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ABSTRACT
As distributed applications increase in size and complexity, tradi-
tional authorization mechanisms based on a single policy decision
point are increasingly fragile because this decision point represents
a single point of failure and a performance bottleneck. Authoriza-
tion recycling is one technique that has been used to address these
challenges.

This paper introduces and evaluates the mechanisms for autho-
rization recycling in RBAC enterprise systems. The algorithms that
support these mechanisms allow precise and approximate autho-
rization decisions to be made, thereby masking possible failures of
the policy decision point and reducing its load. We evaluate these
algorithms analytically and using a prototype implementation. Our
evaluation results demonstrate that authorization recycling can im-
prove the performance of distributed access control mechanisms.
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1. INTRODUCTION
Modern access control solutions [2, 6, 9, 10, 14, 17, 19, 25, 26]

are based on the request-response paradigm illustrated in Figure 1.
In this paradigm, a policy enforcement point (PEP) intercepts ap-
plication requests, obtains access control decisions (a.k.a. autho-
rizations) from a policy decision point (PDP), and enforces these
decisions.
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Figure 1: Access control based on request-response paradigm.

In the large enterprise systems currently deployed, PDPs are
commonly implemented as logically centralized authorization
servers. This design provides important benefits: consistent pol-
icy enforcement across multiple PEPs and reduced administration
cost for authorization policies. Like all centralized architectures,
however, this architecture has two critical drawbacks: the PDP is a
single point of failure and a potential performance bottleneck.

The single point of failure property of the PDP leads to reduced
availability: the authorization server may not be reachable due to
a failure (transient, intermittent, or permanent) of the network, of
the software located in the critical path (e.g., the operating system),
of the hardware, or even due to or as a result of a misconfigura-
tion of the supporting infrastructure. A conventional approach to
improving the availability of a distributed infrastructure is failure
masking through redundancy (either information, time, or physi-
cal [12]). However, redundancy and other general purpose fault-
tolerance techniques for distributed systems scale poorly, and be-
come technically and economically infeasible when the number of
entities in the system reaches thousands [13, 29]. At the same time,
large-scale commodity computing is becoming a reality, with eBay
having 12,000 servers and 15,000 application server instances [27],
and Google estimated to have “more than 450,000 servers spread
in at least 25 locations around the world” [15].

In a massive-scale enterprise system with non-trivial authoriza-
tion policies, making authorization decisions is often computation-
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Figure 2: SAAM adds SDP to the request-response paradigm.

ally expensive due to the complexity of the policies involved and
the large size of the resource and user populations. Thus, the cen-
tralized PDP often becomes a performance bottleneck [18]. Addi-
tionally, the communication delay between the PEP and the PDP
can make the authorization overhead prohibitively high.

To address the aforementioned drawbacks, one possible ap-
proach could be for the PDP to push policies to each PEP so that
they can make authorizations locally. However, this is rarely done
in enterprise-grade deployments. We speculate that the tendency
towards the centralization of authorization decisions is due to the
complexity of authorization logic and the cost of keeping up to date
user, attribute, and permission data in multiple PEPs. The state-of-
the-practice approach to improving overall system availability and
reducing the authorization processing delays observed by the client
is to cache authorizations at each PEP—what we refer to as au-
thorization recycling. Existing authorization solutions commonly
provide PEP-side caching [2, 6, 10, 14, 17, 26]. These solutions,
however, only employ a simple form of authorization recycling: a
cached authorization is reused only if the authorization request in
question exactly matches the original request for which the autho-
rization was made. We refer to such reuse as precise recycling.

To improve authorization system availability and reduce delay,
Crampton et al. [8] propose the Secondary and Approximate Au-
thorization Model (SAAM). SAAM adds a secondary decision
point (SDP) to the request-response paradigm, as shown in Fig-
ure 2. The SDP is collocated with the PEP and can resolve
authorization requests not only by precise recycling but also by
computing approximate authorizations from cached authorizations.
SAAM is independent of the specifics of the application and ac-
cess control policy. For each class of access control policies,
however, specific algorithms for inferring approximate responses—
generated according to a particular access control policy—need to
be designed.

In this paper, we propose SAAMRBAC—the SAAM authorization
recycling algorithm for role-based access control (RBAC) model.
Introduced more than a decade ago, RBAC [11, 23] has been de-
ployed in many organizations for access control enforcement and
eventually matured into the ANSI RBAC standard [1]. In RBAC,
instead of directly assigning permissions to users, the users are as-
signed to roles and the roles are mapped to permissions. Roles nor-
mally represent the organizational position that is responsible for
certain job functions. Users are assigned appropriate roles accord-
ing to their qualifications. Permissions are a set of many-to-many
relations between objects and operations. Roles describe the rela-

tionship between users and permissions. Our inference algorithm
makes use of this structure to infer approximate authorizations for
new requests.

This paper makes the following two contributions. First, we
develop SAAMRBAC, an application of SAAM to RBAC systems.
We define inference rules specific to RBAC authorization seman-
tics and develop the recycling algorithms based on these rules. We
construct three algorithms: the first caches authorization responses
from the PDP and represents them as a compact data structure; the
second uses this data structure to generate secondary (precise or ap-
proximate) responses; the third handles policy changes by updating
the data structure. We show that the computational complexity of
the algorithms is bound by the cache size and the number of roles
in the system.

Second, we implement SAAMRBAC algorithms and evaluate their
properties using an experimental testbed with 100 subjects, 3,000
permissions and 50 roles. Evaluation results demonstrate a 74%
increase, compared to precise recycling, in the number of autho-
rization requests that can be served without consulting access con-
trol policies. These results suggest that deploying SAAMRBAC im-
proves the availability and scalability of RBAC systems, which in
turn improves the performance of the enterprise systems.

The rest of this paper is organized as follows. Section 2
presents background, including SAAM and RBAC. Section 3 de-
scribes SAAMRBAC design. Section 4 reports results of evaluating
SAAMRBAC. Section 5 discusses related work. We conclude in
Section 6.

2. BACKGROUND
This section provides background on SAAM and ANSI RBAC

that is necessary for understanding the rest of the paper.

2.1 Secondary and Approximate
Authorization Model

SAAM [8] is a general framework for making use of cached PDP
responses to compute approximate responses for new authorization
requests. An authorization request is a tuple (s, o, a, c, i), where
s is the subject, o is the object, a is the access right, c is the re-
quest contextual information, and i is the request identifier. Two
requests are equivalent if they only differ in their identifiers. An au-
thorization response is a tuple (r, i, E, d), where r is the response
identifier, i is the corresponding request identifier, d is the decision,
and E is the evidence. The evidence can be used in some SAAM
implementations to aid the response verification.

In addition, SAAM defines primary, secondary, precise, and ap-
proximate authorization responses. A primary response is a re-
sponse made by the PDP, whereas a secondary response is pro-
duced by an SDP. A response is precise if it is a primary response
to the request in question or a (secondary) response to an equiva-
lent request. Otherwise, if the SDP infers the response based on
primary responses to other requests, the response is approximate.

In general, the SDP infers approximate responses based on
cached primary responses and any information that can be deduced
from the application request and system environment. The larger
the number of cached responses, the more information is available
to the SDP. As more and more PDP responses are cached, the SDP
will become a better and better PDP simulator.

We say an SDP is safe if any request it allows would also be
allowed by the PDP [8]. A safe SDP returns either undecided or
deny for any request for which it cannot infer an allow response.
A safe SDP can be configured or designed to implement a closed
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world policy1 by simply denying any request that it cannot evaluate.
More generally, we allow the SDP to return an undecided response;
it is then up to the PEP to decide how such a response should be
handled. In most cases, the PEP will deny the request, thereby
“failing safe”—one of the important principles identified by Saltzer
and Schroeder [22]. We say an SDP is consistent if any request it
denies would also be denied by the PDP.

In general, one would wish to implement a safe and consistent
SDP, which returns the same response as the PDP would have for
any request that it can evaluate. Clearly, any SDP that only re-
turns precise decisions—by only returning responses for equiva-
lent requests for which decisions have been cached—is safe and
consistent. However, such an SDP is rather limited. SAAM seeks
to extend the functionality of the SDP so that it can generate ap-
proximate responses and remain safe and consistent. However, the
limitations of the underlying access control policy, time or space
complexity of the inference algorithms, or business requirements
could limit an SDP implementation to being either safe or consis-
tent, but not both.

2.2 Role-based Access Control
There are a number of RBAC models in the literature, including

RBAC96 [23] and the ANSI RBAC standard [1]. All such models
assume the existence of a set of users U , a set of roles R and a
set of permissions P . They also assume the existence of a user-role
assignment relation UA ⊆ U×R and a permission-role assignment
relation PA ⊆ P × R. A user u is authorized for a permission
p ∈ P if there exists a role r ∈ R such that (u, r) ∈ UA and
(p, r) ∈ PA.

Many models also assume the existence of a role hierarchy RH ,
which is modeled as a partial order on the set of roles. That is
RH ⊆ R × R, where RH is reflexive, anti-symmetric and transi-
tive. It is customary to write r 6 r′ rather that (r, r′) ∈ RH . In
this case, u is authorized for p if there exist roles r, r′ ∈ R such
that (u, r) ∈ UA, r > r′ and (p, r′) ∈ PA.

The other important innovation in RBAC96 and ANSI RBAC is
the concept of sessions. A user initiates a session (typically when
authenticating to the system) by activating some subset of the roles
to which he is assigned. Access requests are evaluated in the con-
text of the session that initiates the request. A request for permis-
sion p is granted if the user session contains a role r and there exists
a role r′ such that r > r′ and (p, r′) ∈ PA.

3. SAAMRBAC

SAAMRBAC applies SAAM concepts to RBAC systems. In a sys-
tem using SAAMRBAC, the SDP caches authorization requests and
the corresponding authorization decisions, and computes new au-
thorization decisions based on the cache when the PDP is unable to
make a timely decision. As these decisions are not obtained from
the PDP, they are by necessity secondary. In this section we present
the algorithms that should be employed by an SDP in the context
of RBAC systems. We show that an SDP that implements these
algorithms will make safe and consistent secondary decisions.

3.1 Preliminaries
We must first consider how to map the notions of subject and

request in SAAM to appropriate concepts in RBAC. The notion of
session is important in RBAC96 and ANSI RBAC: by activating
a strict subset of the roles to which she is authorized, a user may
limit the privileges that she can exercise while interacting with a

1A closed world policy allows a request if there exists an allow
response for it, and denies it otherwise.

computer system. It is a session that is synonymous with a subject
in identity-based access control systems, since access decisions are
made on the basis of the permissions that are available to the acti-
vated roles. Accordingly, we model a subject as a set of roles.

We assume that access requests made to the SDP (and the PDP)
include the set of roles, this information being supplied by the
PEP. We also assume that the SDP does not have access to the
permission-role assignment relation or the role hierarchy relation.
It is the job of the SDP to try to reconstruct relationships between
permissions and roles on the basis of information that can inferred
from primary responses to previous requests. The SDP does not try
to reconstruct hierarchical relationships between roles.

RBAC96 treats permissions as “uninterpreted symbols”, because
such entities are very likely to be application and context specific.
However, ANSI RBAC defines permissions to be object-operation
pairs. It seems appropriate to regard a SAAM request (s, o, a, c, i)
and an RBAC request (s, p, c, i) as equivalent, where p = (o, a).
For simplicity, we omit c and i in the remainder of the paper.

A response (r, i, E, d) indicates the decision to a request (s, p).
For simplicity, we omit r, E and i in the remainder of the paper,
and use ± to denote d. That is, we write +q to denote a response
that allows request q, and −q to denote a response that denies q.
More specifically, +(s, p) means that there exists role r ∈ s such
that (r, p) ∈ PA and −(s, p) means that there does not exist such
an r.

3.2 Building the cache
Using the notation from the previous section, we first note the

following rules that can be applied to generate approximate re-
sponses.

Rule+ if +(s, p) and s′ ⊇ s, then request (s′, p) should be
granted;

Rule− if−(s, p) and s′ ⊆ s, then request (s′, p) should be denied.

Rule+ follows from the fact that if some permission p is granted for
the set of roles s, then there exists r ∈ s such that r is authorized
for p, and r ∈ s′ for any s′ ⊇ s. Rule− follows from the fact
that if p is denied for the set of roles s, then there does not exist
r ∈ s such that r is authorized for p; trivially, no subset of s will
be authorized for p.

We construct two relations Cache+ ⊆ 2R × P and Cache− ⊆
2R × P to generate approximate responses. The basic idea is to
use primary deny responses to build Cache− and primary allow
responses to build Cache+.

A primary response −(s, p) means that we can deduce that cer-
tain roles are definitely not authorized for permission p. Hence,
(s, p) ∈ Cache− is used to record the fact that no element of s is
authorized for p. A subsequent (primary) response −(s′, p) means
that no role in s′ is authorized for p. Hence, we can simply up-
date Cache− by replacing (s, p) with (s ∪ s′, p). In other words,
we may assume that there exists at most one entry containing p in
Cache−.

In contrast, a primary response +(s, p) can only be used to infer
that at least one role in s is authorized for p. A subsequent response
+(s′, p) can not be “merged” with the information from +(s, p).
Therefore, we simply add +(s′, p) to Cache+.

The full algorithm (C) for constructing the cache relations is
shown in Figure 3(a). Note that in line 3C, which handles nega-
tive primary responses, we can delete any roles in s from sets of
roles that had previously been authorized for p (that is, tuples in
Cache+). Analogously, in line 12C we can delete any roles from s
that are known not to be authorized for p. Note that if we know s is
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Input: response q
1C: AddResponse(q)
2C: if q = −(s, p) then
3C: replace each (s+, p) ∈ Cache+ with (s+ − s, p)a

4C: if (s−, p) ∈ Cache− then
5C: replace it with (s ∪ s−, p)
6C: else
7C: add (s, p) to Cache−

8C: end if
9C: else // we know that q = +(s, p)
10C: find (s−, p) ∈ Cache−

11C: delete all (s+, p) ∈ Cache+ s.t. s− s− ⊆ s+
12C: add (s− s−, p) to Cache+

13C: end if

a“s+ − s” denotes the set of roles in s+ that are not in s.
(a) C: The cache construction algorithm

Input: request (s, p)

1D: EvaluateRequest(s, p)
2D: if s ⊆ s−, where (s−, p) ∈ Cache− then
3D: return deny
4D: else if there exists (s+, p) ∈ Cache+ s.t. s+ ⊆ s then
5D: return allow
6D: else
7D: return undecided
8D: end if

(b) D: The decision algorithm

Figure 3: SAAMRBAC algorithms

authorized for p, then any superset of s is also authorized. Accord-
ingly, line 11C is used to prune redundant tuples from Cache+.

3.3 Generating approximate responses
Figure 3(b) shows the decision algorithm (D) for generating an

approximate response, which follows directly from rules Rule+

and Rule−. It is worth noting that although the SDP does not
explicitly store primary responses, it will always return the same
response as the PDP for any requests whose decisions have been
included in the cache relations. More formally, we have the follow-
ing result.

PROPOSITION 1. Suppose the PDP has produced a response
for request (s, p). Then an SDP that implements the construction
and decision algorithms in Figure 3 will produce the same response
as the PDP for request (s, p).

PROOF. First note that lines 3C and 12C imply that if (t−, p) ∈
Cache− and (t+, p) ∈ Cache+, then t− ∩ t+ = ∅.

Suppose there exists a primary allow response for (s, p). Then
(s+, p) ∈ Cache+ for some s+ ⊆ s (by lines 10C–12C). There-
fore, using lines 4D–5D, the SDP will return an allow response for
the request (s, p). (Note that the algorithm cannot return deny as
this would imply that (s−, p) ∈ Cache− for some s− ⊆ R and
s ⊆ s−. Hence, we would have s+ ⊆ s ⊆ s−, but we know by the
observation in the previous paragraph that s+ ∩ s− = ∅.)

Conversely, if there exists a primary deny response for (s, p),
then (s−, p) ∈ Cache− for some s− ⊇ s. Hence, by lines 2D–
3D, the SDP will return a deny response for request (s, p).

LEMMA 1. An SDP that implements the construction and deci-
sion algorithms is safe and consistent.

PROOF. We need to show that if the SDP produces a secondary
response for request (s, p), then that response is the one that would
be produced by the PDP.

Suppose that the SDP produces the response −(s, p). Then
(s−, p) ∈ Cache− and s ⊆ s− (by lines 2D–3D). By construc-
tion of Cache−, for each r ∈ s−, r is not authorized for p. Hence,
the PDP would return −(s, p).

Suppose that the SDP produces the response +(s, p). Then (by
lines 4D–5D) there exists (s+1 , p) ∈ Cache+ such that s ⊇ s+1 .
Moreover, there exists at least one r ∈ s+1 such that r is authorized
for p, since the existence of (s+1 , p) in Cache+ implies the exis-
tence of a primary response +(s+2 , p), where s+2 ⊇ s

+
1 . Hence, the

PDP would return +(s, p).

3.4 Example
Suppose Cache− and Cache+ are empty and the following pri-

mary responses are obtained from the PDP:

− ({r1, r2}, p),+({r2, r3, r4}, p),
+ ({r4, r5, r6}, p),−({r4, r7}, p)

Table 1 illustrates how Cache− and Cache+ develop as these
responses are processed by the SDP. Notice how r4 is removed
from both tuples in Cache+ once the primary deny response
−({r4, r7}, p) is processed.

Response Cache+ Cache−

−({r1, r2}, p) ({r1, r2}, p)
+({r2, r3, r4}, p) ({r3, r4}, p) ({r1, r2}, p)
+({r4, r5, r6}, p) ({r3, r4}, p), ({r1, r2}, p)

({r4, r5, r6}, p)
−({r4, r7}, p) ({r3}, p), ({r1, r2, r4, r7}, p)

({r5, r6}, p)

Table 1: Building Cache+ and Cache− from primary re-
sponses

Note also that the final contents of Cache− and Cache+ are
independent of the order in which primary responses are received.
If, for example, we reverse the order of the last two responses, we
find that r4 is added to Cache− a step earlier and that r4 does not
appear with r5 and r6 in a tuple in Cache+.

Now suppose we wish to generate secondary responses for
the following requests: (1) ({r3, r4}, p), (2) ({r1, r4, r7}, p),
(3) ({r1, r5}, p).

• The SDP returns an allow response for request (1) because
({r3}, p) ∈ Cache+.

• The SDP returns a deny response for request (2) because
({r1, r2, r4, r7}, p) ∈ Cache−.

• The SDP returns an undecided response for request (3).

3.5 Discussion
Suppose p is assigned to roles r1, . . . , rk, and that there are n

users u1, . . . , un with ui assigned to roles si ⊆ R. Now a user
ui may request p using a session comprising any subset of si. In
principle, therefore, Cache− may contain (s−, p), where s− ⊆
R− {r1, . . . , rk}, and Cache+ may contain (s+, p), where s+ ⊆
si for some i.
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3.5.1 Secondary response rate
Let us suppose, then, that (s+1 , p), . . . , (s

+
m, p) ∈ Cache+ and

(s−, p) ∈ Cache−. Then the probability that we can produce an
approximate response (a “hit”) for request (s, p) is the probability
that the SDP either returns deny or returns allow. The SDP returns
allow if s ⊇ s+i for some i, and the probability that s ⊇ s+i is

2|R|−|s
+
i |

2|R|
=

1

2|s
+
i |

The SDP returns deny if s ⊆ s−, and the probability that s ⊆ s−

is

2|s
−|

2|R|

Hence, the probability that we have a hit is

2|s
−|

2|R|
+

m∑
i=1

1

2|s
+
i |

As one would expect, this value depends on the sizes of s− and
s+1 , . . . s

+
m. In particular, as the size of s− increases and the sizes

of s+i decrease, the probability of a hit is increased. It can be seen
from the construction algorithm that the effect of receiving a pri-
mary response (whether it is an allow or deny response) is to either
increase the size of s− or decrease the size of s+i (or both). In other
words, increasing the cache size will increase the hit rate.

It is worth noting that it is advantageous to have negative pri-
mary responses in the cache, because these affect both Cache+

and Cache−. If there have only been allow primary responses,
then Cache− = ∅ and hits can only be obtained from secondary
allow responses.

For a cache of fixed size, it is advantageous to have s− large and
s+i small. It is easy to see that s− will be large if the number of roles
to which p is assigned is small and there have been a large number
of requests for p that have been denied (by the PDP). We can ensure
that s+i is small by assigning each user to a small number of roles.

Alternatively, we are likely to get a hit if there is a significant
amount of overlap between the sets of roles assigned to different
users. This situation arises when each user is assigned to a signif-
icant fraction of the available roles. In summary, we would expect
probability of a hit (the “hit rate”) to increase when users are as-
signed either to a small number of roles or to a significant propor-
tion of the roles available. We sought to confirm these expectations
by experiment, the results of which are reported in Section 4.

3.5.2 Performance considerations
Clearly, the number of tuples in Cache− is bounded by |P |,

while the number of tuples in Cache+ is bounded by |P | 2|R|. A
secondary deny response can be computed in time proportional to
|R|2, as we simply need to determine whether the requesting set of
roles is a subset of the roles contained in s−. Therefore, the number
of primary deny responses is unlikely to have a significant effect
on performance. However, the time taken to compute a secondary
allow response grows with the number of primary allow responses.

The time taken by the construction algorithm to process a pri-
mary response is proportional to the size of Cache−. In the case of
a deny response, it is necessary to check each tuple in Cache+ and
remove any roles that formed part of the denied request (line 3C).
In the case of an allow response, we check to see whether each
tuple has been made redundant by the new information (line 11C).

However, we note that the existence of redundant tuples in
Cache+ does not compromise the ability of the SDP to compute
correct secondary responses, although it may degrade the response

time. Therefore, we could periodically purge Cache+ of redun-
dant tuples, rather than delete them as new primary responses are
added, thereby improving the processing time for primary allow
responses.

In summary, it is easier to incorporate new primary allow re-
sponses into the cache rather than deny responses, but it is harder
to produce secondary allow responses than deny responses. Again,
we investigate some of these aspects in Section 4.

3.6 Handling policy changes
A real enterprise authorization system must support changes to

security policies. If the access control policy changes and the SDP
is not updated accordingly, the SDP may make incorrect decisions.
In this paper, we only consider those changes that involve modi-
fication of PA and leave changes that also involve R or RH for
future work. In regards to PA, we considered the following two
basic cases.

• A permission p is assigned to a role r: that is, (p, r) is added
to PA.

If the cache is not updated, the SDP may make false negative
decisions for some requests for p, because it may compute
deny decisions for those requests that are allowed by the PDP.
To avoid this, r needs to be removed from Cache− as well
as added to Cache+.

• A permission p is revoked from a role r: that is, (p, r) is
removed from PA.

If the cache is not updated, the SDP may make false positive
decisions, because it may compute allow decisions to those
requests that are denied by the PDP. To avoid this, r needs to
be added to Cache− as well as removed from Cache+.

We signal policy updates to the SDP by passing “artificial” re-
sponses from the PDP to the SDP. Specifically: when (p, r) is
added to PA, the SDP need only process a (primary) response
+({r}, p); and when (p, r) is removed from PA, the SDP need
only process a (primary) response −({r}, p). These responses are
“artificial” in the sense that they are not generated as a result of a
genuine request. In order to distinguish them from normal primary
responses, we call them policy update responses. When the SDP
receives a policy update response, it will invoke the cache update
algorithm (shown in Figure 4), rather the cache construction algo-
rithm.

The full algorithm for updating the cache relations to deal with
updates to PA is shown in Figure 4. Comparing it with the cache
construction algorithm (Figure 3(a)), we note that there are two
main differences. First, if p is revoked from r, it is not sufficient
to remove r from each tuple in the Cache+; instead, all tuples
in Cache+ that contain r need to be removed (line 3U). This is
because we can not assume that any of the remaining roles in the
tuple are authorized for p. Second, if p is assigned to r, we must
delete r from the set of roles in Cache− (line 13U), since we know
that r is authorized for p.2

The similarity between the construction and update algorithms
means that they can easily be merged to form a single algorithm,
in which different branches of the program are selected according
to the type of response (normal or policy update) that is being pro-
cessed. We have presented the algorithms separately for ease of
exposition.
2Note line 15U is used to remove redundancy from Cache+: as for
the construction algorithm, this step may be omitted and Cache+

periodically purged of redundant tuples instead.
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Input: policy update response q
1U: UpdateCache(q)
2U: if q = −({r}, p) then
3U: remove those (s+, p) ∈ Cache+ for which r ∈ s+
4U: if (s−, p) ∈ Cache− then
5U: replace it with (s− ∪ {r}, p)
6U: else
7U: add ({r}, p) to Cache−

8U: end if
9U: end if
10U: if q = +({r}, p) then
11U: find (s−, p) ∈ Cache−

12U: if r ∈ s− then
13U: replace it with (s− − {r}, p)
14U: end if
15U: delete all (s+, p) ∈ Cache+ such that r ∈ s+
16U: add ({r}, p) to Cache+

17U: end if

Figure 4: U: cache update algorithm

There are two ways in which policy update responses can be
propagated to SDPs: they can be sent by the PDP to each SDP im-
mediately after a policy update or they can be sent in addition to a
particular PEP (and associated SDP) in response to a request from
that PDP. The former method requires the PDP to initiate communi-
cation between itself and the PEP, something that may not be com-
patible with the existing protocols within the authorization infras-
tructure. Hence, it may well be appropriate for the policy update
responses to “piggy-back” on primary responses from the PDP. Of
course, this raises the possibility that the SDP may make inappro-
priate responses for p, prior to receipt and processing of the update
response.

4. EXPERIMENTAL EVALUATION
The previous sections describe SAAMRBAC algorithms and esti-

mate their performance analytically. This section presents an ex-
perimental evaluation of the cache construction and decision algo-
rithms. We studied two performance aspects of our algorithms: the
achieved hit rate and the computational cost.

We define the hit rate as the ratio between the number of requests
solved locally (regardless of the specific allow/deny decision) by
the SDP and the total number of requests received. A high cache hit
rate has the effect of masking transient PDP failures, thus improv-
ing the overall authorization system’s availability. It also reduces
the load on the PDP, thus improving the system’s scalability.

Our analysis in Section 3.5 suggested that the hit rate is influ-
enced by the following factors: (1) the cache warmness, that is, the
ratio between the number of authorization responses cached at the
SDP and number of possible requests; (2) the percentage of deny
responses in the cache at a fixed cache warmness; (3) the char-
acteristics of the RBAC policy, including the ratios between the
numbers of users, permissions, and roles in the system; and (4) the
popularity distribution of roles. Section 4.2 presents results of our
experiments investigating the impact of these factors on the hit rate.

The second performance aspect we investigated was the compu-
tational cost. We measured two types of computational costs. First
was the inference time—the time that it took the SDP to infer an
approximate response (allow or deny) using its cache. The second
was the update time—how long it took the SDP to incorporate a
new primary response in its cache. The lower the inference time,
the more efficient the SDP is in accelerating the access control sys-

tem. In particular, we present in Section 4.3 the influence of cache
warmness on inference and update time as cache warmness appears
to be the main influencing factor. For the sake of brevity, we refer
to both times as “response time.”

4.1 Experimental Setup
To conduct the experiments, we have modified the SAAM eval-

uation engine used in [8] to support SAAMRBAC. Each run of the
evaluation engine involved four stages. In the first stage, the en-
gine created an RBAC policy and assigned both users (UA) and
permissions (PA) to roles. Second, the engine created the warming
set of users and permissions: that is the set containing all possible
unique requests in the system. We also created a testing set, which
comprised a sampling of requests. In our experiment, the testing
set contained 20,000 requests, which were uniformly selected from
the request space. For a confidence interval of 95%, this yielded
a maximum error margin of 0.69% in the hit rate experiments and
5µs in the response time experiments. Next, the simulation en-
gine started operating by alternating between warming and testing
modes. In the warming mode (stage three), the engine used a sub-
set of the requests from the warming set, evaluated them using a
simulated PDP, and sent the responses to the SAAMRBAC SDP to
build up the cache. Additionally, at this stage, the evaluation en-
gine recorded the time required to add primary responses to the
cache. Once the desired cache warmness was achieved, the engine
calculated the average update time and then switched into testing
mode (stage four) where the SDP cache was not updated anymore.
We used this stage to evaluate the hit rate and the inference time at
controlled, fixed levels of cache warmness. The engine submitted
requests from the test set, recorded the inference time, and calcu-
lated the hit rate as the ratio of the test requests resolved by the SDP
to all test requests and the average inference time at the end of this
phase. These last two stages were then repeated for different levels
of cache warmness, from 0% to 100% in increments of 5%.
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Figure 5: Hit rate as a function of cache warmness for an RBAC
system tested with 100 users, 3,000 permissions, and 50 roles.

Note that our evaluation assumed that a user launched only one
process which activated all the roles assigned to the user. Therefore
the subject in each request had all the roles of the user.

For our experiments we used a commodity PC with an AMD
Athlon Dual Core processor 3800+ 2.00 GHz and 3GB of RAM,
running Windows XP. The evaluation framework ran on Sun’s 1.5.0
Java Runtime Environment (JRE).

The reference RBAC policy in our experiments contained 100
users, 3,000 permissions, and 50 roles. Thus the overall size of the
request space was 300,000. Each user was assigned to five roles
and each permission was assigned to two roles, both assignments
following uniform distribution. Figure 5 presents the hit rate as
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(a) Hit rate percentage increase as the SDP
cache warmness varies, for 50, 100, and 200
users in the RBAC system.
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primary deny responses in the SDP cache.
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(c) Hit rate variation with the total number of
roles in the RBAC system
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(d) Hit rate variation with the number of roles
per user
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(e) Hit rate variation with the number of roles
per permission
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Figure 6: The impact of various system characteristics on the hit rate. 6(b) to 6(f) are for an RBAC system with the reference
configuration (100 users, 3,000 permissions, and 50 roles) and fixed cache warmness (10%, 20%, and 30%). Subfigures 6(a) to 6(e)
are with uniform role assignment and 6(f) is with Zipf role assignment.

a function of cache warmness for both approximate recycling and
precise recycling with the reference configuration. As expected, hit
rate of approximate recycling increased with cache warmness and
was always higher than that of precise recycling.

While the scale of the system we studied was limited by the com-
putational resources available we believe that the values of these
parameters are not important in themselves. We were interested
in configuring a reasonably large system that would manifest a be-
havior asymptotically similar to possible real-world deployments.
Additionally, we studied the impact of the number of users, roles
per user, roles, and roles per permission as well as the popularity
distribution of roles on system’s performance. We note that we do
not expect that the overall number of permissions in a system to
influence the achieved hit rate while it may influence the response
time as a large number of permissions leads to less efficient mem-
ory use by the SDP.

4.2 Hit Rate
We studied the impact of varying the number of users while

maintaining the other configuration parameters constant. Fig-
ure 6(a) shows the percentage increase for the hit rate compared
to precise recycling for an RBAC system that had 50, 100, and 200
users respectively. As expected, an increase in the number of users
increased the chance that a role-permission pair was already been
cached thus leading to a higher hit rate. When averaged over the
full range of cache warmness, the percentage increase was 30%,
74%, and 128% for 50, 100, and 200 users respectively.

For the experiments described in the rest of this section, we fixed
the cache warmness and studied the impact of other system charac-
teristics on the achieved hit rate. We choose to explore hit rate for
relatively low cache warmness values (at 10%, 20%, 30% respec-
tively) as this is the region where we estimate the system is most
likely to operate due to workload characteristics, limited storage
space, or frequently changing access control policies.

First, we studied the impact of the percentage of deny responses
in the cache. Figure 6(b) confirms our prediction that a higher pro-
portion of deny responses leads to a higher hit rate. The intuition
behind this result is that a negative primary response for a permis-
sion and a user means that the permission is not assigned to any
of the user’s roles. In contrast, a positive primary response only
allows us to infer that the permission is assigned to at least one of
the roles, but without the ability to infer exactly which role. Note
that the curve for 30% cache warmness is missing because we were
unable to warm the SDP cache to 30% using only deny responses.

Second, we studied the impact of the total number of roles on the
hit rate by varying it from 10 to 100 (Figure 6(c)) and keeping con-
stant the number of users and the number of roles a user is assigned
to. The results indicate that, as the number of roles increases, the
hit rate decreases. This confirms our analytical prediction that, as
the number of roles increases, the overlap between the sets of roles
each user is assigned to decreases thus reducing the likelihood of a
successful inference.

Third, we studied the impact of the number of roles each user is
assigned to by varying it from one to all the roles that exist in the
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Figure 7: The impact of cache warmness on response time and cache size.

system (50 roles) while keeping all other parameters constant. The
results in Figure 6(d) suggest that the influence of this parameter
on the hit rate is more complex. Our explanation for the shape
of the hit rate curves is the following. The hit rate is low when
each user is assigned to few (1-3) roles because both Cache+ and
Cache− for each individual permission have few entries relevant to
the request in question. With the increase of overlap in users’ roles,
the number of relevant entries increases, resulting in the increase of
the hit rate. While the overlap is still relatively low (when each user
has less than ten roles), the deny responses dominate the content
of the SDP cache, resulting in a higher hit rate, as our analytical
model predicted and the results in Figure 6(b) confirmed. However,
when the number of roles per user increases further, Cache+ starts
increasing at the expense of Cache−, leading to the decrease in
the hit rate (as we predicted in Section 3.5). What the analytical
analysis did not predict is the sharp increase to 100% in the hit rate
on the right side of the graph. This increase is due to the fact that
each user is assigned to (almost) all the roles in the system and, as
a result, (almost) every user has the same set of roles.

Fourth, we studied the impact of the number of roles each per-
mission is assigned to. Figure 6(e) confirms the results of our an-
alytical analysis, which predicted that a larger number of roles per
permission leads to a lower hit rate. This effect can be also at-
tributed to the decrease of Cache−.

Finally, we studied the impact of role popularity distribution. In
all our other experiments, users and permissions were uniformly
assigned to roles and all roles were equally “popular” in UA and
PA relations. However, in reality some roles could be more popular
than others. For example, in an enterprise most users are assigned
an “employee” role while only a few are assigned a “manager”
role. To model this type of highly uneven popularity, we used a
Zipf’s Law [7] distribution, which expresses a power-law relation-
ship form P = 1/rα for some constant α between the popularity
P of an item (i.e., its frequency of occurrence) and its rank r based
on the frequency of occurrence.

We varied the coefficient for α between 0.5 and 1.5, the value
of the coefficient found in popularity distributions for other net-
worked systems (e.g., web cached item popularity, website popu-
larity, search keyword popularity). The results in Figure 6(f) sug-
gest that Zipf’s popularity distribution of roles leads to higher hit
rates at a lower cache warmness while uniform assignment gets bet-
ter hit rate at higher cache warmness. However, the difference was
small. We expect real-world distributions of role “popularity” to be
somewhere in the range between uniform and Zipf.

4.3 Response time
Figure 7(a) shows the inference time for allow and deny approx-

imate responses as a function of cache warmness for our reference
configuration. As expected, the computational overhead to infer
allow responses was larger than that for deny responses. The infer-
ence time increased with the cache warmness for two reasons: first,
when more responses were cached, the SDP used more responses
for inference leading to higher computational overheads. Second,
larger cache sizes led to less efficient memory usage by the SDP
(that is, SDP data does not fit in the host’s cache anymore). When
cache warmness reached about 40%, the response time stabilized.
This was because at about 40% warmness the SDP was able to re-
solve all possible requests (see Figure 5) so new responses provided
no new information to the cache. We validated this hypothesis by
measuring the cache size: Figure 7(b) shows that after cache warm-
ness reached about 40%, the cache size stabilized.

Figure 7(c) shows the time for updating the SDP cache using
both allow and deny primary responses as a function of cache
warmness. The SDP used more time to process deny than allow
responses. The reason is that in the case of processing each deny
response −(s, p), the SDP had to replace each (s′, p) ∈ Cache+

with (s′ − s, p).
We have experimented with various other configurations and,

even when stressing the system with large numbers of users, roles
per user, and permissions, the response time for inferences re-
mained under 1ms. We note that a low inference time is a key
attribute for a real-world deployment as it directly affects the per-
ceived performance of the access control system: an application
request needs to wait until the SDP obtains response, either pri-
mary or secondary. Cache changes triggered by adding primary re-
sponses or policy changes, on the other hand, can be implemented
in the background to hide their impact on perceived performance.

4.4 Discussion
The results of our experiments indicate that approximate recy-

cling leads to higher SDP hit rates than precise recycling alone,
thus improving the availability and scalability of the access control
system. These results confirmed the predictions of our mathemati-
cal analysis in Section 3.5 and also extended our understanding of
the factors that influence the hit rate:

• For cache warmness between 5% and 50%, the hit rate for
approximate recycling is notably better than that of precise
recycling.
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• Larger numbers of users in the system having similar role
memberships substantially improve the hit rate.

• A higher proportion of deny responses in the cache leads to
a higher hit rate.

• As the number of roles increases, the overlap between the
sets of roles each user is assigned to decreases thus reducing
the likelihood of a successful inference.

• The hit rate is low when each user is assigned to few (1-3)
roles because the SDP cache has little relevant information.
With the increase of overlap in users’ roles, the number of
relevant entries increases, resulting in the increase of the hit
rate. While the overlap is still relatively low (when each user
has less than ten roles), the deny responses dominate the con-
tent of the SDP cache, resulting in a higher hit rate. However,
when the number of roles per user increases further, Cache+

starts increasing at the expense of Cache−, leading to the de-
crease in the hit rate. When each user is assigned to (almost)
all the roles in the system (almost) every user has the same
set of roles, and the hit rate increases sharply to 100%.

• A larger number of roles per permission leads to a lower hit
rate.

• Zipf’s popularity distribution of roles leads to a higher hit
rate at a lower cache warmness while uniform assignment
gets better hit rate at higher cache warmness, albeit with the
difference being small.

The volume of information available for inference, the percent-
age of deny responses, and the distribution of role assignment are
the factors that are not controlled by the administrators of RBAC
systems. Other factors that impact performance, however, e.g., the
total number of roles, the number of roles per user, and roles per
permission, might be engineered (e.g., by role engineering [28]) by
the designers of access control policies who might be able to tune
these factors to achieve higher hit rates using the trends our exper-
iments and evaluation revealed. Thus, we believe our evaluation
results can be used to inform efficient SAAMRBAC deployment in
real enterprise systems, even though our experimental testbed was
relatively small compared to large-scale systems deployed in orga-
nizations (e.g., [24]).

Our experiments with SAAMRBAC also demonstrated response
times well under 1ms for all operations and in a number of con-
figurations. While we believe that response times can be fur-
ther reduced by optimizing algorithm implementations, this per-
formance level demonstrates the usefulness of SAAM techniques
for reducing the response time of the overall access control system
in those network-based deployments where network latencies are
much larger (e.g., MAN, WAN).

5. RELATED WORK
To improve the performance and availability of access control

systems, caching of authorization decisions has been employed in a
number of commercial systems [10, 14, 17], as well as several aca-
demic access control systems [2, 6, 26]. However, all these systems
only compute precise authorizations and therefore are only effec-
tive for resolving repeated requests. Beznosov [5] introduces the
concept of recycling approximate authorizations, and later Cramp-
ton et al. [8] formally define SAAM and introduce the concept of
SDP. The SDP can resolve new requests by extending the space of
supported responses to approximate ones. In other words, SAAM
provides a richer alternative source for authorization responses than

the existing approaches do. To further improve the performance
and availability of access control systems, Wei et al. [30] explore
the cooperation between multiple SDPS and combine SDP cooper-
ation and approximate authorizations.

The inference of approximate responses usually depends on the
underlying access control policy. For access control systems based
on the Bell-LaPadula (BLP) model [4, 3], SAAMBLP [8] uses the
relationships between subjects and objects of previous responses to
infer approximate responses. Other work [16, 20, 21] uses the re-
lationships between (database) objects to infer new authorizations.
In contrast, SAAMRBAC caches information derived from primary
responses in order to infer relationships between sets of roles and
the permissions assigned to those roles, thereby enabling the com-
putation of approximate responses.

In general, SAAM is a domain-specific approach to improving
performance and fault tolerance of those access control mecha-
nisms that employ remote authorization servers. Three general
classes of fault tolerance solutions are failure masking through
information redundancy (e.g., error correction checksums), time
redundancy (e.g., repetitive invocations), or physical redundancy
(e.g., data replication). SAAM employs physical redundancy [12]:
when the PDP is unavailable, the SDP would be able to mask
the fault by providing the requested access control decision. The
SAAM approach requires no specialized operating system or com-
munication software except modifications to the logic of the PEP
cache. No distributed state, election, or synchronization algorithms
are necessary either. With SAAM, only authorization responses are
cached, and no dynamic authorization data are replicated, enabling
linear scalability on the number of PEPs and PDPs.

6. CONCLUSION
As distributed systems become increasingly large and complex,

their access control infrastructures face new challenges. Conven-
tional request-response authorization architectures become fragile
and scale poorly to large systems. Caching authorization decisions
has long been used to improve access control infrastructure avail-
ability and performance. This paper extends this approach by en-
abling the inference of approximate authorizations for RBAC sys-
tems. We propose new algorithms to compactly cache authoriza-
tion decisions and to efficiently infer approximate decisions from
cached data. Our evaluation results demonstrate a percentage in-
crease of 30-128% in the number of authorization requests that
can be served without consulting the original decision point, com-
pared to precise recycling. These results suggest that deploying
SAAMRBAC improves the availability and scalability of RBAC sys-
tems, and in turn the performance of entire enterprise systems.

Since SAAMRBAC caches both allow and deny responses, the
cache size could become very large. We plan to explore cache re-
placement algorithms that reduce this side-effect. We also plan to
study the policy changes involving R and RH . In addition, we
plan to evaluate our algorithms with a more realistic enterprise-
scale RBAC system and corresponding policy. Our algorithms can
handle flat as well as hierarchical role sets. We plan to explore
opportunities for further improvements when the role hierarchy re-
lation is available to the SDP. Another avenue for further research
is the exploitation of caches from different but cooperating SDPs,
similar to the distributed version of SAAMBLP [30].
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