-
dler in the XACML-compliant PEP [28]. The context han-
dler generates an XACML request context, which is sent to
the PDP for processing. We define the authorization request
as a tuple (s, o, a), where s is the subject, o is the object, a
is the access right and the authorization response as a tuple
(r, d), where r is the request and d is the decision.

2.2 The Publish-Subscribe Model

A pub-sub model is a common communication model
in large-scale enterprise applications, enabling loosely cou-
pled interaction between entities whose location and behav-
iors may vary throughout the lifetime of the system [12].
Generally, entities that send messages “publish” them as
events, while entities that wish to receive certain events
“subscribe” to those events. Often, an entity may become
both a publisher and subscriber, sending and receiving mes-
sages within the system.

Pub-sub systems usually provide one of two types
of subscription schemes: topic-based subscription and
content-based subscription. In a topic-based scheme, a
message belongs to one of a fixed set of topics. A subscrip-
tion targets a topic, and the subscriber receives all events
that are associated with that topic. A content-based scheme
is not constrained to the notion that each message must be-
long to a particular topic. Instead, the message delivery de-
cisions are based on a query or predicate issued by a sub-
scriber. The advantage of a content-based scheme is its flex-
ibility: it provides the subscriber with the ability to specify
just the information he/she needs without having to learn a
set of topic names and their content before subscribing.

3 System Design and Analysis

This section presents the design and analysis of an au-
thorization system based on a pub-sub architecture. This
replaces the point-to-point communication used between
PEPs and PDPs in existing authorization systems.
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Figure 2. Publish-subscribe architecture for delivering authorization requests and responses.

3.1 System Architecture and Data Flow

The architecture of the pub-sub authorization system is
illustrated in Figure 2(a). The system consists of multiple
PEPs, PDPs and a logically centralized event notification
service (ENS). The ENS mediates the communications be-
tween PEPs and PDPs, thereby fully decoupling PEPs and
PDPs. The ENS is responsible for: (1) receiving events
from publishers, (2) receiving subscriptions from event sub-
scribers, and (3) matching each event to subscriptions and
routing the event, in the form of notifications, to the inter-
ested subscribers.

PEPs and PDPs can be both subscribers and publishers.
A PEP subscribes to the responses published by the PDP.
This can be achieved simply by passing the request as the
parameter of the subscribe() operation of the ENS for each
incoming request. A PDP subscription shows the ability of
the PDP to resolve certain requests. A PDP can precisely
subscribe to all the request tuples (s, o, a) it can resolve,
or subscribe to those requests that contain the objects for
which it is responsible, in order to reduce the number of
subscriptions it creates.

Figure 2(b) shows a typical data flow. Each PDP first
subscribes to all the requests it can resolve when it boots
(step 1). After a PEP intercepts an application request, it
generates an authorization request (step 2). It first sub-
scribes to the response to the request (step 3) and then im-
mediately publishes the request (step 4). If some PDP can
resolve the request, the ENS will find a match and notify
that PDP of the request (step 5). After the PDP computes
a response (step 6), it immediately publishes the response
(step 7). The ENS then notifies the PEP of the response
(step 8) and the PEP finally enforces the authorization deci-
sion (step 9). Although multiple PDPs may resolve the same
request and publish the response, it is not necessary for the

PEP to wait for all of them. Therefore, once the PEP re-
ceives a response to a request, it immediately unsubscribes
to the response for that request (step 10).

Note that we assume that policies are consistent across
PDPs, so that each PEP can enforce the decision made by
any PDP in the system. When they are not consistent (due
to policy changes), our solution does not make the system
worse than the point-to-point system. To handle the incon-
sistency issue, one possible solution is for each response to
include a time-stamp which represents the time that the PDP
receives a policy change. When the PEP receives inconsis-
tent responses, it always uses the one with the most recent
time-stamp.

3.2 Benefits

Using the pub-sub model to build authorization systems
is expected to provide the following benefits:

• Increased availability. In the point-to-point architec-
ture, a PEP is generally configured to send a request
to only one PDP. In existing enterprise systems, how-
ever, the same data often resides in multiple locations,
on multiple machines, and within a variety of appli-
cations. Consequently, multiple PDPs may have to
be setup to resolve access requests for the same data.
Our solution exploits this situation: using the pub-sub
architecture enables a request to reach all PDPs that
are able to resolve it. Even though some of the PDPs
may fail, the chances that at least one will provide a
response on time are higher. In other words, our de-
sign allows the collection of PDPs to appear as a single
large reliable PDP matrix.

• Reduced administration overhead. We expect that
decoupling PEPs and PDPs will reduce the human



costs of operating and administering authorization in-
frastructures. Consider the previous example of a
failed PDP. After it is brought back and possibly re-
located, only the ENS might need to be reconfigured
rather than the case of all the PEPs depending on the
failed PDP as in a system based on point-to-point com-
munication.

• Improved software development process. Using an
event-driven, standards-based pub-sub channel to pro-
vide a comprehensive communication framework be-
tween PEPs and PDPs will improve the software de-
velopment cycle. The integration of PEPs and PDPs is
faster and less expensive using a pub-sub channel than
using a point-to-point architecture.

3.3 Requirements for the ENS

The ENS is the core component of our architecture. For
the pub-sub system to provide the aforementioned benefits,
the ENS should meet the following requirements:

• Robustness. The ENS itself should be robust to
achieve the benefits of improving the overall system
availability. Otherwise, it becomes the single point of
failure. Therefore, the ENS should only be logically
centralized, but have a robust implementation.

Exiting pub-sub systems usually provide robust ENS
implementations, where the ENS is implemented not
only by a single server but also by a set of federated
servers to reduce the single point of failure problem.
For instance, in Siena [7] and Elvin [22], two wide-
area content-based pub-sub networks, the underlying
pub-sub infrastructure can be implemented as a collec-
tion of network servers communicating with each other
in a peer-to-peer fashion. The failure of a server will
not impact the system performance significantly.

• Performance. In the pub-sub architecture, the inser-
tion of an additional software component (the ENS)
between PEPs and PDPs, imposes run-time overhead,
which may in turn degrade application performance.
In particular, the ENS needs to spend additional time to
find the potential subscribers for each message and to
route the message to them. Therefore, the ENS should
be efficient in finding a match even with a large num-
ber of subscriptions. Otherwise, it may become the
performance bottleneck. When the time used by the
ENS is far lower than the network latency or the com-
putational cost at the PDP, its impact on the overall
performance is negligible. Additionally, Section 3.4
presents two performance-oriented optimizations that
reduce ENS overhead and improve performance.

• Security. Using a pub-sub architecture introduces new
threats to the system. We focus on two attacks. First,
performance attacks: a malicious participant can at-
tempt to lower the system performance. For exam-
ple, a malicious publisher can send a large number of
junk events to the ENS to increase its load, and a ma-
licious subscriber can register a large number of junk
subscriptions in the ENS to increase its time in finding
an interested subscriber. Second, correctness attacks:
a malicious participant can subscribe to any ongoing
request and publish false responses. If these false re-
sponses are used by the PEP, the system’s correctness
is compromised.

To prevent these attacks, the ENS needs to provide an
authentication and authorization mechanism to allow
only authorized parties to subscribe or publish. Most
existing commercial pub-sub systems provide such a
mechanism. If the ENS does not have this feature, the
PEP will need to verify each response to ensure its cor-
rectness. Detailed analysis of the security model and
solutions will be the subject of our future work.

3.4 Performance-Oriented Optimizations

The ENS introduces additional overhead to process sub-
scriptions and deliver events. This section proposes two
approaches to reduce the impact of ENS overhead on the
overall system performance.

3.4.1 Bypassing the ENS when returning responses

The first technique requires a modification to the data flow.
Instead of returning responses through the ENS, the PDP re-
turns them directly to the PEP, as shown in Figure 3(a). To
preserve the decoupling property of the pub-sub architec-
ture, each request contains the address of the PEP that pub-
lishes it. Each PDP then can make a remote call to return
the response without knowing the PEP address in advance.

We expect that returning responses without the ENS can
improve the system performance for the following two rea-
sons: 1) the number of calls involved in resolving a request
is reduced; and 2) the load of the ENS is also reduced. Our
evaluation results in Section 4.4 confirm that this approach
improves the performance. Note that this approach prevents
cooperative caching at the ENS, in which the ENS caches
responses made by PDPs and uses them to resolve the re-
quests from PEPs.

3.4.2 Integration with authorization recycling

Another technique for improving system performance
is by integrating the pub-sub authorization system with
the Secondary and Approximate Authorization Model
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(SAAM) [8]. SAAM adds a secondary decision point (SDP)
to the request-response model. The SDP is usually collo-
cated with the PEP and caches the returned authorizations
from the PDP. When the PDP is overloaded or unavail-
able, the SDP can resolve authorization requests not only by
reusing previous cached authorizations (a.k.a. precise recy-
cling) but also by inferring new authorizations from cached
authorizations (a.k.a. approximate recycling). Therefore,
the SDP provides an alternative decision making source.

Figure 3(b) shows the pub-sub authorization architecture
after adding the SDP. The SDP first tries to resolve the re-
quest from the PEP. If the SDP fails, it then publishes the
request to the ENS and subscribes to the response. The
returned response is added to the cache maintained by the
SDP. As the cache size increases, more requests can be re-
solved by the local SDP, thus reducing the time to obtain
responses and the load of the ENS.

One challenge of introducing an SDP is maintaining
cache consistency. If the SDP is unaware of the policy up-
date at the PDP, it may compute false responses. The pub-
sub architecture provides an efficient way to propagating
policy update messages: the SDP can subscribe to the pol-
icy update messages published by the PDP; after removing
the affected cache, the SDP can publish a result message to
the ENS indicating whether or not the update is successful.

4 Experimental Evaluation

The previous section presents the design of the autho-
rization system based on a pub-sub architecture. This sec-
tion presents an experimental evaluation of our design. Our
evaluation sought to understand the availability gain of us-
ing the pub-sub model and studied the impact of the ENS
on system performance in terms of response time.

4.1 Prototype Implementation

We implemented a prototype of the proposed pub-sub
authorization system on top of Siena [7], a content-based
ENS developed in Java. We chose Siena for two reasons:
first, it provides the necessary functionality to study the fea-
sibility and performance; second, it allows us to customize
the code for further development and investigation.

In Siena, events are published as a set of attribute and
value pairs. Attribute names are simply strings, and values
are from a predefined set of primitive types, for which a
fixed set of operators is defined. The following sample code
shows how a PEP publishes a request to Siena.

Notification e = new Notification();
e.putAttribute("subject", "Sean");
e.putAttribute("object", "/etc/passwd");
e.putAttribute("access", "read");
siena.publish(e);

The subscriber subscribes to events by specifying fil-
ters using the subscription language. The filters define
constraints, usually in the form of name-value pairs of at-
tributes and basic comparison operators (=, <,≤, >,≥),
which identify valid events. The following sample code
shows how a PDP subscribes to the request for an object
in Siena.

Filter f = new Filter();
f.addConstraint("object", "/etc/passwd");
siena.subscribe(f);

Matching in Siena is accomplished by a Binary Decision
Diagram. The routing paths for notifications are set at the



time of subscription. In a distributed Siena deployment, a
new subscription is stored and forwarded from the originat-
ing server to all the servers in the network. This forms a
tree that connects the subscriber with servers. Notifications
are then routed towards the subscriber following the reverse
path of the tree.

As a basis for comparison, we also implemented a sim-
ple authorization system using a point-to-point architecture.
The PDP was implemented as an JAVA Remote Method In-
vocation (RMI) service, and the PEP obtained authoriza-
tions from the PDP over RMI calls.

4.2 Evaluation Platform

The experimental pub-sub authorization system con-
sisted of one PEP, one or more PDPs, and a centralized
Siena ENS server. We assumed that all these components
trust each other. The PEP was responsible for randomly
generating requests and performing system measurement.
The PDP resolved requests using a role-based access con-
trol (RBAC) policy. The Siena ENS mediated the commu-
nication between PEPS and PDPs. All these components
ran in separate cluster nodes, each equipped with four Intel
Xeon 2.33 GHz processors and 4 GB of memory, running
Fedora Linux 2.6.24.3.

4.3 Evaluating Availability

We expect that using the pub-sub architecture leads to
increased availability in the presence of PDP failures as a
request can reach multiple PDPs. Our evaluation aimed to
quantify this effect. We used the percentage decrease of
failed requests perceived by the PEP as a metric to mea-
sure the increase in availability. In each experiment, we first
measured the number of failed requests in the point-to-point
implementation, and then repeated the same experiment and
measured the failed requests in the pub-sub implementation
with various configurations. Finally we calculated the per-
centage difference in the number of failed requests of two
implementations. An increase in this difference indicates
an improvement of availability as more requests have been
successfully resolved.

We studied the influence of the following two factors on
the percentage decrease of failed requests: (a) the number of
PDPs and (b) the overlap rate between the resource spaces
of two PDPs, defined as the ratio of the objects owned by
both PDPs to the objects owned only by the studied PDP.
The overlap rate served as a measure of similarity between
the resources of two PDPs.

In the experiment, a RBAC policy was first generated
for each PDP. Each policy contained 100 subjects, 1000 ob-
jects, and 3 access rights. We controlled the object space of
each PDP to simulate certain overlap rates between different

PDPs. Each PDP then booted, subscribing to all the objects
for which it is responsible. The PEP then started sending
5,000 randomly generated requests sequentially. Each re-
quest was resolved with the flow described in Section 3 (see
Figure 2(b)).

To simulate the failure of PDPs, each PDP switched be-
tween two modes: work mode and failure mode. In the
work mode, the PDP computed and published a response af-
ter receiving a request. In the failure mode, the PDP simply
ignored the request notification from Siena and did noth-
ing. Therefore, a time-out request perceived by the PEP
indicated the failure of the PDP. We used the number of
elapsed requests as a measurement of time. We ensured that
all the PDPs received all requests at the same pace so that
their time clock was always synchronized. We used time-to-
failure (TTF) to represent the time between two consequent
failures and time-to-repair (TTR) to represent the time a
failure lasted. We used the exponential distribution to sim-
ulate both times. The mean TTF (MTTF) was 100 requests
and the mean TTR (MTTR) was 10 requests. We controlled
the maximum TTF to be 500 requests and the maximum
TTR to be 50 requests.

First, we studied the impact of the number of PDPs on
the percentage decrease of failed requests. In the exper-
iment, we varied the number of PDPs from 1 to 6 while
fixing the overlap rate between PDPs at 10%. Figure 4(a)
shows the results. As expected, the larger the number of the
PDPs, the larger the percentage decrease of failed requests,
which implies that the availability is improved. The reason
is that the possibility to receive a response from other PDPs
increased even when the studied PDP failed.

Second, we studied the impact of the overlap rate be-
tween PDPs on the percentage decrease of failed requests.
In the experiment, we varied the overlap rate from 0% to
100% while fixing the number of PDPs at 4 (Figure 4(b)).
As expected, the larger the overlap rate, the larger the per-
centage decrease of failed requests. When the overlap rate
was 100%, the percentage decrease of failed requests was
also 100%, which means all requests have been resolved.
In addition, the results indicate that an increase of overlap
rate provided diminishing returns. For instance, the first
10% overlap rate increase (from 0% to 10%) led to a 23%
improvement, while the last 25% increase (from 75% to
100%) led to only 2% improvement. This suggests that the
benefit of the pub-sub approach is most remarkable with a
small resource overlap between PDPs.

4.4 Evaluating Performance

In evaluating performance, our goal was to understand
how the use of the ENS impacts the system performance
and how our two proposed performance improvement tech-
niques help to mitigate this impact. We used response time
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Figure 4. Availability results.

as a metric of performance. The response time is measured
as the time elapsed after the PEP generates a request until it
receives the response for that request. In these experiments,
we did not simulate the failure of PDPs. The PEP recorded
the response time for each request. After every 500 requests
the PEP calculated the mean response time and used it as an
indicator of the response time for that period.

We have implemented two variations of the pub-sub ar-
chitecture proposed in Section 3.4 to improve the system
performance. In the first architecture, the PEP included its
address in the request and the PDP returned response di-
rectly to that address over a Java RMI call (Figure 3(a)).
We refer this approach as pub-sub-RMI. In the second ar-
chitecture, we integrated pub-sub with SAAM by adding an
SDP implementation [26] which is responsible for recycling
previous authorizations and providing secondary authoriza-
tions to the PEP (Figure 3(b)).

Figure 5 compares the response time of the original
pub-sub architecture (top curve), pub-sub-RMI architec-
ture (middle curve) and point-to-point architecture (bottom
curve). As expected, the pub-sub architecture led to longer
response time, i.e., by 1.6ms on average, compared with the
point-to-point architecture. In addition, using pub-sub-RMI
helps to reduce the pub-sub response time, i.e., by 0.8ms.

We also studied the extent to which the system perfor-
mance depends on the number of subscriptions in the ENS.
First, we varied the number of subscriptions posted by the
PDP: the PDP subscribed to either 100 or 1,000 objects.
Figure 6(a) shows that the response time almost doubled
with 1,000 object subscriptions. This result suggests that it
is important to keep the number of PDP subscriptions small.

Second, we varied the number of subscriptions posted by
the PEP. We ran an experiment where we disabled the “un-
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subscribe” call (step 10 in Figure 2(b)) by the PEP, and thus
the number of subscriptions kept increasing with the num-
ber of requests. Figure 6(b) shows that, without the “un-
subscribe” call, the response time increased almost linearly
with the number of requests, while with the “unsubscribe”
call, the response time remains the same. This suggests that
it is important for PEPs to remove stale subscriptions.

The results of availability evaluation suggest show that
multiple PDPs with a large overlap rate provide high avail-
ability. Next, we studied whether this happens at the cost of
system performance. We varied the number of PDPs from 1
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Figure 6. The impact of the number of subscriptions on response time.

to 4. Each PDP subscribed to 1,000 identical objects (with
100% overlap rate). The result shows that an increase of
the number of PDPs almost has no impact on the response
time. A possible reason is that Siena optimized the match-
ing algorithm for the situation when multiple subscribers
have common interests (e.g., by storing only one copy of
the subscription). Evaluating the case when PDPs post di-
verse subscriptions is subject to our future work.

We also ran an experiment to study the extent to which
the integration of pub-sub with SAAM reduces the response
time. The PEP sent 10,000 randomly generated requests in
total, which accounted for one third of the total possible re-
quests. We evaluated both precise recycling, where the SDP
only used previously cached responses, and approximate re-
cycling, where the SDP inferred new responses from cached
responses. Figure 7(a) shows the results. As expected, both
precise recycling and approximate recycling helps to reduce
the response time, while approximate recycling achieve bet-
ter results. This is because many requests can be resolved
by the collocated SDP. When the cache size increases, the
decrease in response time is more significant.

In the above experiment, we used a simple authorization
logic: the PDP resolves any request in less than 1ms. In
reality, however, the authorization logic might be complex
and takes longer time. Therefore, in the next experiment,
we manually added a 20ms delay to each response returned
by the PDP to simulate a complex authorization logic. Fig-
ure 7(b) shows that using SAAM helped to reduce the re-
sponse time more significantly in this case. In particular,
the response time decreased from 22ms to 6ms when ap-
proximate recycling is used. The reason is that more and
more requests can be resolved by the local SDP, instead of
being resolved by the slow PDP.

4.5 Discussion

Our evaluation confirms the analysis in Section 3.2: the
use of pub-sub model leads to higher availability, and this
improvement increases with the number of PDPs and their
resource overlap rate. In particular, when the overlap rate
is small, even a slight increase in the overlap rate leads to a
significant improvement in availability. Therefore, even in a
large-scale system without a large resource overlap between
applications, our approach can be still beneficial.

Additionally, our results confirm that the system per-
formance is impacted: comparing the pub-sub architecture
with the point-to-point architecture, we observed an 1.6ms
increase in response time. However, the importance of this
overhead must be judged in conjunction with the cost of
making decisions at the PDP, which can be one order of
magnitude larger. We have also demonstrated that it is im-
portant to reduce the number of subscriptions to the ENS,
either by using alternative subscription mechanisms at the
PDP or having “unsubscribe” call to remove stale subscrip-
tions by the PEP. Our results also indicate that providing
high availability by using multiple PDPs with large overlap
rate does not impact the response time. Finally, our results
confirms that our two proposed approaches to improving
performance are effective. Specifically, by integrating pub-
sub and SAAM, the response time is significantly reduced
when the PDP’s authorization logic is complex.

5 Related Work

Pub-sub systems have been an active research area. Early
pub-sub systems use a subscription scheme based on the no-
tion of topics, and have been implemented by several indus-
trial solutions (e.g., [24]). Content-based systems improve
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Figure 7. Response time results when pub-sub is integrated with SAAM.

over systems based on topics by introducing a subscription
scheme based on the actual content of the considered events
(Gryphon [1], Siena [6], Elvin [22].)

Due to their flexibility and scalability, pub-sub systems
have been used as the basic communication and integration
infrastructure for many application domains, such as Inter-
net games [4], mobile agents [20], user and software moni-
toring [13], mobile systems [9], among others. The contri-
bution of this paper lies in applying the pub-sub model to
access control systems.

To improve the availability of access control systems,
caching authorizations has been employed in a number of
commercial systems [15, 11, 18], as well as several aca-
demic distributed access control systems [2, 5]. However,
these and other approaches only compute precise authoriza-
tions and therefore are only effective for resolving repeated
requests. Beznosov [3] introduces the concept of recycling
approximate authorizations, and later Crampton et al. [8]
formally define SAAM and introduce the concept of SDP.
The SDP can resolve new requests by extending the space of
supported responses to approximate ones. In other words,
SAAM provides a richer alternative source for authorization
responses than the existing approaches do, thus improve the
availability of access control systems. To further improve
the performance and availability of access control systems,
Wei et al. [27] explore the cooperation between multiple
SDPs and combine their cooperation with the inference.

6 Summary and Future Work

This paper presents an authorization architecture that
uses the pub-sub model to improve the robustness and man-
ageability of the access control system. We introduce the

overall system design and define the requirements for the
core event notification service: robustness, performance
and security. Our evaluation demonstrates that our design
achieved better availability, and the impact of integrating
the pub-sub channel on performance is small and can be
further reduced by returning authorizations bypassing the
pub-sub channel or by integration with SAAM.

For future research, we will further refine the security
analysis of our pub-sub authorization model and develop
countermeasures to the identified attacks. Second, we will
further explore how PEPs can handle the case when poli-
cies become inconsistent among PDPs. Third, we will de-
velop application-specific load balancing techniques, since
an ENS node in a distributed pub-sub authorization system
may suffer from uneven load distribution due to different
population densities and interests of PDPs.
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