Access Control

Secure Application Development Module 4 Konstantin Beznosov

Copyright © 2004-2005 Konstantin Beznosov

What Do You Already Know?

- What are the main elements of access control mechanisms?
- What are the three main types of security policies?
- What access control models do you know?

Outline

Access control mechanisms
Access Matrix
Security policies

Confidentiality models
Integrity models
Hybrid models

Where We Are

	F	rotectio	on		Assurance					
Authorization Accountability		Avail	lability	ance	е	rance	rance			
Control	Data Protection	Audit	Continuity	Recovery	Requirements Assurance	Design Assurance	Development Assurance	Operational Assurance		
Access	Data Pr	Non- Repudiation	Service (Disaster Recovery	Requirem	Desig	Developn	Operati		
		Authenticatic Cryptograph								

Access Matrix

Copyright © 2004-2005 Konstantin Beznosov

Object System

Objects are not subjects

Access Matrix Structure

- objects (entities)
- Subjects $S = \{ s_1, ..., s_n \}$
- Objects $O = \{ o_1, ..., o_m \}$
- Rights $R = \{ r_1, ..., r_k \}$
- Entries $A[s_i, o_j] \subseteq R$
- $A[s_{ii}, o_j] = \{ r_{xi}, ..., r_{y} \}$ means subject s_i has rights $r_{xi}, ..., r_y$ over object o_j

Example

- Processes *p*, *q*
- Files *f*, *g*
- Rights r, w, x, a, o

	<i>f</i>	<i>g</i>	p	<i>q</i>
р	rwo	r	<i>rwxo</i>	W
q	а	ro	r	<i>rwxo</i>

Owner-based Discretionary Access Control (DAC)

Matrix Implementation Techniques

objects

Capability list (c-list)

 Access control list (ACL)

Food for Thought

ACLs are good for revoking individual's access to a particular file.

- How hard is it to revoke a user's access to a particular set of, but not all, files if ACLs are used?
- Compare and contrast this with the problem of revocation using capabilities.

Access Matrix Summary

- Object System
 - Subjects, objects, access matrix
 - Objects are shared
 - All subjects are objects
 - not all objects are subjects
- Matrix implementation
 - Capability lists
 - Access control lists

Security Policies

Copyright © 2004-2005 Konstantin Beznosov

What's Security Policy?

- Policy partitions system states into:
 - Authorized (secure)
 - These are states the system can enter
 - Unauthorized (nonsecure)
 - If the system enters any of these states, it's a security violation
- Secure system
 - Starts in authorized state
 - Never enters unauthorized state

Main Types of Security Policies

- Confidentiality
 - Bell-LaPadula
- Integrity
 - Biba
 - Clark-Wilson
- Availability
 - ?
- Hybrid
 - Chinese Wall
 - ORCON
 - Role-based Access Control (RBAC)

CIA

Key Points about Policies and Mechanisms

Policies describe what's allowed

> Mechanisms enforce policies

Confidentiality Policies

Copyright © 2004-2005 Konstantin Beznosov

What's Confidentiality Policy

- Goal: prevent the unauthorized disclosure of information
 - Deals with information flow
 - Integrity incidental
- examples
 - Multi-level security (MLS) models
 - Bell-LaPadula Model basis for many

Bell-LaPadula Model

- Object and subject labels
- Categories
- "dominates" partialorder relation
- Simple security property
 - No reads up
- *-property
 - No writes down

Example for Bell-LaPadula: Controlling Access to Course Online Content

Copyright © 2004-2005 Konstantin Beznosov

Application Description

Application:

- 10 students: $s_1 ... s_{10}$
- 3 instructors: i_1 , i_2 , i_3
- 5 courses: $c_1, ..., c_5$
 - $C_1 = \{i_1, \{s_1, s_2, s_3\}\}$
 - $C_2 = \{i_2, \{s_3, s_4, s_5\}\}$
 - $C_3 = \{i_3, \{s_5, s_6, s_7\}\}$
 - $C_4 = \{i_1, \{s_7, s_8, s_9\}\}$
 - $C_5 = \{\{i_2, i_3\}, \{s_8, s_9, s_{10}\}\}$

Policy:

- 1. Students can
 - 1. read course material and assignment instructions for the courses they are registered
 - 2. submit (i.e., write) their assignments for the registered courses
- 2. Instructors can
 - 1. read student submitted assignments for the courses they teach, and
 - 2. post (i.e., write) course material and assignment instructions for their courses

Develop configuration (i.e., label graph, and clearance and classification assignments) for access control mechanisms based on Bell-LaPadula model

Solution

1. Security level Lattice

2. File classifications

3. User clearances

4. DAC matrix

File Classifications

Course material for course $i == CM_i$

Assignment Submission for course $i == AS_i$

	S	S-C ₁	S-C ₂	S-C ₃	S-C ₄	S-C ₅	Ι	I-C ₁	I-C ₂	I-C ₃	I-C ₄	I-C ₅	I-C ₁ C ₅
CM_1		\checkmark											
AS_1		\checkmark											
CM ₂			\checkmark										
AS ₂			\checkmark										
CM ₃				\checkmark									
AS ₃				\checkmark									
CM ₄					\checkmark								
AS ₄					\checkmark								
CM ₅						\checkmark							
AS ₅													

User Clearances

	S	S-C ₁	S-C ₂	S-C ₃	S-C ₄	S-C ₅	Ι	I-C ₁	I-C ₂	I-C ₃	I-C ₄	I-C ₅	I-C ₁ C ₅
i ₁											\checkmark		
i2													
i3													
s1		\checkmark											
s2		\checkmark											
S ₃		\checkmark	\checkmark										
S ₄			\checkmark										
S ₅			\checkmark	\checkmark									
s ₆				\checkmark									
S ₇				\checkmark	\checkmark								
S ₈					\checkmark	\checkmark							
S ₉					\checkmark	\checkmark							
s ₁₀						\checkmark							

	CM_1	CM ₂	CM ₃	CM ₄	CM ₅	AS_1^1	AS ₁ ²	AS ₁ ³	AS ₂ ³	AS ₂ ⁴	AS ₂ ⁵	AS ₃ ⁵	AS ₃ ⁶	AS ₃ ⁷	AS ₄ ⁷	AS ₄ ⁸	AS ₄ 9
any																	
	R	R	R	R	R												
i ₁	0			0		R	R	R							R	R	R
i ₂		0			0				R	R	R						
i ₃			0		W							R	R	R			
S ₁						0											
s ₂							0										
S ₃								0	0								
S ₄										0							
S ₅											0	0					
S ₆													0				
S ₇														0	0		
S ₈																0	
S ₉																	0
S ₁₀																	

Assignment Submission for course i by student $j == AS_i^{j}$

26

Key Points About Confidentiality Models

- Control information flow
- Bell-LaPadula
- Often combine MAC (relationship of security levels) and DAC (the required permission)
- Don't deal with covert channels

Integrity Policies

Copyright © 2004-2005 Konstantin Beznosov

Biba Integrity Model (1977)

Η

IJ

- Integrity levels instead of security levels in MLS
- The higher the level, the more confidence
 - That a program will execute correctly
 - That data is accurate and/or reliable

Clark-Wilson Model

Constrains who can do what
 authorized triples: (user, TP, {CDI})

transaction procedures (TPs): Procedures that take the system from one valid state to another
 constrained data items (CDIs): Data subject to integrity controls

Clark-Wilson Model (cont-ed)

Integrity defined by a set of constraints

- Data in a *consistent* or valid state when it satisfies constraints
- Example: Bank
 - D today's deposits, W withdrawals, YB yesterday's balance, TB today's balance
 - Integrity constraint: YB + D W = TB

 Well-formed transaction move system from one consistent state to another

Key Points About Integrity Models

Integrity policies deal with trust

- As trust is hard to quantify, these policies are hard to evaluate completely
- Look for assumptions and trusted users to find possible weak points in their implementation
- Biba's model is based on multilevel integrity
- Clark-Wilson's focuses on separation of duty and transactions

Hybrid Security Models

Copyright © 2004-2005 Konstantin Beznosov

Chinese Wall Model: Illustration

 If Anthony reads any *Company dataset* (CD) in a conflict of interest (COI), he can never read another CD in that COI

ORCON Model

Problem: organization creating document wants to control its dissemination Example: Secretary of Agriculture writes a memo for distribution to her immediate subordinates, and she must give permission for it to be disseminated further. This is "originator controlled" (here, the "originator" is a person).

Role-based Access Control (RBAC)

Copyright © 2004-2005 Konstantin Beznosov

RBAC

- Access depends on role, not identity or label
 - Example:
 - Allison, administrator for a department, has access to financial records.
 - She leaves.
 - Betty hired as the new administrator, so she now has access to those records
 - The role of "administrator" dictates access, not the identity of the individual.

RBAC (NIST Standard)

RBAC with General Role Hierarchy

Constrained RBAC

Sample System

Application Description

Application:

- 10 students: $s_1 \dots s_{10}$
- 3 instructors: i_1 , i_2 , i_3
- 5 courses: c₁, ... c₅
 - $C_1 = \{i_1, \{s_1, s_2, s_3\}\}$
 - $C_2 = \{i_2, \{s_3, s_4, s_5\}\}$
 - $C_3 = \{i_3, \{s_5, s_6, s_7\}\}$
 - $C_4 = \{i_1, \{s_7, s_8, s_9\}\}$
 - $C_5 = \{\{i_2, i_3\}, \{s_8, s_9, s_{10}\}\}$

Policy:

- 1. Students can
 - 1. read course material and assignment instructions for the courses they are registered
 - 2. submit (i.e., write) their assignments for the registered courses
- 2. Instructors can
 - 1. read student submitted assignments for the courses they teach, and
 - 2. post (i.e., write) course material and assignment instructions for their courses

Develop configuration (i.e., UA, PA, Role hierarchy) for access control mechanisms based on RBAC model

Key Points on Hybrid Models

- deal with both confidentiality and integrity
- ORCON model neither MAC nor DAC
 - Actually, a combination
- RBAC model controls access based on subject's role(s)

Summary

- Access control mechanisms
- Access Matrix
- Security policies
 - Confidentiality models
 - Bell LaPadula confidentiality model
 - Integrity models
 - Biba integrity model
 - Clark-Wilson
 - Hybrid models
 - Chinese Wall model
 - ORCON model
 - RBAC model