

Secondary and Approximate Authorization Model and Its Applications to BLP and RBAC Policies

Konstantin (Kosta) Beznosov

Laboratory for Education and Research in Secure Systems Engineering Department of Electrical and Computer Engineering University of British Columbia, Canada

University of British Columbia

founded in 1908 ranked among the world top

- 40 institutes, by the Shanghai Jiao Tong University, 2007
- 27 universities, by Newsweek magazine in 2006
- 38 universities, by the *Times Higher Education Supplement* in 2005

departing assumptions

- processor resources virtually free
- commodity computing most cost-effective
- network bandwidth virtually unlimited
- human time/attention expensive

a typical authorization architecture

IBM Access Manager, Entrust GetAccess, CA SiteMinder, etc. request-response paradigm

request-response paradigm + re-use of authorization logic + consistent policy enforcement + lower admin overhead

PDP

- reduced availability
- increased latency
- reduced scalability

PEP

existing approaches

caching previous authorizations

- + simple, inexpensive
- + improves performance & availability
- serves only returning requests (precise recycling)

generic fault-tolerance through replication/redundancy

- + improve availability
- latency remains unchanged
- require specialized OS/middleware
- poorly scale on large populations

addressing the problem

K. Beznosov, "Flooding and Recycling Authorizations" in Proceedings of New Security Paradigms Workshop (NSPW), 2005, Lake Arrowhead, CA, USA, 20-23 September 2005, pp. 67-72.

contributions

 concept and model for inferring new authorizations from previous responses: secondary and approximate authorization model (SAAM)

secondary decision point (SDP)

- classified response space
- SAAM algorithms for BLP and RBAC
- distributed and cooperative SAAM

Secondary and Approximate Authorization Model (SAAM)

secondary decision point (SDP)

what SDP does

what SDP does

SAAM basic elements

request <subject, object, access right, context, request id>

< s , o , a , c , i > <{id="Bob", role="customer"}, {id="eB-23"}, view, {date="05-08-15"}, 10 >

response <response id, request id, evidence, decision>

- < r, i, E, d >
- < 1, 10, [], allow >

authorization response types

equivalent

SDP Types

SAAM summary

- basic elements
 - authorization requests <s, o, a, c, i>
 - authorization responses <r, i, E, d>
 - responses can be
 - primary or secondary
 - precise or approximate
- secondary decision point
 - implemented at PEP
 - uses primary to compute secondary
 - can be safe and/or consistent

Application of SAAM to Bell LaPadula Policies

What's SAAM_{BLP}?

1. dominance graph (DG)

2. algorithms for SDP to

- build DG from primary responses
- compute secondary responses using DG

BLP refresher

- S : subjects, O : objects
- DAC
- L: lattice of security labels
- $\lambda: S \cup O \rightarrow L$

- ss-property, *-property:
 - (s, o, read) is allowed $\Rightarrow \lambda(o) \le \lambda(s)$
 - (s, o, append) is allowed $\Rightarrow \lambda(o) \ge \lambda(s)$
 - (s, o, write) is allowed $\Rightarrow \lambda(o) = \lambda(s)$

allow

(s₁, o₁, read)
 (s₂, o₁, append)
 (s₃, o₂, read)

allow

- **1.** (s₁, o₁, read)
- **2.** (s₂, o₁, append)
- **3.** (s₃, o₂, read)
- **4.** (s₃, o₁, write)

allow

- **1.** (s₁, o₁, read)
- **2.** (s₂, o₁, append)
- **3.** (s₃, o₂, read)
- **4.** (s₃, o₁, write)
- **5.** (s₁, o₂, read)
- 6. (s₄, o₂, append)
- 7. (s₄, o₃, read)
- 8. (s₄, o₄, read)
- 9. (s₃, o₃, write)

allow

- **1.** (s₁, o₁, read)
- **2.** (s₂, o₁, append)
- **3.** (s₃, o₂, read)
- **4.** (s₃, o₁, write)
- **5.** (s₁, o₂, read)
- **6**. (s₄, o₂, append)
- **7.** (s₄, o₃, read)
- 8. (s₄, o₄, read)
- 9. (s₃, o₃, write)
 10. (s₂, o₄, write)

allow

- **1.** (s₁, o₁, read)
- 2. $(s_2, o_1, append)$
- **3.** $(s_3, o_2, read)$
- 4. $(S_3, O_1, write)$
- **5.** (s₁, o₂, read)
- 6. $(s_4, o_7, append)$
- 7. (s₄, o₃, read)
- 8. (s₄, o₄, read) SDP may allow:

- 9. $(S_3, O_3, write) = (S_1, O_4, read)$ $\bullet (S_4, O_1, write)$
- 10. $(s_2, o_4, write)$

SDP cannot decide:

- (S₂, O₃, read)
- $(S_1, O_4, write)$
- $(S_2, O_3, append) \bullet (S_1, O_4, append)$

SAAM_{BLP} evaluation

evaluation methodology

evaluation metrics

SDP hit rate

- a cache hit
 - a request is resolved by the SDP
- higher hit rate => more requests resolved by the SDP
 - even when the PDP fails => higher availability
 - near the PEP => save latency

hit rate

BLP policy: 5 levels, 5 categories, 50 subjects, 1,000 objects, 2 rights

impact of various system parameters

density of subjects and objects in the lattice

subject/object ratio

SDP DG and Security Lattice

J. Crampton, W. Leung, K. Beznosov, "The Secondary and Approximate Authorization Model and its Application to Bell-LaPadula Policies," in Proceedings of the ACM Symposium on Access Control Models and Technologies (SACMAT), Lake Tahoe, California, USA, 7-9 June, 2006, pp. 111-120.

SAAM_{RBAC}: SAAM for RBAC

RBAC review

preliminaries

request: issued by a subject for a permission.

- request=(s,p)
- ±: denotes the decision to a request.
 - response=+(s,p) or -(s,p)
- subject: modeled as a set of roles.
 - s= {r₂, r₃, r₄}

recycling algorithms

Laboratory for Education and Research in Secure Systems Engineering (lersse.ece.ubc.ca)

Laboratory for Education and Research in Secure Systems Engineering (lersse.ece.ubc.ca)

caching second negative decision

caching second negative decision - $(\{r_4, r_7\}, p)$

computing allowing authorization

computing denying authorization

computing undecided authorization

SAAM_{RBAC} evaluation

evaluation metrics

SDP hit rate

SDP inference time

- the time used to infer approximate responses
- less inference time, more efficient the system

evaluation methodology

hit rate

RBAC policy: 100 subjects, 1000 objects, 50 roles uniform distribution

impact of various system parameters

roles per permission

roles per user

inference time

Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu, "Authorization Recycling in RBAC Systems" to appear in Proceedings of the ACM Symposium on Access Control Models and Technologies (SACMAT), Estes Park, Colorado, 11-13 June 2008.

distributed and cooperative SAAM

hit rate for distributed SAAM_{BLP}

5 SDPs' cooperation, uniform requests

•Q. Wei, M. Repanu, K. Beznosov, "Cooperative Secondary and Approximate Authorization Recycling," in Proceedings of the IEEE International Symposium on High-Performance Distributed Computing (HPDC), Monterey Bay, CA, 27-29 June 2007, pp. 65-74.

•Q. Wei, M. Ripeanu, K. Beznosov, "Cooperative Secondary Authorization Recycling" 14 pages, to appear in the IEEE Transactions on Parallel and Distributed Systems.

summary

project team

Qiang Wei

Wing Leung

Matei Ripeanu

Jason Crampton Information Security Group at Royal Holloway University of London

Kosta Beznosov

summary

- secondary and approximate authorization model (SAAM)
 - secondary decision point (SDP)
 - classified response space
- SAAM algorithms for BLP and RBAC
- distributed and cooperative SAAM

selected project publications

- K. Beznosov, "Flooding and Recycling Authorizations" in Proceedings of New Security Paradigms Workshop (NSPW), 2005, Lake Arrowhead, CA, USA, 20-23 September 2005, pp. 67-72.
- SAAM for RBAC
 - Q. Wei, J. Crampton, K. Beznosov, M. Ripeanu, "Authorization Recycling in RBAC Systems" to appear in Proceedings of the ACM Symposium on Access Control Models and Technologies (SACMAT), Estes Park, Colorado, 11-13 June 2008.
- SAAM for Bell-Lapadula
 - J. Crampton, W. Leung, K. Beznosov, "The Secondary and Approximate Authorization Model and its Application to Bell-LaPadula Policies," in Proceedings of the ACM Symposium on Access Control Models and Technologies (SACMAT), Lake Tahoe, California, USA, 7-9 June, 2006, pp. 111-120.
- Distributed and cooperative SAAM
 - Q. Wei, M. Repanu, K. Beznosov, "Cooperative Secondary and Approximate Authorization Recycling," in Proceedings of the IEEE International Symposium on High-Performance Distributed Computing (HPDC), Monterey Bay, CA, 27-29 June 2007, pp. 65-74.
 - Q. Wei, M. Ripeanu, K. Beznosov, "Cooperative Secondary Authorization Recycling" 14 pages, to appear in the IEEE Transactions on Parallel and Distributed Systems.

Konstantin (Kosta) Beznosov

konstantin.beznosov.net

lersse.ece.ubc.ca

supporting slides

Who's Konstantin Beznosov

- Education
 - M.S. (1997) & Ph.D. (2000) in CS, Florida International University
 - B.S. in Physics (1993), Novosibirsk State University
- Experience
 - Assistant Prof., Electr. and Comp. Egn., UBC (2003-present)
 - Directs Laboratory for Education and Research in Secure Systems Engineering (LERSSE)
 - US industry (1997-2003): end-user, consulting, and software vendor organizations
- Contributed to
 - OMG
 - CORBA Security revisions
 - Resource Access Decision
 - Security Domain Membership Management
 - OASIS
 - eXtensible Access Control Markup Language (XACML) v1.0

and **CORBA**

Foreword by Steve Vinoski, IONA Technolog