
Cooperative Secondary Authorization Recycling

Qiang Wei∗, Matei Ripeanu†, Konstantin Beznosov‡

Laboratory for Education and Research in Secure Systems Engineering

lersse.ece.ubc.ca

University of British Columbia

Vancouver, Canada

Technical report LERSSE-TR-2008-02§

April 28, 2008

∗qiangw@ece.ubc.ca
†matei@ece.ubc.ca
‡beznosov@ece.ubc.ca
§This and other LERSSE publications can be found at lersse-dl.ece.ubc.ca

http://lersse.ece.ubc.ca
http://lersse-dl.ece.ubc.ca


Abstract

As enterprise systems, Grids, and other distributed applications scale up and be-

come increasingly complex, their authorization infrastructures—based predominantly

on the request-response paradigm—are facing challenges of fragility and poor scal-

ability. We propose an approach where each application server recycles previously

received authorizations and shares them with other application servers to mask au-

thorization server failures and network delays.

This paper presents the design of our cooperative secondary authorization recy-

cling system and its evaluation using simulation and prototype implementation. The

results demonstrate that our approach improves the availability and performance of

authorization infrastructures. Specifically, by sharing authorizations, the cache hit

rate—an indirect metric of availability—can reach 70%, even when only 10% of au-

thorizations are cached. Depending on the deployment scenario, the average time for

authorizing an application request can be reduced by up to a factor of two compared

with systems that do not employ cooperation.

2



Contents

1 Introduction 4

2 Secondary and Approximate Authorization Model (SAAM) 7

3 Cooperative Secondary Authorization Recycling (CSAR) 8

3.1 Design Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

3.2 System Architecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

3.3 Discovery Service . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

3.4 Adversary Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3.5 Mitigating Threats . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

3.6 Consistency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

3.7 Eager Recycling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

4 Evaluation 20

4.1 Simulation-based Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 21

4.2 Prototype-based Evaluation . . . . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.1 Evaluating Response Time . . . . . . . . . . . . . . . . . . . . . . . 26

4.2.2 Evaluating the Effects of Policy Changes . . . . . . . . . . . . . . . 32

4.2.3 Integration with TPC-W . . . . . . . . . . . . . . . . . . . . . . . . 35

5 Related Work 38

6 Conclusion 40

References 41

3



1 Introduction

Architectures of modern access control solutions—[17, 11, 20, 24, 22, 10]—are based on the

request-response paradigm, illustrated in Figure 1(a). In this paradigm, a policy enforce-

ment point (PEP) intercepts application requests, obtains access control decisions (a.k.a.

authorizations) from the policy decision point (PDP), and enforces those decisions.

In large enterprise systems, PDPs are commonly implemented as logically centralized

authorization servers, providing important benefits: consistent policy enforcement across

multiple PEPs and reduced administration costs of authorization policies. As with all

centralized architectures, this architecture has two critical drawbacks: the PDP is a single

point of failure as well as a potential performance bottleneck.

The single point of failure property of the PDP leads to reduced availability: the

authorization server may not be reachable due to a failure (transient, intermittent, or

permanent) of the network, of the software located in the critical path (e.g., OS), of the

hardware, or even from a misconfiguration of the supporting infrastructure. A conventional

approach to improving the availability of a distributed infrastructure is failure masking

through redundancy of either information or time, or through physical redundancy [15].

However, redundancy and other general purpose fault-tolerance techniques for distributed

systems scale poorly, and become technically and economically infeasible when the number

of entities in the system reaches thousands [16, 29]. (For instance, eBay has 12,000 servers

and 15,000 application server instances [26].)

In a massive-scale enterprise system with non-trivial authorization policies, making

authorization decisions is often computationally expensive due to the complexity of the

policies involved and the large size of the resource and user populations. Thus, the central-

ized PDP often becomes a performance bottleneck [21]. Additionally, the communication

delay between the PEP and the PDP can make authorization overhead prohibitively high.

The state-of-the-practice approach to improving overall system availability and reduc-

ing authorization processing delays observed by the client is to cache authorizations at

each PEP—what we refer to as authorization recycling. Existing authorization solutions

4



client

subject

application server
authorization 

server

PDP

resource

PEP
application

request

application
response

authorization
request

authorization
response

(a) Request-response paradigm.

client

subject

application server
authorization 

server

PDP

resource

PEP

SDP

application
request

application
response

authorization
request

authorization
response

authorization
request

authorization
response

(b) SAAM adds SDP to the request-response

paradigm.

Figure 1: Architectures of modern access control solutions and SAAM.

commonly provide PEP-side caching [17, 11, 20]. These solutions, however, only employ a

simple form of authorization recycling: a cached authorization is reused only if the autho-

rization request in question exactly matches the original request for which the authorization

was made. We refer to such reuse as precise recycling.

To improve authorization system availability and reduce delay, Crampton et al. [9]

propose the Secondary and Approximate Authorization Model (SAAM), which adds a sec-

ondary decision point (SDP) to the request-response paradigm (Figure 1(b)). The SDP is

collocated with the PEP and can resolve authorization requests not only by precise recy-

cling but also by computing approximate authorizations from cached authorizations. The

use of approximate authorizations improves the availability and performance of the access

control sub-system, which ultimately improves the observed availability and performance

of the applications themselves.

In SAAM, however, each SDP serves only its own PEP, which means that cached

authorizations are reusable only for the requests made through the same PEP. In this

paper, we propose an approach where SDPs cooperate to serve all PEPs in a community

of applications. Our results show that SDP cooperation further improves the resilience of

the authorization infrastructure to network and authorization server failures, and reduces

5



the delay in producing authorizations.

We believe that our approach is especially applicable to the distributed systems in-

volving either cooperating parties, such as Grid systems, or replicated services, such as

load-balanced clusters. Cooperating parties or replicated services usually have similar

users and resources, and use centralized authorization servers to enforce consistent access

control policies. Therefore, authorizations can often be shared among parties or services,

bringing benefits to each other.

This paper makes the following contributions:

• We propose the concept of cooperative secondary authorization recycling (CSAR),

analyze its design requirements, and propose a concrete architecture.

• We use simulations and a prototype to evaluate CSAR’s feasibility and benefits.

Evaluation results show that by adding cooperation to SAAM, our approach further

improves the availability and performance of authorization infrastructures. Specifi-

cally, the overall cache hit rate can reach 70% even with only 10% of authorizations

cached. This high hit rate results in more requests being resolved locally or by coop-

erating SDPs, when the authorization server is unavailable or slow, thus increasing

the availability of authorization infrastructure and reducing the load of the autho-

rization server. Additionally, our experiments show that request processing time can

be reduced by up to a factor of two.

The rest of this paper is organized as follows. Section 2 presents SAAM definitions and

algorithms. Section 3 describes CSAR design. Section 4 evaluates CSAR’s performance,

through simulation and a prototype implementation. Section 5 discusses related work. We

conclude our work in Section 6.

6



2 Secondary and Approximate Authorization Model

(SAAM)

SAAM [9] is a general framework for making use of cached PDP responses to compute

approximate responses for new authorization requests. An authorization request is a tuple

(s, o, a, c, i), where s is the subject, o is the object, a is the access right, c is the request

contextual information, and i is the request identifier. Two requests are equivalent if they

only differ in their identifiers. An authorization response to request (s, o, a, c, i) is a tuple

(r, i, E, d), where r is the response identifier, i is the corresponding request identifier, d is

the decision, and E is the evidence. The evidence is a list of response identifiers that were

used for computing a response, and can be used to verify the correctness of the response.

In addition, SAAM defines the primary, secondary, precise, and approximate authoriza-

tion responses. The primary response is a response made by the PDP, and the secondary

response is a response produced by an SDP. A response is precise if it is a primary response

to the request in question or a response to an equivalent request. Otherwise, if the SDP

infers the response based on the responses to other requests, the response is approximate.

In general, the SDP infers approximate responses based on cached primary responses

and any information that can be deduced from the application request and system environ-

ment. The greater the number of cached responses, the greater the information available

to the SDP. As more and more PDP responses are cached, the SDP will become a better

and better PDP simulator.

The above abstractions are independent of the specifics of the application and access

control policy in question. For each class of access control policies, however, specific al-

gorithms for inferring approximate responses—generated according to a particular access

control policy—need to be provided. This paper is based on the SAAMBLP algorithms [9]

— SAAAM authorization recycling algorithms for the Bell-LaPadula (BLP) access control

model [2].

The BLP model specifies how information can flow within the system based on security

7



labels attached to each subject and object. A security function λ maps S ∪O to L, where

S and O are sets of subjects and objects, and L is a set of security labels. Collectively, the

labels form a lattice. The “6” is a partial order relation between security labels (read as

“is dominated by”). Subject s is allowed read access to object o if s has discretionary read

access to o and λ(o) 6 λ(s), while append access is allowed if s has discretionary write

access to o and λ(o) > λ(s).

The SAAMBLP inference algorithms use cached responses to infer information about the

relative ordering on security labels associated with subjects and objects. If, for example,

three requests, (s1, o1, read, c1, i1), (s2, o1, append, c2, i2), (s2, o2, read, c3, i3) are allowed by

the PDP and the corresponding responses are r1, r2 and r3, it can be inferred that λ(s1) >

λ(o1) > λ(s2) > λ(o2). Therefore, a request (s1, o2, read, c4, i4) should also be allowed,

and the corresponding response is (r4, i4, [r1, r2, r3], allow). SAAMBLP uses a special data

structure called dominance graph to record the relative ordering on subject and object

security labels, and evaluates a request by finding a path between two nodes in this directed

acyclic graph.

Crampton et al. [9] present simulation results that demonstrate the effectiveness of

their approach. With only 10% of authorizations cached, the SDP can resolve over 30%

more authorization requests than a conventional PEP with caching. CSAR is, in essence,

a distributed version of SAAM. The distribution and cooperation among SDPs can fur-

ther improve access control system availability and performance, as our evaluation results

demonstrate.

3 Cooperative Secondary Authorization Recycling

(CSAR)

This section presents the design requirements for cooperative authorization recycling, the

CSAR system architecture, and finally the detailed CSAR design.

8



3.1 Design Requirements

The CSAR system aims to improve the availability and performance of access control

infrastructures by sharing authorization information among cooperative SDPs. Each SDP

resolves the requests from its own PEP by locally making secondary authorization decisions,

by involving other cooperative SDPs in the authorization process, and/or by passing the

request to the PDP.

Since the system involves caching and cooperation, we consider the following design

requirements:

• Low overhead. As each SDP participates in making authorizations for some non-

local requests, its load is increased. The design should therefore minimize this addi-

tional computational overhead.

• Ability to deal with malicious SDPs. As each PEP enforces responses that are

possibly offered by non-local SDPs, the PEP should be prepared to deal with those

SDPs that after being compromised become malicious. For example, it should verify

the validity of each secondary response by tracing it back to a trusted source.

• Consistency. Brewer [7] conjectures and Lynch et al. [14] prove that distributed

systems cannot simultaneously provide the following three properties: availability,

consistency, and partition tolerance. We believe that availability and partition toler-

ance are essential properties that an access control system should offer. We thus relax

consistency requirements in the following sense: with respect to an update action,

various components of the system can be inconsistent for at most a user-configured

finite time interval.

• Configurability. The system should be configurable to adapt to different perfor-

mance objectives at various deployments. For example, a deployment with a set of

latency-sensitive applications may require that requests are resolved in minimal time.

A deployment with applications generating a high volume of authorization requests,

9



on the other hand, should attempt to eagerly exploit caching and the inference of

approximate authorizations to reduce load on the PDP, the bottleneck of the system.

• Backward compatibility. The system should be backward compatible so that

minimal changes are required to existing infrastructures—i.e., PEPs and PDPs—in

order to switch to CSAR.

3.2 System Architecture

This section presents an overview of the system architecture and discusses our design

decisions in addressing the configurability and backward compatibility requirements.

As illustrated by Figure 2, a CSAR
applicaiton 

server

PEP

application 
server

PEP

SDP

discovery 
service

authorization 
server

PDP

SDP

CSAR
1

2
3request/

response 
transfer

request/
response 
transfer

get

put

get

put

other 
cooperating 

servers

Clients

Clients

Figure 2: CSAR introduces cooperation be-

tween SDPs.

deployment contains multiple PEPs,

SDPs, and one PDP. Each SDP is host-

collocated with its PEP at an applica-

tion server. Both the PEP and SDP are

either part of the application or of the

underlying middleware. The PDP is lo-

cated at the authorization server and pro-

vides authorization decisions to all appli-

cations. The PEPs mediate the applica-

tion requests from clients, generate au-

thorization requests from application re-

quests, and enforce the authorization de-

cisions made by either the PDP or SDPs.

For increased availability and lower load on the central PDP, our design exploits the

cooperation between SDPs. Each SDP computes responses to requests from its PEP, and

can participate in computing responses to requests from other SDPs. Thus, authorization

requests and responses are transferred not only between the application server and the

authorization server, but also between cooperating application servers.

10



CSAR is configurable to optimize the performance requirements of each individual

deployment. Depending on the specific application, geographic distribution and network

characteristics of each individual deployment, performance objectives can vary from reduc-

ing the overall load on the PDP, to minimizing client-perceived latency, and to minimizing

the network traffic generated.

Configurability is achieved by controlling the degree of concurrency in the set of op-

erations involved in resolving a request: (1) the local SDP can resolve the request using

data cached locally; (2) the local SDP can forward the request to other cooperative SDPs

to resolve it using their cached data; and (3) the local SDP can forward the request to the

PDP. If the performance objective is to reduce latency, then the above three steps can be

performed concurrently, and the SDP will use the first response received. If the objective

is to reduce network traffic and/or the load at the central PDP, then the above three steps

are performed sequentially.

CSAR is designed to be easily integrated with existing access control systems. Each

SDP provides the same policy evaluation interface to its PEP as the PDP, thus the CSAR

system can be deployed incrementally without requiring any change to existing PEP or

PDP components. Similarly, in systems that already employ authorization caching but do

not use CSAR, the SDP can offer the same interface and protocol as the legacy component.

3.3 Discovery Service

One essential component enabling cooperative SDPs to share their authorizations is the

discovery service (DS), which helps an SDP find other SDPs that might be able to resolve

a request. A naive approach to implementing the discovery functionality (similar to a

popular deployment configuration of Squid [13], a cooperative Web-page proxy cache) is

request broadcasting: whenever an SDP receives a request from its PEP, it broadcasts the

request to all other cooperating SDPs. All SDPs attempt to resolve the request, and the

PEP enforces the response it receives first. This approach is straightforward and might be

effective when the number of cooperating SDPs is small and the cost of broadcasting is

11



low. However, it has two important drawbacks. First, it inevitably increases the load on all

SDPs. Second, it causes high traffic overhead when SDPs are geographically distributed.

To address these two drawbacks, we introduced the DS to achieve a selective requests

distribution: an SDP in CSAR selectively sends requests only to those SDPs that are

likely to be able to resolve them.

For an SDP to resolve a request, the SDP’s cache must contain at least both the subject

and object of the request. If either one is missing, there is no way for the SDP to infer

the relationship between the subject and object, and thus fails to compute a secondary

response. The role of the DS is to store and retrieve the mapping between subject/object

and SDP addresses. In particular, the DS provides an interface with the following two

functions: put and get. Given a subject or an object and the address of an SDP, the

put function stores the mapping (subject/object, SDPaddress). A put operation can be

interpreted as “this SDP knows something about the subject/object.” Given a subject and

object pair, the get function returns a list of SDP addresses that are mapped to both the

subject and object. The results returned by the get operation can be interpreted as “these

SDPs know something about both the subject and object and thus might be able to resolve

the request involving them.”

Using DS avoids broadcasting requests to all cooperating SDPs. Whenever an SDP

receives a primary response to a request, it calls the put function to register itself in the

DS as a suitable SDP for both the subject and object of the request. When cooperation is

required, the SDP calls the get function to retrieve from the DS a set of addresses of those

SDPs that might be able to resolve the request.

Note that the DS is only logically centralized, but can have a scalable and resilient

implementation. In fact, an ideal DS should be distributed and collocated with each SDP

to provide high availability and low latency: each SDP can make a local get or put call to

publish or discover cooperative SDPs, and the failure of one DS node will not affect others.

Compared to the PDP, the DS is both simple—it only performs put and get operations—

and general—it does not depend on the specifics of any particular security policy. As a

result, a scalable and resilient implementation of DS is easier to achieve.

12



For instance, one can use a Bloom filter to achieve a distributed DS implementation,

similar to the summary cache [12] approach. Each SDP builds a Bloom filter from the

subjects or objects of cached requests, and sends the bit array plus the specification of the

hash functions to the other SDPs. The bit array is the summary of the subjects/objects

that this SDP has stored in its cache. Each SDP periodically broadcasts its summary to

all cooperating SDPs. Using all summaries received, a specific SDP has a global image of

the set of subjects/objects stored in each SDP’s cache, although the information could be

outdated or partially wrong.

For a small-scale cooperation, a centralized DS implementation might be feasible where

various approaches can be used to reduce its load and improve its scalability. The first

approach is to reduce the number of get calls. For instance, SDPs can cache the results

from the DS for a small period of time. This method can also contribute to reducing the

latency. The second approach is to reduce the number of put calls. For example, SDPs

can update the DS in batch mode instead of calling the DS for each primary response.

3.4 Adversary Model

In our adversary model, an attacker can eavesdrop, spoof or replay any network traffic or

compromise an application server host with its PEP(s) and SDP(s). The adversary can

also compromise the client computer(s) and the DS. Therefore, there could be malicious

clients, PEPs, SDPs and DS in the system.

As a CSAR system includes multiple distributed components, our design assumes dif-

ferent degrees of trust in them. The PDP is the ultimate authority for access control

decisions and we assume that all PEPs trust1 the decisions made by the PDP. We also as-

sume that the policy change manger (introduced later in Section 3.6) is trusted because it

is collocated and tightly integrated with the PDP. We further assume that each PEP trusts

those decisions that it receives from its own SDP. However, an SDP does not necessarily

1By “trust” we mean that if a trusted component turns to be malicious, it can compromise the security

of the system.

13



trust other SDPs in the system.

3.5 Mitigating Threats

Based on the adversary model presented in the previous section, we now describe how our

design enables mitigation of the threats due to malicious SDPs and DS.

A malicious DS can return false or no SDP addresses, resulting in threats of three

types: (1) the SDP sends requests to those SDPs that actually cannot resolve them, (2)

all the requests are directed to a few targeted SDPs, (3) the SDP does not have addresses

of any other SDP. In all three cases, a malicious DS impacts system performance through

increased network traffic, or response delays, or computational load on SDPs, and thus

can mount a denial-of-service (DoS) attack. However, a malicious DS cannot not impact

system correctness because every SDP can always resort to queering just the PDP if the

SDP detects that the DS is malicious.

To detect a malicious DS, an SDP can track how successful the remote SDPs whose

addresses the DS provides are in resolving authorization requests. A benign DS, which

always provides correct information, will have a relatively good track record, with just few

SDPs unable to resolve requests. Even though colluding SDPs can worsen the track record

of a DS, we don’t believe such an attack to be of practical benefit to the adversary.

A malicious SDP could generate any response it wants, for example, denying all requests

and thus launching a DoS attack. Therefore, when an SDP receives a secondary response

from other SDPs, it verifies the authenticity and integrity of the primary responses used

to infer that response as well as the correctness of the inference.

To protect the authenticity and integrity of a primary response while it is in transit

between the PDP and the SDP, the PDP cryptographically signs the response. Then, an

SDP can independently verify the primary response’s authenticity and integrity by checking

its signature, assuming it has access to the PDP’s public key. Recall that each secondary

response includes an evidence list that contains the primary responses used for inferring

this response. If any primary response in the evidence cannot be verified, that secondary

14



response is deemed to be incorrect.

To verify the correctness of a response, the SDP needs to use the knowledge of both the

inference algorithm and evidence list. A secondary response is correct if the PDP would

compute the same response. The verification algorithm depends on the inference algorithm.

In the case of SAAMBLP, it is simply the inverse of the inference algorithm. Recall that

the SAAMBLP inference algorithm searches the cached responses and identifies the relative

ordering on security labels associated with the request’s subjects and objects. In contrast,

the verification algorithm goes through the evidence list of primary responses by reading

every two consecutive responses and checking whether the correct ordering can be derived.

To illustrate, consider the example from Section 2. A remote SDP returns a response

(r4, i4, [r1, r2, r3], allow) for request (s1, o2, read, c4, i4), where r1 is the primary allow re-

sponse for (s1, o1, read, c1, i1), r2 is the primary allow response for (s2, o1, append, c2, i2)

and r3 is the primary allow response for (s2, o2, read, c3, i3). From these responses, the

verification algorithm can determine that λ(s1) > λ(o1) > λ(s2) > λ(o2). Therefore, s1

should be allowed to read o2, and thus r4 is a correct response.

Verification of each approximate response unavoidably introduces additional compu-

tational cost, which depends on the length of the evidence list. A malicious SDP might

use this property to attack the system. For example, a malicious SDP can always return

responses with a long evidence list that is computationally expensive to verify. One way

to defend against this attack is to set an upper bound to the time that the verification

process can take. An SDP that always returns long evidence lists will be blacklisted.

We defined four execution scenarios, listed below, to help manage the computational

cost caused by response verification. Based on the administration policy and deployment

environment, the verification process can be configured differently to achieve various trade-

offs between security and performance.

• Total verification. All responses are verified.

• Allow verification. Only ‘allow’ responses are verified. This configuration protects

resources from unauthorized access but might be vulnerable to DoS attacks.

15



• Random verification. Responses are randomly selected for verification. This con-

figuration can be used to detect malicious SDPs but cannot guarantee that the system

is perfectly correct, since some false responses may have been generated before the

detection.

• Offline verification. There is no real-time verification, but offline audits are per-

formed.

3.6 Consistency

Similar to other distributed systems employing caching, CSAR needs to deal with cache

consistency issues. In our system, SDP caches may become inconsistent when access control

policy changes at the PDP. In this section, we describe how consistency is achieved in

CSAR.

We first state our assumptions relevant to the access control systems. We assume that

the PDP makes decisions using an access control policy stored persistently in a policy

store of the authorization server. In practice, the policy store can be a policy database

or a collection of policy files. We further assume that security administrators deploy and

update policies through the policy administration point (PAP), which is consistent with

the XACML architecture [31]. To avoid modifying existing authorization servers and main-

tain backward compatibility, we further add a policy change manager (PCM), collocated

with the policy store. The PCM monitors the policy store, detects policy changes, and

informs the SDPs about the changes. The refined architecture of the authorization server

is presented in Figure 3.

Based on the fact that not all policy changes are at the same level of criticality, we divide

policy changes into three types: critical, time-sensitive, and time-insensitive changes. By

discriminating policy changes according to these types, system administrators can choose

to achieve different consistency levels. In addition, system designers are able to provide

different consistency techniques to achieve efficiency for each type. Our design allows a

CSAR deployment to support any combination of the three types. In the rest of this

16



section, we define each type of policy change and discuss the consistency properties.

Critical changes of authorization

SDP

SDP

DS

authorization server

policy 
administration 

point (PAP)

policy store

policy change 
manager (PCM)

security
 administrator

Figure 3: The architecture enabling the sup-

port for policy changes.

policies are those changes that need to

be propagated urgently throughout the

enterprise applications, requiring imme-

diate updates on all SDPs. When an ad-

ministrator makes a critical change, our

approach requires that she also specifies

a time period t for the change. CSAR

will attempt to make the policy change by

contacting all SDPs involved, and must

inform the administrator within time pe-

riod t either a message that the change has been successfully performed or a list of SDPs

that have not confirmed the change.

We developed a selective-flush approach to propagating critical policy changes. In

this approach, only selected policy changes are propagated, only selected SDPs are up-

dated, and only selected cache entries are flushed. We believe that this approach has the

benefits of reducing server overhead and network traffic. In the following we sketch out

the propagation process.

The PCM first determines which subjects and/or objects (a.k.a. entities) are affected

by the policy change. Since most modern enterprise access control systems make decisions

by comparing security attributes (e.g., roles, clearance, sensitivity, groups) of subjects

and objects, the PCM maps the policy change to the entities whose security attributes

are affected. For example, if permission p has been revoked from role r, then the PCM

determines all objects of p (denoted by Op) and all subjects assigned to r (denoted by Sr).

The PCM then finds out which SDPs need to be notified of the policy change. Given

the entities affected by the policy change, the PCM uses the discovery service (DS) to find

those SDPs that might have responses for the affected entities in their caches. The PCM

sends the DS a policy change message containing the affected entities, (Op, Sr). Upon

17



receiving the message, the DS first replies back with a list of the SDPs that have cached

the responses for the entities. Then it removes corresponding entries from its map to reflect

the flushing. After the PCM gets the list of SDPs from the DS, it multicasts the policy

change message to these affected SDPs.

When an SDP receives a policy change message, it flushes those cached responses that

contain the entities and then acknowledges the results to the PCM. In the above example,

with revoking permission p from role r, the SDP would flush those responses from its cache

that contain both objects in Op and subjects in Sr.

In order for the selective-flush approach to be practical, the PCM should have the

ability to quickly identify the subjects or objects affected by the policy change. However,

this procedure may not be trivial due to the complexities of modern access control systems.

We have developed identification algorithms for the policies based on the BLP model, and

will explore this issue for other access control models in future research.

Time-sensitive changes in authorization policies are less urgent than critical ones

but still need to be propagated within a known period of time. When an administrator

makes a time-sensitive change, it is the PCM that computes the time period t in which

caches of all SDPs are guaranteed to become consistent with the change. As a result,

even though the PDP starts making authorization decisions using the modified policy, the

change becomes in effect throughout the CSAR deployment only after time period t. Notice

that this does not necessarily mean that the change itself will be reflected in the SDPs’

caches by then, only that the caches will not use responses invalidated by the change.

CSAR employs a time-to-live (TTL) approach to process time-sensitive changes. Every

primary response is assigned a TTL that determines how long the response should remain

valid in the cache, e.g., one day or one hour. The assignment can be performed by either

the SDP, the PDP itself, or a proxy, through which all responses from the PDP pass before

arriving to the SDPs. The choice depends on the deployment environment and backward

compatibility requirements. Every SDP periodically purges from its cache those responses

whose TTL elapses.

The TTL value can also vary from response to response. Some responses (say, autho-

18



rizing access to more valuable resources) can be assigned a smaller TTL than others. For

example, for a BLP-based policy, the TTL for the responses concerning top-secret objects

could be shorter than for confidential objects.

When the administrator makes a time-insensitive change, the system guarantees

that all SDPs will eventually become consistent with the change. No promises are given,

however, about how long it will take. Support for time-insensitive changes is necessary

because some systems may not be able to afford the cost of, or are just not willing to sup-

port, critical or time-sensitive changes. A simple approach to supporting time-insensitive

change is for system administrators to periodically restart the machines hosting the SDPs.

3.7 Eager Recycling

In previous sections, we explained how cooperation among SDPs is achieved by resolving

requests by remote SDPs. In this section, we describe an eager approach to recycling past

responses. The goal is to further reduce the overhead traffic and response time.

The essence of cooperation is SDPs helping each other to reduce the cache miss rate

at each SDP. Tewari et al. [27] divide all cache misses into four categories. In our context,

compulsory misses and communication/consistency misses are most applicable. Compul-

sory misses are generated by a subject’s first attempt to access an object. Communica-

tion/consistency misses occur when a cache holds a stale authorization. With cooperation,

the SDP can avoid some of these misses by possibly getting authorizations from its coop-

erating SDPs.

Although cooperation helps to improve the overall cache hit rate, it leads to a small

local cache hit rate at each SDP. The reason is that SAAM inference algorithms are based

purely on cached primary responses. Without cooperation, the request is always sent to the

PDP. The primary response returned from the PDP can then be cached and used for future

inference. With cooperation, the request may be resolved by remote SDPs. The returned

approximate response, however, is not useful for future inference, which eventually leads

to a small local hit rate.

19



A small local cache hit rate results in two problems. First, it leads to increased response

time, as requests have to be resolved by remote SDPs. Its impact is especially significant

when SDPs are located in a WAN. Second, it unavoidably increases the computational load

of SDPs because each SDP has to resolve more requests for other SDPs. Therefore, the

cooperation should also lead to an increased local cache hit rate. To this end, we propose

the eager recycling approach, which takes advantage of the information in the evidence

list.

As stated before, if an SDP succeeds in resolving a request from another SDP, it re-

turns a secondary response, which includes an evidence component. The evidence contains

a list of primary responses that have been used to infer the secondary response. In eager

recycling, the receiving SDP incorporates those verified primary responses into its local

cache as if it received them from the PDP. By including these responses, the SDP’s cache

increases faster and its chances of resolving future requests locally by inference also in-

creases. Our evaluation results show that this approach can reduce the response time by

a factor of two.

4 Evaluation

In evaluating CSAR, we wanted first to determine if our design works. Then we sought

to estimate the achievable gains in terms of availability and performance, and determine

how they depend on factors such as the number of cooperating SDPs and the frequency of

policy changes.

We used both simulation and a prototype implementation to evaluate CSAR. The

simulation enabled us to study availability by hiding the complexity of underlying commu-

nication, while the prototype enabled us to study both performance and availability in a

more dynamic and realistic environment. Additionally, we have integrated our prototype

with a real application to study the integration complexity and the impact of application

performance.

We used a similar setup for both the simulation and prototype experiments. The PDP

20



made access control decisions on either read or append requests using a BLP-based policy

stored in an XML file. The BLP security lattice contained 4 security levels and 3 categories,

100 subjects and 100 objects, and uniformly assigned security labels to them. The total

number of possible requests was 100x100x2=20,000. The policy was enforced by all the

PEPs. Each SDP implemented the same inference algorithm. While the subjects were the

same for each SDP, the objects could be different in order to simulate the request overlap.

4.1 Simulation-based Evaluation

We used simulations to evaluate the benefits of cooperation to system availability and

reducing load at the PDP. We used the cache hit rate as an indirect metric for these two

characteristics. A request resolved without contacting the PDP was considered a cache

hit. A high cache hit rate results in masking transient PDP failures (thus improving the

availability of the access control system) and reducing the load on the PDP (thus improving

the scalability of the system).

We studied the influence of the following factors on the hit rate of one cooperating

SDP: (a) the number of cooperating SDPs; (b) the cache warmness at each SDP, defined

as the ratio of cached responses to the total number of possible responses; (c) the overlap

rate between the resource spaces of two cooperating SDPs, defined as the ratio of the

objects owned by both SDPs to the objects owned only by the studied SDP (The overlap

rate served as a measure of similarity between the resources of two cooperating SDPs); (d)

whether the inference for approximate responses was enabled or not; and (e) the popularity

distribution of requests.

To conduct the experiments, we have modified the SAAM evaluation engine used in [9]

to support cooperation. Each run of the evaluation engine involved four stages. In the

first stage, the engine generated subjects and objects for each SDP, created a BLP lattice

and assigned security labels to both subjects and objects. To control the overlap rate

(e.g., 10%) between SDPs, we first generated the object space for the SDP under study

(e.g., obj0–99). For each of the other SDPs, we then uniformly selected the corresponding

21



number of objects (e.g., 10) from the space of the SDP under study (e.g., obj5, obj23, etc.)

and then generated the remaining objects sequentially (e.g., obj100–189).

Second, the engine created the warming set of requests for each SDP: that is the set

containing all possible unique requests for that SDP. We also created a testing set for all

SDPs, which comprised a sampling of requests uniformly selected from the request space

of the SDP under study. In our experiment, the testing set contained 5,000 requests.

Next, the simulation engine started operating by alternating between warming and testing

modes. In the warming mode (stage three), the engine used a subset of the requests from

each warming set, evaluated them using the simulated PDP, and sent the responses to the

corresponding SDP to build up the cache. Once the desired cache warmness was achieved,

the engine switched into testing mode (stage four) where the SDP cache was not updated

anymore. We used this stage to evaluate the hit rate of each SDP at controlled, fixed levels

of cache warmness. The engine submitted requests from the testing set to all SDPs. If any

SDP could resolve a request, it was a cache hit. The engine calculated the hit rate as the

ratio of the test requests resolved by any SDP to all test requests at the end of this phase.

These last two stages were then repeated for different levels of cache warmness, from 0%

to 100% in increments of 5%.

Simulation results were gathered on a commodity PC with a 2.8 GHz Intel Pentium 4

processor and 1 GB of RAM. The simulation framework was written in Java and ran on

Sun’s 1.5.0 JRE. Experiments used the same cache warmness for each SDP and the same

overlap rate between the inspected SDP and every other cooperating SDP. In particular,

we simulated three overlap rates: 10%, 50%, or 100%. Each experiment was run ten times

and the average results are reported. For a confidence level of 95%, the maximum observed

confidence interval was 2.3% and the average was 0.5%.

Figure 4 shows the results for requests that followed a uniform popularity distribution.

Figure 4(a) shows the dependency of the hit rate on cache warmness and overlap rate.

It compares the hit rate for the case of one SDP, representing SAAM (bottom curve),

with the hit rate achieved by 5 cooperating SDPs. Figure 4(a) suggests that, when cache

warmness was low (around 10%), the hit rate was still larger than 50% for overlap rates of

22



 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

hi
t r

at
e 

(%
)

cache warmness (%)

SAAM
10% overlap
50% overlap

100% overlap

(a) Hit rate as a function of cache warm-

ness for 5 SDPs compared to 1 SDP (i.e.,

SAAM).

 20

 30

 40

 50

 60

 70

 80

 90

 1  2  3  4  5  6  7  8  9  10

hi
t r

at
e 

(%
)

number of SDPs

10% overlap
50% overlap

100% overlap

(b) Hit rate as a function of number of

SDPs at cache warmness of 10%.

 0

 5

 10

 15

 20

 25

 30

 35

 40

 45

 50

 0  20  40  60  80  100

hi
t r

at
e 

im
pr

ov
em

en
t (

%
)

cache warmness (%)

10% overlap
50% overlap

100% overlap

(c) Hit rate improvement of approximate

recycling over precise recycling as a func-

tion of cache warmness when cooperation

is enalbed (5 SDPs).

 0

 20

 40

 60

 80

 100

 0  0.2  0.4  0.6  0.8  1  1.2  1.4  1.6

hi
t r

at
e 

(%
)

alpha

precise recycling
SAAM
CSAR

(d) Hit rate as a function of Zipf coeffi-

cient. When alpha is 0, it is a uniform

distribution.

Figure 4: The impact of various parameters on hit rate. The requests for subfigures (a)—(c)

follow a uniform popularity distribution.

23



50% and up. In particular, when the overlap rate was 100%, CSAR achieved a hit rate of

almost 70% at 10% cache warmness. In reality, low cache warmness can be caused by the

characteristics of the workload, by limited storage space, or by frequently changing access

control policies. For a 10% overlap rate, however, CSAR outperformed SAAM by a mere

10%, which might not warrant the cost of CSAR’s complexity.

Figure 4(b) demonstrates the impact of the number of cooperating SDPs on the hit rate

under three overlap rates. In the experiment, we varied the number of SDPs from 1 to 10,

while maintaining 10% cache warmness at each SDP. As expected, increasing the number

of SDPs led to higher hit rates. At the same time, the results indicate that additional

SDPs provided diminishing returns. For instance, when the overlap rate was 100%, the

first cooperating SDP brought a 14% improvement in the hit rate, while the 10th SDP

contributed only 2%. One can thus limit the number of cooperating SDPs to control the

overhead traffic without losing the major benefits of cooperation. The results also suggest

that in a large system with many SDPs, the impact of a single SDP’s failure on the overall

hit rate is negligible. On the other side, when the overlap rate is small, a large number of

SDPs are still required to achieve a high hit rate.

Figure 4(c) shows the absolute hit rate improvement of approximate recycling over

precise recycling when cooperation was enabled in both cases. We can observe from Fig-

ure 4(c) that the largest improvement occurred when the cache warmness was low. This

was due to the strong inference ability of each SDP even at low cache warmness. When

the overlap rate decreased, the tops of the curves shifted to the right, which implies that,

for a smaller overlap rate, greater cache warmness is needed to achieve more improvement.

In addition, the peak in each curve decreased with the overlap rate. This lowering of the

peak appears to be caused by the reduced room for improvement left to the approximate

recycling. When the overlap rate increased, the hit rate of precise recycling was already

high due to the benefit brought by cooperation.

In the above experiments, the request distribution follows the uniform popularity model,

i.e., requests are randomly picked from the request space. However, the distributions of

requests in the real world might not be uniform. Breslau et al. [6] demonstrate that

24



most Web request distributions follow Zipf’s Law which expresses a power-law relationship

between the popularity P of an item (i.e., its frequency of occurrence) and its rank r (i.e.,

its relative rank among the referenced items, based on frequency of occurrence). This

relationship is of the form P = 1/rα for some constant α.

To study how the request distribution affects hit rate, we also simulated the requests

that follow a Zipf object popularity distribution. In the experiment, we varied the coef-

ficient for α between 0 and 1.5. In the case of Zipf, the distribution of items becomes

less and less skewed with the decrease of α, reaching a completely uniform distribution at

α = 0. We expect real-world distributions of requests to be somewhere in the above range.

We fixed all other parameters—the cache warmness at 10%, the overlap rate at 50%, the

number of SDPs at 5—and varied only α.

Figure 4(d) shows the hit rate as a function of the α for precise recycling, SAAM and

CSAR. It suggests that the hit rate increases along with the α in all three cases. This

is expected because requests repeat more often when alpha increases. When alpha was

1.5, all recycling schemes achieved a nearly 100% hit rate. It is also clear that the hit

rate improvement due to cooperation only was reduced with the increase of α. The reason

appears to be two-fold. First, with requests following Zipf distribution, the hit rate in the

local cache of each SDP was already high, so that there was less room for improvement

through cooperation. Second, unpopular requests had a low probability to be cached by

any SDP. Therefore, the requests that could not be resolved locally were unlikely to be

resolved by other SDPs either.

Summary: The simulation results suggest that combining approximate recycling and

cooperation can help SDPs to achieve high hit rates, even when the cache warmness is low.

This improvement in hit rate increases with SDPs’ resource overlap rate and the number

of cooperating SDPs. We also demonstrate that when the distribution of requests is less

skewed, the improvement in hit rate is more significant.

25



4.2 Prototype-based Evaluation

This section describes the design of our prototype and the results of our experiments. The

prototype system consisted of the implementations of PEP, SDP, DS, PDP, and a test

driver, all of which communicated with each other using Java Remote Method Invocation

(RMI). Each PEP received randomly generated requests from the test driver and called

its local SDP for authorizations. Upon an authorization request from its PEP, each SDP

attempted to resolve this request either sequentially or concurrently. Each SDP maintained

a dynamic pool of worker threads that concurrently queried other SDPs. The DS used a

customized hash map that supported assigning multiple values (SDP addresses) to a single

key (subject/object).

We implemented the PAP and the PCM according to the design described in Section 3.6.

To simplify the prototype, the two components were process-collocated with the PDP.

Additionally, we implemented the selective-flush approach for propagating policy changes.

To support response verification, we generated a 1024-bit RSA key pair for the PDP. Each

SDP had a copy of the PDP’s public key. After the PDP generated a primary response,

it signed the response by computing a SHA1 digest of the response and signing the digest

with its private key. In the following, we present and discuss the results of evaluating the

performance of CSAR in terms of response time, the impact of policy changes on hit rate,

and the integration of CSAR with a real application.

4.2.1 Evaluating Response Time

First we compared the client-perceived response time of CSAR with that of the other two

authorization schemes: without caching and SAAM (without cooperation). We studied

three variations of CSAR: sequential authorization, concurrent authorization and eager

recycling. We also evaluated the impact of response verification on response time in the

case of sequential authorization. We ran experiments in the following three scenarios,

which varied in terms of the network latency among SDPs, and between SDPs and the

PDP:

26



(a) LAN-LAN. SDPs and the PDP were all deployed in the same local area network

(LAN), where the round-trip time (RTT) was less then 1ms.

(b) LAN-WAN. SDPs were deployed in the same LAN, which was separated from the

PDP by a wide area network (WAN). To simulate network delays between SDPs and

the PDP, we added a 40ms delay to each authorization request sent to the PDP.

(c) WAN-WAN. All SDPs and the PDP were separated from each other by a WAN.

Again, we introduced a 40ms delay to simulate delays that possibly occur in both

the remote PDP and remote SDPs.

In the experiments we did not intend to test every combination of scenarios and au-

thorization schemes, but to test those most plausibly encountered ones in the real world.

For example, concurrent authorization and response verification were only enabled in the

WAN-WAN scenario when SDPs were remotely located. Using concurrent authorization

in this scenario can help to reduce the high cost of cache misses on remote SDPs due

to communication costs. In addition, since the requests in such a scenario are obtained

from remote SDPs that might be located in a different administrative domain, response

verification is highly desirable.

The experimental system consisted of a PDP, a DS, and four PEP processes collocated

with their SDPs. Note that although the system contained only one DS instance, this DS

simulated an idealized implementation of a distributed DS where each DS had up-to-date

global state. This DS instance could be deemed to be local to each SDP because the latency

between the DS and the SDPs was less than 1ms and the DS was not overloaded. Each

two collocated PEPs and SDPs shared a commodity PC with a 2.8 GHz Intel Pentium 4

processor and 1 GB of RAM. The DS and the PDP ran on one of the two machines, while

the test driver ran on the other. The two machines were connected by a 100 Mbps LAN. In

all experiments, we made sure that both machines were not overloaded so that they were

not the bottlenecks of the system and did not cause additional delays.

At the start of each experiment, the SDP caches were empty. The test driver maintained

one thread per PEP, simulating one client per PEP. Each thread sent randomly generated

27



 2

 4

 6

 8

 10

 12

 14

 16

 18

 20

 0  1  2  3  4  5  6  7  8  9  10

av
er

ag
e 

re
sp

on
se

 ti
m

e 
(m

s)

number of requests x 1,000

no caching
SAAM
CSAR

CSAR with eager recycling

(a) LAN-LAN: SDPs and the PDP are located in

the same LAN.

 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5  6  7  8  9  10
av

er
ag

e 
re

sp
on

se
 ti

m
e 

(m
s)

number of requests x 1,000

no caching
SAAM
CSAR

CSAR with eager recycling

(b) LAN-WAN: SDPs are located in the same LAN

while the PDP is located in a WAN.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 110

 0  1  2  3  4  5  6  7  8  9  10

av
er

ag
e 

re
sp

on
se

 ti
m

e 
(m

s)

number of requests x 1,000

no caching
SAAM
CSAR

CSAR with response verification

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  1  2  3  4  5  6  7  8  9  10

av
er

ag
e 

re
sp

on
se

 ti
m

e 
(m

s)

number of requests x 1,000

CSAR
CSAR with eager recycling

CSAR with concurrent authorization
CSAR with both of the above

(c) WAN-WAN: SDPs and the PDP are separated by a WAN.

Figure 5: Response time as a function of the number of requests observed by SDPs. The

requests follow a uniform distribution.

28



requests to its PEP sequentially. The test driver recorded the response time for each

request. After every 100 requests, the test driver calculated the mean response time and

used it as an indicator of the response time for that period. We ran the experiment when

the cache size was within 10,000 requests for each SDP at the end, which was one-half

the total number of possible requests. Figures 5(a)–5(c) show the plotted results for 100%

overlap rate. For the sake of better readability, we present the results for WAN-WAN

scenario in two graphs. The following conclusions regarding each authorization scheme

can be directly drawn from these figures:

(i) In the no-caching scheme, SDPs were not deployed and PEPs sent authorization

requests directly to the PDP. In the LAN-LAN scenario, this scheme achieved best

performance since it involved the least number of RMI calls in our implementation.

In the other two scenarios, however, all of the average response times were slightly

higher than 40ms because all requests had to be resolved by the remote PDP.

(ii) In the non-cooperative caching (SAAM) scheme, SDPs were deployed and avail-

able only to their own PEPs. When a request was received, each SDP first tried to

resolve the request locally and then by the PDP. For the LAN-LAN scenario, this

method did not help reduce the latency because in our prototype SDP was imple-

mented as a separate process and each SDP authorization involved an RMI call. In

the other two scenarios, response times decreased consistently with the number of

requests because more requests were resolved locally. Note that the network distance

between SDPs does not affect the results in this and the previous scenario, since

either no caching or no cooperation was involved.

(iii) In the CSAR scheme, SDPs were deployed and cooperation was enabled. When a

request was received, each SDP resolved the request sequentially. For the LAN-LAN

scenario, the response time was the worst because this scenario involved most RMI

calls in our implementation. For the LAN-WAN scenario, using cooperation helped

to slightly reduce the response time compared with the SAAM method, because

resolving requests by other SDPs is cheaper than by the remote PDP. However, this

29



improvement continuously decreases, because more and more requests can be resolved

locally. For the WAN-WAN scenario, using CSAR was worse than using just SAAM

due to the high cost of cache misses on remote SDPs.

(iv) In CSAR with the response verification scheme, each response returned from

remote SDPs was verified. Figure 5(c) shows that the impact of response verification

on response time was small: response time increased by less than 5ms on average.

When the local cache increased, this overhead became smaller since more requests

could be resolved by the local SDP; thus, less verification was involved. Note that the

time for response verification was independent of the testing scenario, which means

that the 5ms verification overhead applied to the other two scenarios. This is why

we did not show verification time in the graphs for the other scenarios.

(v) In CSAR with the eager recycling scheme, the primary responses from the evi-

dence lists of secondary responses were incorporated into each SDP’s local cache. As

expected, eager recycling helped to reduce the response time in all three scenarios,

and the effect was especially significant when the PDP or SDPs were remote, since

more requests can quickly be resolved locally. The maximum observed improvement

in response time over SAAM was by a factor of two. The results also demonstrate

that the response time was reduced only after some time. This is because the evi-

dence lists became useful for eager recycling only after the remote SDPs have cached

a number of requests.

(vi) In CSAR with the concurrent authorization scheme, each SDP resolved the

requests concurrently. Figure 5(c) demonstrates that the response time was signifi-

cantly reduced in the beginning and decreased consistently. The drawback of concur-

rent authorization, however, is that it increases the overhead traffic and causes extra

load on each SDP and the PDP. It could be a subject of future research to study and

try to reduce this overhead.

(vii) In CSAR with both eager recycling and concurrent authorization scheme,

30



 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5  6  7  8  9  10

av
er

ag
e 

re
sp

on
se

 ti
m

e 
(m

s)

number of requests x 1,000

LAN-LAN;100% overlap
LAN-LAN;10% overlap

LAN-WAN;100% overlap
LAN-WAN;10% overlap

(a) CSAR with eager recycling.

 0

 10

 20

 30

 40

 50

 60

 0  1  2  3  4  5  6  7  8  9  10

av
er

ag
e 

re
sp

on
se

 ti
m

e 
(m

s)

number of requests x 1,000

LAN-LAN;100% overlap
LAN-LAN;10% overlap

LAN-WAN;100% overlap
LAN-WAN;10% overlap

(b) CSAR without eager recycling.

Figure 6: Response time comparison between overlap rate of 10% and 100%. The requests

follow a uniform distribution.

both eager recycling and concurrent authorization were enabled. Figure 5(c) shows

that this method achieved the best performance among those tested.

The above conclusions were drawn for 100% overlap rate. For comparison, we also ran

the experiments using 10% overlap rate in LAN-LAN and LAN-WAN scenarios. Figure 6

compares the response times for the CSAR with and without eager recycling. In the LAN-

WAN scenario, the small overlap rate led to increased response time for both schemes

because more requests had to resort to the PDP, and the eager recycling scheme experienced

more increases. On the other hand, in the LAN-LAN scenario, the response time was

reduced in the beginning with the small overlap rate due to the reduced number of RMI

calls, since the SDP sent most requests to the PDP directly rather than first to other SDPs

which could not help.

Summary: The above results demonstrate that although using CSAR with sequential

authorization may generate higher response times, adding eager recycling and/or con-

current authorization helps to significantly reduce the response time. Eager recycling is

responsible for the effective increase of cache warmness, while concurrent authorization

enables SDPs to use the fastest authorization path in the system.

31



4.2.2 Evaluating the Effects of Policy Changes

We also used the prototype to study CSAR’s behavior in the presence of policy changes.

Since the hit rate depends on the cache warmness, and a policy change may result in

removing one or more responses from SDP caches before they expire, we expected that

continual policy changes at a constant rate would unavoidably result in a reduced hit rate;

we wanted to understand by how much.

In all our experiments for policy changes, the overlap rate between SDPs was 100%

and the requests were randomly generated. The test driver maintained a separate thread

responsible for firing a random policy change and sending the policy change message to

the PCM at pre-defined intervals, e.g., after every 100 requests. To measure the hit rate at

run-time, we employed a method similar to the one used during the simulation experiments.

Each request sent by the test driver was associated with one of two modes: warming and

testing, used for warming the SDP caches or testing the cumulative hit rate respectively.

Each experiment switched from the warming mode to the testing mode when a policy

change message was received. After measuring the hit rate right before and after each

policy change, the experiment switched back to the warming mode.

We first studied how the hit rate was affected by an individual policy change, i.e.,

the change of the security label for a single subject or object. We expected that SAAM

inference algorithms were sufficiently robust so that an individual change would result in

only minor degradation of the hit rate. We used just one SDP for this experiment. The

test driver sent 20,000 requests in total. A randomly generated policy change message was

sent to the PDP every 200 requests.

Figure 7(a) shows how the hit rate drops with every policy change. We measured

the hit rate for both approximate recycling (the top two curves) and precise recycling of

authorizations by the SDP. For both types of recycling, the figure shows the hit rate as a

function of the number of observed requests, with policy change (lower curve) or without

policy changes (upper curve). Because the hit rate was measured just before and after each

policy change, every kink in the curve indicates a hit-rate drop caused by a policy change.

32



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  2  4  6  8  10  12  14  16  18  20

hi
t r

at
e 

(%
)

number of requests x 1,000

AR - no policy change
AR - 200 requests/change

PR - no policy change
PR - 200 requests/change

(a) Hit-rate drops with every policy change for both

approximate recycling (AR) and precise recycling

(PR).

 0

 20

 40

 60

 80

 100

 0  10  20  30  40  50  60

hi
t r

at
e 

(%
)

number of requests x 1,000

no policy changes
500 requests/change
200 requests/change
100 requests/change
50 requests/change

(b) Hit rate as a function of number of requests at

various frequencies of policy change.

Figure 7: The impact of policy changes on hit rate with a single SDP. The requests follow

a uniform popularity distribution.

Figure 7(a) indicates that the hit-rate drops are small for both approximate recycling

and precise recycling. For approximate recycling, the largest hit-rate drop was 5%, and

most of the other drops were around 1%. After each drop, the curve climbed again because

the cache size increased with new requests.

Note that the curve for the approximate recycling with policy change is more ragged

than it is for precise recycling. This result suggests, not surprisingly, that approximate

recycling is more sensitive to policy changes. The reason is that approximate recycling

employs an inference algorithm based on a directed acyclic graph. A policy change could

partition the graph or just increase its diameter, resulting in a greater reduction in the hit

rate.

Although the hit-rate drop for each policy change was small, one can see that the

cumulative effect of policy changes could be large. As Figure 7(a) shows, the hit rate

of approximate recycling decreased about 20% in total when the request number reached

20,000. This result led us to another interesting question: Would the hit rate finally

33



 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60

hi
t r

at
e 

(%
)

number of requests x 1,000

10 SDPs
5 SDPs
2 SDPs
SAAM

(a) Hit rate as a function of

number of requests observed

when policy changes every 100

requests.

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 0  10  20  30  40  50  60

hi
t r

at
e 

(%
)

number of requests x 1,000

10 SDPs
5 SDPs
2 SDPs
SAAM

(b) Hit rate as a function of

number of requests observed

when policy changes every 50

requests.

 45

 50

 55

 60

 65

 70

 75

 80

 85

 90

 1  2  3  4  5  6  7  8  9  10

hi
t r

at
e 

(%
)

number of SDPs

50 requests/change
100 requests/change

(c) Comparison of stabilized hit

rates.

Figure 8: The impact of SDP cooperation on hit rate when policy changes. The requests

follow a uniform popularity distribution. The overlap rate between SDPs is 100%.

stabilize at some point?

To answer this question, we ran another experiment to study how the hit rate varied

with continuous policy changes over a longer term. We used a larger number of requests

(60,000), and measured the hit rate after every 1,000 requests. We varied the frequency of

policy changes from 50 to 500 requests per change.

Figure 7(b) shows the hit rates as functions of the number of observed requests, with

each curve corresponding to a different frequency of random policy changes. Because of

the continuous policy change, one cannot see a perfect asymptote of curves. However, the

curves indicate that the hit rates stabilize after 20,000 requests. We can thus calculate

the averages of the hit rates after 20,000 requests and use them to represent the eventual

stabilized hit rate. As we expected, the more frequent the policy changes were, the lower

the stabilized hit rates were, since the responses were removed from the SDP caches more

frequently.

Figure 7(b) also shows that each curve has a knee. The steep increase in the hit rate

before the knee implies that increased requests improve the hit rate dramatically in this

period. Once the number of requests passes the knee, the benefit brought by caching

further requests reaches the plateau of diminishing returns.

34



Finally, we studied how the hit rate under continuous policy changes could benefit

from the cooperation. In these experiments, we varied the number of SDPs from 1 to 10.

Figure 8(a) and Figure 8(b) show hit rates versus the number of requests observed when

the policy changed every 50 and 100 requests. Figure 8(c) compares the eventual stabilized

hit rate for the two frequencies of policy changes. As we expected, cooperation between

SDPs improved the hit rate.

Note that when the number of SDPs increased, the curves after the knee became

smoother. This trend was a direct result of the impact of cooperation on the hit rate:

cooperation between SDPs compensates for the hit-rate drops caused by the policy changes

at each SDP.

Summary: Our results show that the impact of a single policy change on the hit rate

is small, while the cumulative impact can be large. Constant policy changes finally lead

to a stabilized hit rate, which depends on the frequency of the policy change. In any case,

cooperation helps to reduce this impact.

4.2.3 Integration with TPC-W

In this section, we describe the work on integrating CSAR with TPC-W [28], an industry-

standard e-commerce benchmark application that models an online bookstore such as Ama-

zon.com. Our primary goal was to understand the complexity of integrating CSAR with

real applications, and the secondary goal was to study the impact of policy enforcement

on application performance.

A TPC-W deployment consisted of a front-end application server and a database server.

We used Apache Jakarta Tomcat 5.5.4 as the application server and MySQL 5.0 as the

database server. The Java code run by the application server to generate the web pages and

interface with the database was derived from the code freely available from the University of

Wisconsin PHARM project [23], whose code implements both the servlets for the business

logic and a Java remote browser emulator (RBE) for driving the experiment.

Figure 9 shows the system architecture that integrates CSAR with the TPC-W on a

35



single application server. To enforce the access control policy, we added the PEP, the SDP,

the PDP and a policy file to the original TPC-W architecture. The PEP was implemented

as a servlet filter that contained about 100 lines of code. The PEP dynamically intercepted

application requests and used them to generate authorization requests which only included

the information about the subject, object and access right. We assured that every appli-

cation request was intercepted by the PEP, then the authorization request was sent to its

SDP for decision. The PDP and the SDP were reused from our prototype implementation

with only minor changes to the system configuration file.

We modeled three user roles (or se-
RBE application server

Tomcat

PEP TPCW

Image

EB

EB

EB

SDP PDP

database

policy 
file

Figure 9: Adding CSAR-based policy enforce-

ment to TPC-W.

curity labels) in the access control pol-

icy: visitor, customer and administrator.

Each role could access a number of appli-

cation objects. For example, the visitor

could only browse books; the customer

could not only browse books but also buy

books; the administrator could only ac-

cess the administration pages for manag-

ing books.

The experiment used 10 emulated

browsers (EBs) to simulate 10 concurrent users and each EB followed a browsing mix

behavior defined by the TPC-W specification. We used two PCs in the experiments: one

was used for running EBs while the other was used as both application server and database

server. Each experiment lasted 30 minutes. We simulated both remote and local PDPs

as defined in previous sections, and studied the increase in response times introduced by

policy enforcement.

First, we were interested to understand how much time was used for policy enforcement

in our setup. We measure the policy enforcement time as the time between the event that

the PEP receives a requests from the client and the event that the PEP receives a response

from the SDP. Figure 10(a) shows the cumulative distribution of policy enforcement time.

36



 0

 20

 40

 60

 80

 100

 0  20  40  60  80  100

cu
m

ul
at

iv
e 

%

policy enforcement time (ms)

policy enforcement with local PDP
policy enforcement with remote PDP

(a) Cumulative distribution of response time

 0

 10

 20

 30

 40

 50

 60

 70

 80

 90

 100

 0  20  40  60  80  100

cu
m

ul
at

iv
e 

%

response time (ms)

policy enforcement with local PDP
policy enforcement with remote PDP

without policy enforcement

(b) Cumulative distribution of policy enforce-

ment time

Figure 10: The impact of policy enforcement on response time.

For the local PDP, unsurprisingly, almost all policy enforcement times were small, i.e., less

than 10ms. For the remote PDP, 10% of the response times were between 40ms and 50ms,

which means that these requests were resolved by remote PDPs. The fact that the 90%

of enforcement times were less than 10ms even when the PDP was remote, implies a high

hit rate on the SDP, which we believe was due to the access pattern and object space of

the TPC-W application. In this experiment, each emulated session lasted 15 minutes and

client thinking time was 7 seconds, as specified by the TPC-W standard. This means that

in each session each user accessed about 128 pages (a.k.a. objects). On the other hand, the

TPC-W application consists of only 14 unique pages. Combining these two facts, each page

would have been accessed around 9 times in an average session. This behavior unavoidably

led to a high cache hit rate.

Second, we were interested to understand how the policy enforcement affected the

overall TPC-W response time. Figure 10(b) plots the cumulative distribution of overall

TPC-W response times in three scenarios: without policy enforcement, and with policy

enforcement by either a local PDP or remote PDP. Compared with the scenario without

policy enforcement, the following observations can be made: (1) when the PDP was remote,

the average response time increased by 20% since 10% policy enforcement time was between

37



0 and 10ms, and another 10% was between 40ms and 50ms; (2) when the PDP was local, its

curve before 20ms matched the curve of remote SDPs, while its curve after 50ms matched

the curve of no policy enforcement. The reason was that most policy enforcement times

were less than 10ms.

Summary: Our experience shows that the prototype can be easily integrated with the

Java-based TPC-W application. The PEP can be simply implemented as a Java servlet

filter and the other CSAR components require few changes. The results show that the

overhead of policy enforcement is highly dependent on the application’s requests pattern

and object space. In the case of TPC-W, a single SDP achieves a 90% hit rate, thus the

impact on the overall application performance is small. Based on this result, we decided

not to run the experiment with cooperation, as the improvement space for cooperation was

only 10%.

5 Related Work

CSAR is related to several research areas, including authorization caching, collaborative

security, and cooperative caching. This section briefly reviews the work in these fields.

To improve the performance and availability of access control systems, caching has

been employed in a number of commercial systems [17, 11, 20], as well as several academic

distributed access control systems [1, 5]. None of these systems involves cooperation among

caches, and most of them adopt a TTL-based solution to manage cache consistency.

To further improve the performance and availability of access control systems,

Beznosov [3] introduces the concept of recycling approximate authorizations, which ex-

tends the precise caching mechanism. Crampton et al. [9] develop SAAM by introducing

the design of SDP and concrete inference algorithms for BLP model. CSAR builds on

SAAM and extends it by enabling applications to share authorizations. To the best of our

knowledge, no previous research has proposed such cooperative recycling of authorizations.

A number of research projects propose cooperative access control frameworks that in-

volve multiple, cooperative PDPs that resolve authorization requests. Beznosov et al. [4]

38



present a resource access decision (RAD) service for CORBA-based distributed systems.

The RAD service allows dynamically adding or removing PDPs that represent different

sets of polices. In Stowe’s scheme [25], a PDP that receives an authorization request from

PEP forwards the request to other collaborating PDPs and combines their responses later.

Each PDP maintains a list of other trusted PDPs to which it forwards the request. Maz-

zuca [19] extends Stowe’s scheme. Besides issuing requests to other PDPs, each PDP can

also retrieve policy from other PDPs and make decisions locally. These schemes all assume

that a request needs to be authorized by multiple PDPs and each PDP maintains different

policies. CSAR, on the other hand, focuses on the collaboration of PEPs and assumes that

they enforce the same policy. This is why we consider these schemes to be orthogonal to

ours.

Our research can be considered a particular case of a more general direction, known as

collaborative security. This direction aims at improving security of a large distributed sys-

tem through the collaboration of its components. A representative example of collaborative

security is collaborative application communities [18], in which applications collaborate on

identifying previously unknown flaws and attacks and notifying each other. Another ex-

ample is Vigilante [8], which enables collaborative worm detection at end hosts, but does

not require hosts to trust each other. CSAR can be viewed as a collaborative security since

different SDPs collaborate on resolving authorization requests to mask PDP failures or to

improve performance.

Outside of the security domain, cooperative web caching is another related area. Web

caching is a widely used technique for reducing the latency observed by web browsers, de-

creasing the aggregate bandwidth consumption of an organization’s network, and reducing

the load on web servers. Several projects have investigated decentralized, cooperative web

caching (please refer to [30] for a survey). Our approach differs from them in the following

three aspects. First, CSAR supports approximate authorizations that are not pre-cached

and must be computed dynamically. Second, the authorizations from other SDPs need to

be verified to ensure authenticity, integrity and correctness. Third, CSAR supports various

consistency requirements.

39



6 Conclusion

As distributed systems scale up and become increasingly complex, their access control

infrastructures face new challenges. Conventional request-response authorization architec-

tures become fragile and scale poorly to massive scale. Caching authorization decisions

has long been used to improve access control infrastructure availability and performance.

In this paper, we build on this idea and on the idea of inferring approximate authorization

decisions at intermediary control points, and propose a cooperative approach to further

improve the availability and performance of access control solutions. Our cooperative sec-

ondary authorization recycling approach exploits the increased hit rate offered by a larger,

distributed cooperative cache of access control decisions. We believe that this solution

is especially practical in distributed systems involving cooperating parties or replicated

services, due to the high overlap in their user/resource spaces and the need for consistent

policy enforcement.

This paper defines CSAR system requirements, and presents a detailed design that

meets these requirements. We have introduced a response verification mechanism that

does not require cooperating SDPs to trust each other. Cache consistency is managed by

dividing all of the policy changes into three categories and employing efficient consistency

techniques for each category.

A decision on whether to deploy CSAR depends on a full cost-benefit analysis informed

by application- and business-specific factors, for example, the precise characteristics of

the application workload and deployment environment, an evaluation of the impact of

system failures on business continuity, and an evaluation of the complexity associated

costs of the access control system. To inform this analysis, we have evaluated CSAR’s

application-independent benefits: higher system availability by masking network and PDP

failures through caching, lower response time for the access control subsystem, and in-

creased scalability by reducing the PDP load; and costs: computational and generated

traffic overheads.

The results of our CSAR evaluation suggest that even with small caches (or low cache

40



warmness), our cooperative authorization solution can offer significant benefits. Specifi-

cally, by recycling secondary authorizations between SDPs, the hit rate can reach 70% even

when only 10% of all possible authorization decisions are cached at each SDP. This high

hit rate results in more requests being resolved by the local and cooperating SDPs, thus

increasing availability of the authorization infrastructure and reducing the load on the au-

thorization server. In addition, depending on the deployment scenario, request processing

time is reduced by up to a factor of two, compared with solutions that do not cooperate.

References

[1] Lujo Bauer, Scott Garriss, and Michael K. Reiter. Distributed proving in access-

control systems. In Proceedings of the 2005 IEEE Symposium on Security and Privacy,

pages 81–95, Oakland, CA, 2005.

[2] D. E. Bell and L. J. LaPadula. Secure computer systems: Mathematical foundations.

Technical Report ESD-TR-74-244, MITRE, March 1973.

[3] Konstantin Beznosov. Flooding and recycling authorizations. In Proceedings of the

New Security Paradigms Workshop (NSPW), pages 67–72, Lake Arrowhead, CA, USA,

20-23 September 2005.

[4] Konstantin Beznosov, Yi Deng, Bob Blakley, Carol Burt, and John Barkley. A resource

access decision service for CORBA-based distributed systems. In Annual Computer

Security Applications Conference, pages 310–319, Phoenix, Arizona, USA, 1999.

[5] Kevin Borders, Xin Zhao, and Atul Prakash. CPOL: high-performance policy evalua-

tion. In Proceedings of the 12th ACM conference on Computer and Communications

Security (CCS), pages 147–157, New York, NY, USA, 2005. ACM Press.

[6] Lee Breslau, Pei Cao, Li Fan, Graham Phillips, and Scott Shenker. Web caching and

Zipf-like distributions: Evidence and implications. In Proceedings of the Conference

on Computer Communications (INFOCOM), pages 126–134, 1999.

41



[7] Eric A. Brewer. Towards robust distributed systems. In (Invited Talk) PODC, Port-

land, Oregon, 2000.

[8] Manuel Costa, Jon Crowcroft, Miguel Castro, Antony Rowstron, Lidong Zhou, Lintao

Zhang, and Paul Barham. Vigilante: End-to-end containment of Internet worms. In

Proceedings of the 2005 SOSP, Brighton, UK, 2005.

[9] Jason Crampton, Wing Leung, and Konstantin Beznosov. Secondary and approximate

authorizations model and its application to Bell-LaPadula policies. In Proceedings of

the 11th ACM Symposium on Access Control Models and Technologies (SACMAT),

pages 111–120, Lake Tahoe, CA, USA, June 7–9 2006.

[10] Linda G. DeMichiel, L. Ümit Yalçinalp, and Sanjeev Krishnan. Enterprise JavaBeans

Specification, Version 2.0. Sun Microsystems, 2001.

[11] Entrust. GetAccess design and administration guide. Technical report, Entrust,

September 20 1999.

[12] Li Fan, Pei Cao, Jussara Almeida, and Andrei Z. Broder. Summary cache: a scalable

wide-area web cache sharing protocol. IEEE/ACM Trans. Netw., 8(3):281–293, 2000.

[13] Syam Gadde, Jeff Chase, and Michael Rabinovich. A taste of crispy Squid. In Pro-

ceedings of the 1998 Workshop on Internet Server Performance, pages 129–136, June

1998.

[14] Seth Gilbert and Nancy Lynch. Brewer’s conjecture and the feasibility of consistent,

available, partition-tolerant web services. SIGACT News, 33(2):51–59, 2002.

[15] B.W. Johnson. Fault-tolerant computer system design, chapter An introduction to the

design and analysis of fault-tolerant systems, pages 1–87. Prentice-Hall, Inc., Upper

Saddle River, NJ, USA, 1996.

[16] Zbigniew Kalbarczyk, Ravishankar K. Lyer, and Long Wang. Application fault toler-

ance with Armor middleware. IEEE Internet Computing, 9(2):28–38, 2005.

42



[17] G. Karjoth. Access control with IBM Tivoli Access Manager. ACM Transactions on

Information and Systems Security, 6(2):232–57, 2003.

[18] Michael Locasto, Stelios Sidiroglou, and Angelos D. Keromytis. Software self-healing

using collaborative application communities. In Proceedings of the 2006 NDSS, pages

95–106, San Diego, CA, 2006.

[19] Paul J. Mazzuca. Access control in a distributed decentralized network: an XML

approach to network security using XACML and SAML. Technical report, Dartmouth

College, Computer Science, Spring 2004.

[20] Netegrity. Siteminder concepts guide. Technical report, Netegrity, 2000.

[21] V. Nicomette and Y. Deswarte. An authorization scheme for distributed object sys-

tems. In Proceedings of the 1997 IEEE Symposium on Security and Privacy, pages

21–30, Oakland, CA, 1997.

[22] OMG. Common object services specification, security service specification v1.8, 2002.

[23] Pharm. Java TPC-W implementation distribution.

http://www.ece.wisc.edu/ pharm/tpcw.shtml, 2003.

[24] Securant. Unified access management: A model for integrated web security. Technical

report, Securant Technologies, June 25 1999.

[25] Geoffrey H. Stowe. A secure network node approach to the policy decision point in

distributed access control. Technical report, Dartmouth College, Computer Science,

June 2004.

[26] Paul Strong. How Ebay scales with networks and the challenges. In the 16th IEEE In-

ternational Symposium on High-Performance Distributed Computing, Monterey, CA,

USA, 2007. Invited talk.

43



[27] Renu Tewari, Michael Dahlin, and Harrick Vin. Design considerations for distributed

caching on the Internet. In Proceedings of the 19th IEEE International Conference on

Distributed Computing Systems, page 273, Washington, DC, USA, 1999.

[28] TPC. TPC-W: Transactional web benchmark version 1.8. http://www.tpc.org/tpcw/,

2002.

[29] Werner Vogels. How wrong can you be? Getting lost on the road to massive scalability.

In the 5th International Middleware Conference, Toronto, Canada, October 20 2004.

Keynote address.

[30] Jia Wang. A survey of web caching schemes for the Internet. SIGCOMM Comput.

Commun. Rev., 29(5):36–46, 1999.

[31] XACML-TC. OASIS eXtensible Access Control Markup Language (XACML) version

2.0. OASIS Standard, 1 February 2005.

44


	Introduction
	Secondary and Approximate Authorization Model (SAAM)
	Cooperative Secondary Authorization Recycling (CSAR)
	Design Requirements
	System Architecture
	Discovery Service
	Adversary Model
	Mitigating Threats
	Consistency
	Eager Recycling

	Evaluation
	Simulation-based Evaluation
	Prototype-based Evaluation
	Evaluating Response Time
	Evaluating the Effects of Policy Changes
	Integration with TPC-W


	Related Work
	Conclusion
	References

