
SQLPrevent: Effective Dynamic Detection and
Prevention of SQL Injection Attacks Without Access

to the Application Source Code

San-Tsai Sun∗, Konstantin Beznosov†

Laboratory for Education and Research in Secure Systems Engineering
lersse.ece.ubc.ca

University of British Columbia
Vancouver, Canada

Technical report LERSSE-TR-2008-01‡

Last Modification Date: 2008/02/22

Revision: #14

∗santsais@ece.ubc.ca
†beznosov@ece.ubc.ca
‡This and other LERSSE publications can be found at lersse-dl.ece.ubc.ca

http://lersse.ece.ubc.ca
http://lersse-dl.ece.ubc.ca

Abstract

This paper presents an effective approach for detecting and preventing known as
well as novel SQL injection attacks. Unlike existing approaches, ours (1) is resistant
to evasion techniques, such as hexadecimal encoding or inline comment, (2) does not
require analysis or modification of the application source code, (3) does not need
training traces, (4) does not require modification of the runtime environment, such
as PHP interpreter or JVM, and (5) is independent of the back-end database used.

Our approach is based on two simple observations, that (1) in malicious HTTP
requests, parameter values are used not only as literals in the corresponding SQL
statements but also as other SQL constructs, such as delimiters, identifiers or op-
erators; and (2) a malformed parameter value in an HTTP request comprises more
than one SQL token. We use J2EE to implement a tool we have named SQLPrevent
that dynamically detects SQL injection attacks using the above heuristics, and blocks
the corresponding SQL statements from being submitted to the back-end database.
Using the AMNESIA testbed, we evaluate SQLPrevent over 15,000 unique HTTP
requests with five web applications. In our experiments, SQLPrevent produced no
false positives or false negatives, and imposed at most 4% (0.3% on average) perfor-
mance overhead with respect to average 500 millisecond response time in the testbed
applications.

i

Contents

1 Introduction 1

2 Background 2
2.1 How SQL Injection Attacks Work . 3
2.2 Existing Countermeasures . 4

3 Related Work 5

4 Approach 7
4.1 Abstraction of Web Applications and HTTP Requests 7
4.2 Alteration of the SQL Statement’s Intended Syntactical Structure by

SQLIAs . 9
4.3 False Positive Reduction . 10
4.4 Detection of Attacks . 11

5 Evaluation 12
5.1 Implementation . 12
5.2 Experimental Evaluation . 14

6 Discussion 17

7 Conclusion 19

References 20

ii

1 Introduction

An SQL injection attack (SQLIA) is a type of attack on web applications that exploits
the fact that input provided by web clients is directly included in the dynamically
generated SQL statements. SQLIA is one of the foremost threats to web applica-
tions [HVO06]. According to the WASP Foundation, injection flaws, particularly
SQL injection, were the second most serious web application vulnerability type in
2007 [Pro07]. Since they are easy to find and exploit, SQL injection vulnerabilities
are frequently employed by attackers .

The threats posed by SQLIAs go beyond simple data manipulation. Attack-
ers commonly extract sensitive data (e.g., credit card information) or modify the
content of the databases from the compromised web sites. Through SQLIAs, an at-
tacker may also bypass authentication, escalate privileges, execute a denial-of-service
attack, or execute remote commands to transfer and install malicious software. As
a consequence of SQLIAs, parts of or whole organizational IT infrastructures can
be compromised. An effective and easy to employ method of preventing SQLIAs is
crucial for the protection of today’s organizations.

Traditional SQLIA countermeasures are not effective [Anl02a, Anl02b, Cer03] and
most web applications deployed today are still vulnerable to SQLIAs. The reasons
are manyfold:

• SQLIAs are performed through HTTP traffic, sometimes over SSL, thereby
making network firewalls ineffective.

• Defensive coding practices require training of developers and modification of
the legacy applications to assure the correctness of validation routines and com-
pleteness of the coverage for all sources of input.

• Sound security practices—such as the enforcement of the principle of least priv-
ilege or attack surface reduction—can mitigate the risks to a certain degree, but
they are prone to human error, and it is hard to guarantee their effectiveness
and completeness.

• Signature-based web application firewalls—which act as proxy servers filter-
ing inputs before they reach web applications—and other intrusion detec-
tion methods may not be able to detect SQLIAs that employ evasion tech-
niques [Anl02a, Anl02b, Cer03].

Detection or prevention of SQLIAs is a topic of active research in industry
and academia. Security Gateway [SS02] and commercial web application firewalls
[AQT07, Inc07], implemented as proxy servers to prevent malicious input reach-
ing vulnerable web applications, can be deployed without modifying the existing
web applications. However, these tools suffer from both false positives and false
negatives. An accuracy of 100% was claimed in recently published techniques
that use static and/or dynamic analysis [HO05, BWS05, SW06, BBMV07], dy-
namic taint analysis [NTGG+05, PB05], or machine learning methods [VMV05].
However, the requirements for analysis and/or instrumentation of the applica-
tion source code [HO05, BWS05, SW06, BBMV07], runtime environment modifica-
tion [NTGG+05, PB05], or acquisition of training data [VMV05] limit the adoption

1

of these techniques in real-world settings.
In this paper, we propose a method for detecting and preventing SQLIAs at

runtime. HTTP requests and the corresponding SQL statements are intercepted and
analyzed. Detected SQLIAs are prevented by rejecting the HTTP requests that carry
them. Our approach is capable of detecting novel obfuscated SQLIAs, and can be
integrated with existing web applications without modifications to the applications.
Our method does not require acquisition of training data, or modification of the
runtime environment, such as PHP interpreter or JVM. Our approach is based on
the following two simple observations, which we made after collecting and analyzing
SQLIAs from white papers, technical reports, web advisories, web sites, and mailing
lists:

1. In a benign HTTP request, parameter values are used only as literals in the
corresponding SQL statements.

2. Each of those parameter values in an HTTP request that carries an SQLIA
contains more than one SQL token.

We used J2EE to implement a tool we have named SQLPrevent that dynamically
detects SQLIA using the above heuristics and blocks the corresponding SQL state-
ments from being submitted to the back-end database. We evaluated SQLPrevent
using the AMNESIA [HO05] testbed, which has been used for evaluating several
other research systems (e.g., [SW06, BBMV07, KKH+07]). The testbed consists of
five web applications and traces that contain about 3,000 malicious and 600 benign
HTTP requests for each application. In addition to the attack inputs that come
with the testbed, we created another set of about 3,000 obfuscated attack inputs per
application, by applying the evasion techniques of hexadecimal encoding, dropping
white spaces, and inserting inline comments to those from the testbed. In our ex-
periments, SQLPrevent produced no false positives or false negatives. It imposed
little performance overhead (maximum 4%, average 0.3%) with respect to 500 mil-
liseconds response time in the testbed applications. The experimental results suggest
that our technique is effective and efficient. Furthermore, SQLPrevent can be easily
integrated with existing web applications, with only a few changes in the web server
configuration settings.

The rest of the paper is organized as follows. Section 2 explains how SQL in-
jection attacks and typical countermeasures work. Section 3 reviews existing work
and compares it with the proposed approach. Section 4 describes our approach for
detecting and preventing SQL injection attacks. Section 5 presents the evaluation
methodology and results. Section 6 discusses the implications of the results and
the strengths and limitations of our approach. Section 7 summarizes the paper and
outlines future work.

2 Background

In this section, we explain how SQLIAs work and what countermeasures are currently
available. Readers familiar with SQLIAs can proceed directly to the next section.

2

Figure 1: How SQL injection attacks work.

2.1 How SQL Injection Attacks Work

For the purpose of discussing SQLIAs, a web application can be thought of as a black
box that accepts HTTP requests as inputs and generates SQL statements as outputs.
Figure 1 depicts a simple set up with a web client sending an HTTP request to an
application, which constructs and submits SQL statements to the back-end database.
As shown in the sample code of the figure, web applications commonly use parameter
values from HTTP requests to form SQL statements. SQLIAs may occur when data
in an HTTP request is directly used to construct SQL statements without sufficient
validation or sanitization. For instance, consider the following code (in Java) for
constructing an SQL statement in which the value of the HTTP request parameter
product id is used directly in the statement:

S="SELECT * FROM product WHERE id=" + request.getParameter("product_id")

When the above line of code is executed in the web application, the value of
the HTTP request parameter product id is used in the SQL statement without
any validation. By taking advantage of this vulnerability, an attacker can launch
various types of attacks by simply posting HTTP requests that contain arbitrary SQL
statements. Below is an example of a malicious HTTP request that modifies price
information in a product table by appending the attack string “update product set
price=price/2” to the legitimate input product id=2, as shown in the following
fragment:

POST /prodcut.jsp HTTP/1.1
product_id=2; update product set price=price/2

In the case of the above attack, the SQL statement constructed by the programming
logic would be the following:

SELECT * FROM product WHERE id=2; update product set price=price/2

The above SQL statement would reduce the price of every product by one-half.
The threats posed by SQLIAs can go beyond simple data manipulation. Consider
the privilege escalation attack listed below :

3

POST /prodcut.jsp HTTP/1.1
product_id=2; exec master..xp_cmdshell ’net user hacker 1234 /add

If the injected code is executed by the database server, this attack would add a new
user account named “hacker” with a password “1234” to the underlying Windows
operating system. More malicious attacks, such as file upload and remote command
execution, are also possible with similar attack techniques [Cer03].

To confuse signature-based detection systems, attackers may also apply evasion
techniques that obfuscate attack strings. Below is an obfuscated version of the above
privilege-escalation attack.

POST /prodcut.jsp HTTP/1.1
product_id=2; /* */declare/* */@x/* */as/* */varchar(4000)/* */set/* */
@x=convert(varchar(4000),0x6578656320206D61737465722E2E
78705F636D647368656C6C20276E65742075736572206861636B6572
202F6164642027)/**/exec/* */(@x)

The above obfuscation utilizes hexadecimal encoding, dropping white space, and
inline comment techniques. For a sample of evasion techniques employed by SQLIAs,
see [MS05].

2.2 Existing Countermeasures

Because SQLIAs are carried out through HTTP traffic, even sometimes when it is
protected by SSL, most traditional intrusion prevention mechanisms, such as fire-
walls or network-packet based intrusion detection systems (IDSs), are not capable of
detecting SQLIAs. Three types of countermeasures are commonly used to prevent
SQLIAs: web application firewalls, defensive coding practice, and service lock-down.

Web application firewalls such as WebKnight [AQT07] and ModSecurity [Inc07]
are easy to deploy and operate. They are commonly implemented as proxy
servers that intercept and filter HTTP requests before requests are processed
by web applications. However, such tools are prone to both false positives and
negatives. Due to the limitation of signature databases or policy rules, they may
not effectively detect unseen patterns or obfuscated attacks that employ evasion
techniques. Also, since those tools rely solely on analyzing HTTP requests and
do not know the syntactic structures of the generated SQL statements, false
positives might occur if signatures or filter policy rules are too restrictive.

Defensive coding practices are the primary basic prevention mechanism against
SQLIAs [HL03]. Since the root cause of an SQLIA is insufficient user input
validation, the most intuitive way to prevent SQLIAs is to sanitize inputs by
validating input types, limiting input length, and checking user input for single
quotes, SQL keywords, special characters, and other known malicious patterns.
Using a parameterized query API provided by development platforms is another
compelling solution for mitigating SQLIAs directly in code. Bound and typed
parameters are used in parameterized queries, such as PrepareStatement in

4

Java and SQLParameter in .NET. Parameterized queries syntactically separate
the intended structure of SQL statements and data literals. Instead of com-
posing SQL statements by simply concatenating strings, each parameter in an
SQL statement is declared using a placeholder, and the corresponding literal
value for each placeholder is then provided separately.

Service lock-down is employed to limit the damage resulting from SQLIAs. Sys-
tem administrators can create least-privileged database accounts to be used by
web applications, configure different accounts for different tasks and reduce un-
used system procedures. However, similar to defensive coding practices, these
countermeasures are prone to human error, and it is difficult to assure their
correctness and/or completeness.

Having discussed the state of the practice, in the next section we provide an
overview of the state of the art.

3 Related Work

Research work related to SQLIA detection or prevention can be broadly categorized
based on the type of data analyzed or modified by the proposed techniques: (1)
runtime HTTP requests, (2) design-time web application source code and (3) runtime
dynamically generated SQL statements. To detect SQLIAs, some approaches use
only one type of data while others use two. For example, our approach analyzes
HTTP requests and SQL statements. Below we discuss related work using these
categorizations, and briefly summarize the advantages and limitations of each. For a
more detailed discussion, we refer the reader to a classification of SQLIA prevention
techniques in [HVO06].

Runtime filtering of HTTP requests: Security Gateway [SS02] is a filtering
proxy that allows only those HTTP requests that are compliant with the input
validation rules to reach the protected web applications. Like commercial web
application firewalls, Security Gateway is easy to deploy and operate, without
any modifications to the application source code. However, this approach re-
quires developers to provide correct validation rules, which are specific to their
application. Similarly to the defensive programming practices, this process re-
quires intimate knowledge of the web application in question; as a result, it is
prone to false positives and false negatives. Also, any modification of an ex-
isting web application or deployment of a new one requires modification to the
input validation rules, leading to an increase in the administrative and change
management overheads. Our approach does not need developer involvement
and requires deployment of interception modules only when a new instance of
a web application is deployed.

Web application source code analysis and hardening:
WebSSARI [HYH+04] and approaches proposed by Livshits et al. [LL05]
and Xie et al. [XA06] use information-flow-based source code analysis tech-
niques to detect SQLIA vulnerabilities in web applications. Once detected,

5

these vulnerabilities can be fixed by the developers. These approaches to
vulnerability detection employ static analysis of applications. They have the
advantages of no runtime overhead and the ability to detect errors before
deployment; however, they need access to the application source code, and the
analysis has to be repeated each time an application is modified. Such access is
sometimes unrealistic, and repeated analysis increases the overhead of change
management. Our approach does not require access to the source code and is
oblivious to application modification.

Runtime analysis of SQL statements for anomalies: Valuer et al. [VMV05]
propose an SQLIA detection technique based on machine learning methods.
Their anomaly-based system learns profiles of the normal database access per-
formed by web-based applications using a number of different models. These
models allow for the detection of unknown attacks with limited overhead. Af-
ter learning “normal” profiles in a training phase, the system uses deviation
from these profiles to detect potential attacks. Valuer et al. have shown that
their system is effective in detecting SQLIAs. However, the fundamental lim-
itation of this and other approaches based on machine learning techniques is
that their effectiveness depends on the quality of training data used. Training
data acquisition is an expensive process and its quality may not be guaranteed.
Our approach does not rely on the ability of the application developers or own-
ers to acquire a qualified “clean” data set—which has all possible versions of
legitimate SQL statements and yet has no SQLIAs.

Static analysis paired with runtime analysis of SQL statements:
AMNESIA [HO05], SQLGuard [BWS05], SQLCheck [SW06], and CAN-
DID [BBMV07] identify the intended structures of SQL statements by
analyzing the source code of web applications at development time and
checking at runtime whether dynamically generated SQL statements conform
to those structures. SQLrand [BK04] modifies SQL statements in the source
code by appending a randomized integer to every SQL keyword during
design-time; an intermediate proxy intercepts SQL statements at runtime
and removes the inserted integers before submitting the statements to the
back-end database. Therefore, any normal SQL code injected by attackers will
be interpreted as an invalid expression. These approaches are very effective,
claiming 100% accuracy (i.e., no false positives and no false negatives). Like
the other approaches discussed above ([HYH+04, LL05, XA06]), the SQLIA
prevention solutions in this class need access to the application source code for
the purpose of analysis and modification, which is their main limitation.

Runtime analysis of HTTP requests and SQL statements: Approaches em-
ploying dynamic taint analysis have been proposed by Nyguyen-Tuong et
al. [NTGG+05] and Pietraszek et al. [PB05]. Taint information refers to data
that come from un-sanitized or un-validated sources, such as HTTP requests.
Both approaches modify the PHP interpreter to mark tainted data as it en-
ters the application and flows around. Before any database access function,
e.g., mysql query(), is dispatched, the corresponding SQL statement string is
checked by the modified PHP interpreter. If tainted data has been used to cre-

6

ate SQL keywords and/or operators in the query, the call is rejected. Similar
to our technique, these approaches use HTTP requests and SQL statements, do
not require access to the application source code, do not need training traces,
and are resistant to evasion techniques. Their limitations are that they (1)
require modifications to the PHP runtime environment, which may not be vi-
able for other runtime environments such as Java or ASP.NET, and (2) need all
database access functions to be identified in advance. Our approach has neither
limitation.
Sania [KKH+07], an SQLIA vulnerability testing tool, identifies injectable pa-
rameters by comparing the parse trees and HTTP responses for a benign HTTP
request and the corresponding auto-generated attack. The main drawback of
this approach is the high rate of false positives (about 30%) and the need for
application developers to be involved in the SQLIA vulnerability testing.

4 Approach

Our approach is based on (1) abstracting a web application as a function that takes
HTTP requests as inputs and generates SQL statements as outputs, (2) abstracting
an HTTP request as a set of name-value pairs, (3) making particular observations
about the alteration of the intended syntactical structure of the dynamically gener-
ated SQL statements by SQLIAs, and (4) observations about how false positives can
be reduced.

4.1 Abstraction of Web Applications and HTTP Re-
quests

For the purpose of discussing SQLIAs, we abstract a web application as a function
that takes HTTP requests as inputs and generates SQL statements as outputs. We
exclude from our observation communications made by web applications to other
data sources such as XML documents, LDAP servers or arbitrary files IOs. Since
only HTTP requests, and not responses, can carry an SQLIA payload, we also exclude
HTTP responses from further discussion.

A web client requests services by making an HTTP request to a web server. An
HTTP request message consists of the following three parts, as illustrated in Figure 2:

Request line with optional query strings, such as:
POST /bookstore/book.jsp?ACTION=UPDATE&book id=123 HTTP/1.1
It requests the file book.jsp from bookstore directory with query strings
ACTION=UPDATE&book id=123

Headers, such as Accept-Language:en-us and User-Agent:Mozilla/4.0. The
character “:” is used to separate the name and value of a header. Note that
the cookie header is commonly abstracted as a separate object due to its unique
purpose. Cookies are opaque strings of text sent by a server to a web browser
that are stored locally on the client and then sent back unchanged by the
browser each time it accesses that server. HTTP cookies are commonly used

7

Figure 2: Structure of an HTTP request and sources of name-value pairs.

Table 1: Abstraction of HTTP request from the example in Figure 2.
Source Name (n) Value (v)
Query String ACTION UPDATE
Query String book id 123
Cookie JSESSION ID QAZWSXEDC
Cookie user miles
Header Accept-Language en-us
Header User-Agent Mozilla/4.0
Form Data book name webapp
Form Data price 1000

for authenticating, session tracking, and maintaining specific information about
users.

Message body. This is an optional part of an HTTP request. When the POST
method is used, the message body consists of user input data in an HTML
form, such as book name=webapp&price=1000

We abstract an HTTP request in the context of SQLIAs as a set of name-value
pairs in which the name part serves as a identifier for a given input parameter. There
are four possible sources of input parameters in an HTTP request: (1) query string,
(2) cookie collection, (3) header collection, and (4) form field data. For example, the
HTTP request from Figure 2 can be abstracted as shown in Table 1. Thus, we can
represent an HTTP request as an element of a powerset of parameters, 2P , where
each element of P is a 2-tuple (n, v) of name and value.

8

Figure 3: An attacker tries to inject an additional SQL statement into original query.

4.2 Alteration of the SQL Statement’s Intended Syntac-
tical Structure by SQLIAs

Our first key observation is that in a benign HTTP request, parameter values are
used only as literals in the corresponding SQL statements. An SQL literal is a no-
tation for representing a fixed value within an SQL statement. For example, in
the given SQL statement UPDATE books set book name=’webapp’, price=’1000’
WHERE book id=123", the literals are “webapp” for book name column , “1000” for
price column and “123” for book id column. Our detection heuristic identifies those
cases where parameter values of an HTTP request show up in the corresponding SQL
statements as something other than literals. We now explain why this observation
can be considered as a general rule for dynamic detection of SQLIAs.

Web application developers typically use string manipulation functions to dynam-
ically compose SQL statements by concatenating pre-defined constant strings with
parameter values from HTTP requests. Given the sample HTTP request in Figure 2,
the following Java code constructs an SQL statement by embedding parameter values
from query string (book id) and form field data (book name and price):

statement= "UPDATE books set " +
"book_name=’"+request.getParameter("book_name")+ "’,"+
"price="+request.getParameter("price")+ " "
"WHERE book_id="+ request.getParameter("book_id");

This scenario is a typical case of coding database access logic in web applications.
The intended syntactical structure of the SQL statement in the above example
can be expressed as follows: "UPDATE books set book name=?, price=? WHERE
book id=?", where question marks are used as placeholders for the parameter val-
ues. When the placeholders are instantiated with parameter values, those values
should only be used as literals in order to maintain the original syntactical structure
of the SQL statement. Otherwise, adversaries can launch attacks by injecting extra
single quotes, SQL keywords, operators, or delimiters into the SQL statements to
alter the syntactical structure of SQL statements.

9

Here is a simple example. As shown in Figure 3, an attacker tries to inject an
additional SQL statement into the original query by using query delimiter (“;”) and
comment characters (“– –”) that mark the beginning of a comment. As a result,
instead of just updating book name and price information for books whose book id
equals 123, an attack in Figure 3 causes the application to update book name to
“webapp” and price to 1,000 for every entry in the books table, and also adds a
new user account named “hacker” with a password “1234” to the underlying MS
Windows operating system.

4.3 False Positive Reduction

Based on our first observation, false positives may occur when a parameter value
appears in the corresponding dynamic SQL statement, but is not actually used by
the programming logic in the process of composing the final SQL statement. Consider
the example in Figure 4. The parameter named ACTION has a value of “UPDATE”,
which appears in the dynamic SQL statement; however, the “UPDATE” is taken from a
pre-defined constant string instead of the HTTP request. If only examining whether
it is a literal according to our first observation, the example above would be an
occurrence of a false positive—a benign request being categorized as a malicious
attack, since “UPDATE” is not a literal in the final SQL statement.

The second key observation employed in our approach is that the HTTP request
parameter value that carries an SQLIA string requires at least two SQL tokens for
the attack to work—one for the original placeholder value and another for the attack.
An SQL token is a categorized block of text, such as keyword (i.e., SELECT, UP-
DATE and FROM), string literal, identifer (e.g., book id and book name columns)
or operator (i.e., +,- and =). Since one token is insufficient for an attack, SQLIAs
comprise more than one token. Among over 500 distinct SQLIA strings we inves-
tigated, the shortest attack string we found was a numeric literal value followed by
a shutdown command, such as 2 SHUTDOWN where 2 and SHUTDOWN are two distinct
tokens separated by a white space. The resulting attack query would look like the
following: SELECT book name from books WHERE book id=2 SHUTDOWN.

The fact that a malicious parameter value requires at least two SQL tokens to
launch an attack is an important property for eliminating false positives when per-
forming SQLIA detection. Since web applications do not automatically provide in-
formation about the source of tokens in the dynamic SQL statements, it is not clear
whether a specific token is from pre-defined strings or from an HTTP request. By
using the number of tokens in a parameter as a threshold value, false positives could
be significantly reduced. In fact, when we evaluated SQLPrevent using two as the
threshold value, of 3,824 benign HTTP requests from the AMNESIA [HO05] testbed,
none caused a false positive. Note that false positives may be still possible even if
the threshold for the number of tokens in a parameter value is two. We delay this
discussion until Section 6 when we address the limitations of our approach.

10

Figure 4: An example of a false positive: keyword UPDATE is from constant string instead
of HTTP request

4.4 Detection of Attacks

Using the above observations and the abstractions of a web application and an HTTP
request, we developed two heuristics for detecting SQLIAs. To summarize our heuris-
tics, SQLIAs occur when (1) parameter values within an HTTP request are used to
construct SQL statements in such a way that the parameter values modify the in-
tended syntactical structure of the dynamic SQL statements, and (2) a malicious
parameter value contains at least two SQL tokens.

Based on the above heuristics, we developed an algorithm to detect whether an
intercepted HTTP request is an SQLIA. Algorithm 1 takes an HTTP request r and
an SQL statement string s as inputs and returns true if r is malicious, otherwise
returns false. The algorithm determines whether r is an SQLIA attack by checking
if there is a parameter value in r that is a substring of the intercepted SQL statement
but is not in the set of literal values of s, and contains at least two SQL tokens.

input : A set of parameter strings r in an intercepted HTTP request
input : An intercepted SQL statement string s
output: A boolean value indicate whether r is malicious or not

4← set of literal tokens in s
for every p in r do

t← number of tokens in p
if p is substring of s and p /∈ 4 and t > 1 then

return true
end

end
return false

Algorithm 1: IsHTTPRequestMalicious

To analyze the computational complexity of Algorithm 1, let N be the number of

11

parameters in an HTTP request, M the length in characters of the longest parameter,
and L the length of the SQL statement in characters. The detection algorithm loops
through N parameters in the HTTP request in question. For each parameter, it
counts the number of tokens within the parameter and performs a substring search
against the SQL statement in question. Finding the number of tokens in a parameter
(line 3) requires reading through each character in it, thus the complexity for this
operation is O(M). For substring search in line 4, the complexity is O(M + L)
according to [Sun90]. We assume the operator /∈ used in line 4 takes constant time
if the literal tokens are first put into a hash table. Thus, the overall computational
complexity of Algorithm 1 is O(N(M + L)).

5 Evaluation

To evaluate our approach, we developed a tool named SQLPrevent that implements
Algorithm 1, and evaluated it using the testbed suite from project AMNESIA [HO05].
We chose this testbed because it allowed us to have a common point of reference with
other approaches that have used it for evaluation [SW06, BBMV07, KKH+07].

5.1 Implementation

SQLPrevent is implemented in J2EE platform and consists of an HTTP request
intercepter, thread-local storage, SQL interceptor, SQLIA detector, and SQL lexer
modules. As illustrated in Figure 5, the original data flow (HTTP request → web
application → JDBC driver → database) is modified when SQLPrevent is deployed
into a web server. First, the references to the program objects representing incoming
HTTP requests are saved into the current thread-local storage. Second, the SQL
statements composed by web applications are intercepted by the SQL interceptor
and passed to the SQLIA detector module. The detection module then retrieves the
corresponding HTTP request from thread-local storage and examines the request to
determine whether it contains an SQLIA. If so, the SQL interceptor prevents the
malformed SQL statement from being submitted to the database. All main modules
of SQLPrevent are shown in Figure 5, and are explained below.

HTTP Request interceptor is implemented as a servlet filter—a component type
introduced in Java Servlet specification version 2.3 [Cow01]. This module inter-
cepts HTTP requests and stores an internal reference to the object representing
the intercepted HTTP request in the corresponding thread-local storage. The
stored reference is retrieved later by the SQLIA detector module when it pro-
cesses the intercepted SQL statements.

Thread-local storage is static or global memory local to a thread—each thread
gets a unique instance of thread-local static or global variables. Given that
web servers are commonly implemented as multi-threaded processes that han-
dle multiple concurrent HTTP requests at the same time, the SQLIA detector
module needs a way to find the corresponding HTTP request for each inter-
cepted SQL statement. Since both request handling and query generation are

12

Figure 5: Main elements of SQLPrevent architecture are shown in light blue/grey. The
data flow is depicted with sequence numbers and arrow labels.

processed in the same thread, the thread-local storage provides an adequate
mechanism for a one-to-one mapping between an HTTP request and the corre-
sponding SQL statement.

SQL interceptor extends P6Spy [MGAQ03]. This open-source module intercepts
and logs SQL statements issued by web-application programming logic before
they reach the JDBC driver. We have extended P6Spy to invoke the SQLIA
detector when SQL statements are intercepted.

SQLIA detector takes an intercepted SQL statement as input, retrieves the cor-
responding HTTP request object from the thread-local storage, passes the in-
tercepted SQL statement to the SQL lexer for tokenization, and then performs
detection according to Algorithm 1. If an SQLIA is identified, the detector
indicates this fact to the SQL interceptor, which throws a necessary security
exception to the web application, instead of letting the SQL statement through.

SQL lexer is implemented as a lexical analyzer. This module converts a sequence
of characters into a sequence of tokens. The SQL lexer module is used to per-
form lexical analysis of intercepted SQL statements. Given an SQL statement,
the SQL lexer generates a set of tokens with the corresponding token types.
For example, by giving the following SQL statement as an input: “UPDATE
books SET book name=’SQLIA’, price=100 WHERE book id=123”, the SQL
lexer will generate the following set of tokens and the corresponding token
types:

13

No. Token Token Type
1. UPDATE [IDENTIFIER]
2. books [IDENTIFIER]
3. SET [IDENTIFIER]
4. book name [IDENTIFIER]
5. = [OPERATOR - EQUALS]
6. ’SQLIA’ [LITERAL - STRING]
7. , [COMMA]
8. price [IDENTIFIER]
9. = [OPERATOR - EQUALS]
10. 100 [LITERAL - INTEGER]
11. WHERE [IDENTIFIER]
12. book id [IDENTIFIER]
13. = [OPERATOR - EQUALS]
14. 123 [LITERAL - INTEGER]

The SQL lexer is used by the SQLIA detector module to find a set of literal
types in the intercepted SQL statement, such as LITERAL - STRING in line 6
and LITERAL - INTEGER in line 10 and line 14.

The source code of SQLPrevent consists of 2,009 lines of actual code, of which
the lexical analyzer constitutes just over 80% of the code base.

5.2 Experimental Evaluation

To evaluate SQLPrevent, we used the testbed suite from AMNESIA [HO05] and
set up the experimental environment as illustrated in Figure 6. The testbed suite
consists of an automatic testing script in Perl and five web applications (Bookstore,
Employee Directory, Classifieds, Events, and Portal). Each web application came
with an ATTACK list of about 3,000 malformed inputs and a LEGIT list of over 600
legitimate inputs. In addition to the original ATTACK lists, we produced another
set of obfuscated attack lists by obscuring original attack inputs using hexadecimal
encoding, dropping white space, and inline comments evasion techniques to validate
the ability of SQLPrevent to detect obfuscated SQLIAs. To test whether SQL lexer
module is capable of performing lexical analysis in a database-independent way, we
configured Microsoft SQL Server and MySQL as back-end databases. SQLPrevent
was tested with each of the five applications and each of the two databases, resulting
in ten test runs.

To make sure the performance measurements were not skewed by fast hardware,
we used low-end equipment. The web applications and databases were installed
on a machine with a 1.8 GHz Intel Pentium 4 processor and 512 MB RAM, running
Windows XP SP2. The automatic test script was executed on a host with a 350 MHz
Pentium II processor and 256 MB of memory, running Windows 2003 SP2. These two
machines were connected over a local area network with 100 Mbps Ethernet adapters
to minimize the network delays. Round-trip latency, while pinging the server from
the client machine, was less than 1 millisecond on average.

14

Figure 6: Evaluation Environment Setup.

SQLIA detector threw an exception (java.sql.SQLException) each time it de-
tected an attack. The testbed web applications embedded the exception message
into the HTTP response before replying to the web client. By examining the SQLIA
exception message in the HTTP response, the automatic testing script was able to
determine whether a test input was recognized as malicious or not.

In our experiments, we subjected SQLPrevent to a total of 3,824 benign and
15,876 malicious HTTP requests. We also obfuscated the requests carrying SQLIAs
and tested SQLPrevent against them, which resulted in doubling the number of
malicious requests. We then repeated the experiments using an alternative back-end
database. In total, we tested SQLPrevent with over 70,000 HTTP requests. None of
these requests resulted in SQLPrevent producing a false positive or false negative.

To measure the performance characteristics of SQLPrevent, we used nanosecond
API in J2SE 1.5 and provided two sets of evaluation data. The first set was used for
measuring detection overhead, which is the time delay imposed by SQLPrevent for
each benign HTTP request. To calculate detection overhead, we measured the round-
trip response time with and without SQLPrevent for each benign HTTP request,
as shown in Figure 7, and applied the following formula: Detection Overhead =
(tb− t)/t, where tb and t are round-trip (between A to C in Figure 7) response times
with and without SQLPrevent respectively.

The second set of data was for measuring prevention overhead, which is the over-
head imposed by SQLPrevent when a malicious SQL statement is blocked. Prevention
overhead shows how fast SQLPrevent can detect and prevent an SQLIA. If either
overhead is too high, the system could be vulnerable to denial-of-service attacks that
aim for resource over-consumption. To ensure that SQLPrevent would not impose
high overhead when blocking SQLIAs, we conducted another performance test and
used the following formula to calculate prevention overhead : Prevention Overhead =
(tr + ts)/tm, where tr and ts are the time delays for request interceptor and SQL in-
terceptor, respectively, and tm is round-trip (from A to B) response time when a
malicious SQL statement is blocked.

Table 2 shows, for each web application and the corresponding database, the max-

15

Figure 7: Detection and prevention performance evaluation. tb and tm are round-trip
response time with SQLPrevent deployed, measured using benign and malicious requests,
respectively.

imum, minimum, and average detection overhead and prevention overhead. SQLPre-
vent imposed a maximum 4% (average 0.3%) performance overhead with respect to
an average 500 milliseconds response time for all five applications and both databases.
The overhead for blocking detected SQLIAs is lower than in the case of benign re-
quests likely because in the former case the SQL statements are not executed by the
back-end database.

To test SQLPrevent performance overhead under a high volume of simultaneous
accesses, we used JMeter [Fou07], a web application benchmarking tool from Apache
Software Foundation. For each application, we chose one servlet and configured 100
concurrent threads with five loops for each thread. Each thread simulated one web
client. We then measured the average response time with and without SQLPrevent
and applied the detection overhead formula to calculate the overhead. During stress
testing, SQLPrevent imposed a maximum 4.2% (average 2.6%) performance overhead
with respect to an average 6,700 milliseconds response time for all five applications
and both databases.

Due to the differences in physical settings, we cannot compare SQLPrevent perfor-
mance directly with other approaches that also use the AMNESIA testbed. There-
fore, we list the performance data of the latter here for reference purposes only.
AMNESIA [HO05] simply stated that “We found that the overhead imposed by our
technique is negligible and, in fact, barely measurable, ranging from 10 to 40 millisec-
onds” without detailed information regarding the physical settings and how overhead
was measured. The SQLCheck [SW06] evaluation environment was set up on a ma-
chine running Linux kernel 2.4.27, with a 2 GHz Pentium M processor and 1 GB
of memory. The timing results were presented in a table, and the average overhead
for each application ranged from 2.478ms to 3.368ms. Nevertheless, the table did
not show maximum overhead information and the paper did not state how the per-

16

Table 2: SQLPrevent overheads for cases with benign (“detection”) and malicious (“pre-
vention”) HTTP requests.

DB Subject Detection Overhead (%) Prevention Overhead (%)
Max Min Ave Max Min Ave

Bookstore 3.632 0.028 0.617 2.113 0.074 0.216
Employee 2.894 0.029 0.171 2.151 0.022 0.227

MS SQL Classifieds 3.343 0.014 0.228 1.987 0.057 0.212
Events 4.038 0.028 0.257 2.442 0.064 0.392
Portal 3.685 0.025 0.545 1.703 0.047 0.145
Bookstore 2.561 0.019 0.355 2.457 0.069 0.244
Employee 3.754 0.031 0.412 2.461 0.068 0.246

MySQL Classifieds 2.671 0.036 0.023 1.757 0.062 0.249
Events 3.943 0.024 0.051 2.051 0.016 0.237
Portal 3.896 0.033 0.038 1.616 0.045 0.201

4.038 0.014 0.271 2.461 0.016 0.237
≈ 4.0 ≈ 0.3 ≈ 2.5 ≈ 0.2

formance overhead was measured. CANDID [BBMV07] was evaluated by installing
web applications on a Linux machine with a 2GHz Pentium processor and 2GB of
RAM. The machine ran in the same Ethernet network as the client. Using JMeter,
one servlet was chosen from each application, and a detailed test suite was prepared
for each application. For each test, the researchers performed 1,000 sample runs and
measured the average numbers for each run with and without CANDID, respectively.
Results were shown in a figure, and ranged from 3.2% to 40.0%.

6 Discussion

In our evaluations, SQLPrevent produced no false positives or false negatives, im-
posed low runtime overhead on the testbed applications, and was portable among
two different databases. Some existing approaches [HO05, BWS05, SW06, BBMV07,
NTGG+05, PB05] also have either low performance overhead or high accuracy. How-
ever, compared with SQLPrevent, they suffer from other limitations, such as the
need to analyze or even modify the application source code [HO05, BWS05, SW06,
BBMV07] or to modify the runtime environment [NTGG+05, PB05].

In spite of the compelling evaluation results, our approach could in theory have
false positives or false negatives, since web applications do not automatically provide
information about the source of tokens in the dynamic SQL statements. Based on
our detection algorithm, a false positive would occur when a parameter value in an
HTTP request (1) appears as a substring of the intercepted SQL statement and (2)
is not in the literal token set of the intercepted SQL statement and (3) comprises
more than two tokens, and (4) is not used by programming logic to form the SQL
statement. For example, in Figure 4, if the parameter named ACTION had a value

17

of “UPDATE books”, this would be an instance of a false positive for our detection
algorithm. However, as shown by the evaluation, our detection algorithm correctly
identified all 3,824 benign requests we had in the testbed, by ruling out parameters
that comprise only one token. The chances of false positives could be further reduced
by simply configuring the threshold values (i.e., the number of tokens in the parameter
value) for that particular URL in the SQLIA detector, at the cost of an additional
configuration.

Theoretically, false negatives are also possible in our approach, since a web
application could use the value of an HTTP request parameter in any way it wants
when it constructs the SQL statement. For instance, consider a parameter value
that consists of a list of comma-delimited product categories categories=c1,c2,
and assume that the server-side programming logic constructs a separate SQL
statement for each category id in the list, such as:

id array = request.getParameter("categories").split(",");
S1="SELECT * FROM category WHERE cid=’"+id array[0]+"’";
S2="SELECT * FROM category WHERE cid=’"+id array[1]+"’";

A malicious parameter "categories=c1,c2’ shutdown --" could successfully
exploit this vulnerability, resulting in S2 as "SELECT * FROM category WHERE
cid=’c2’ shutdown". This attack would not be detected by our detection algo-
rithm, since the whole malformed parameter value ("c1,c2’ shutdown --") is not
a substring of S2.

To generalize the above example, false negatives can occur when a malformed pa-
rameter value in an HTTP request (1) is modified by web application programming
logic before it is used to construct the final SQL statement or (2) is partially selected
by programming logic to form the SQL statement. Since both conditions result in a
malicious parameter not appearing as a substring of the intercepted SQL statement,
the malformed parameter will be neglected by our detection algorithm. However,
based on the experimental results and to the best of our knowledge, these are rare
cases; the most common cause of SQLIAs is programming logic using malicious pa-
rameters directly to form SQL statements without any validation or modification. For
those rare cases, an extension module that performs a customized parsing logic can
be configured to be used by SQLPrevent before performing detection. For instance,
the above false negative sample can be prevented by an extension that splits the value
of “categories=c1,c2” into separate parameters such as “categories 1=c1” and
“categories 2=c2” before the detection module commences detection. Thoroughly
addressing the problems of false positives and false negatives will be a candidate
subject of future research.

In addition to high detection accuracy and low performance overhead, the ad-
vantages of our technique are its ease of integration with existing web applications
and databases, and its portability across different back-end databases. SQLPrevent
can be easily integrated with existing web applications based on J2EE technology
by simply (1) deploying SQLPrevent Java library into J2EE application servers, (2)
configuring HTTP request interceptor filter entry in the web.xml, and (3) replacing

18

the class name of the real JDBC driver with the class name of SQL interceptor. Our
approach requires web servers to have capabilities for performing HTTP request fil-
tering and SQL statement interception. For SQLPrevent, we implemented the HTTP
request interceptor module as a filter and SQL interceptor module as a JDBC proxy.
The filter was introduced in Java Servlet specification version 2.3 [Cow01] and JDBC
has been part of the Java Standard Edition since the release of SDK 1.1. To the best
of our knowledge, most J2EE application servers support both API interfaces these
days. We are currently working on the port of SQLPrevent to ASP.NET and PHP
for the purpose of evaluating the feasibility of our approach for these mainstream
web environments.

Our approach also appears to be compatible with different back-end databases.
Most database-system vendors develop proprietary SQL dialects (such as Microsoft
T-SQL [Cor07a], Oracle PL-SQL [Cor07c] or MySQL [Cor07b]) in addition to sup-
porting standard ANSI SQL. To protect different types of back-end databases against
SQLIAs, an SQLIA detection mechanism that utilizes an SQL parsing technique
(such as SQLGuard [BWS05], SQLCheck [SW06], CANDID [BBMV07] and Sa-
nia [KKH+07]) must provide SQL parsers that support each type of SQL dialect.
SQL parsing, or syntactic analysis, is the process of analyzing a sequence of tokens
to determine its grammatical structure with respect to a given SQL grammar. Even
though most existing SQL grammars are substantially different from each other, they
all share similar lexical rules for tokenizing an SQL statement. Our approach uses an
SQL lexical analyzer instead of an SQL grammar parser to analyze intercepted SQL
statements, which makes any implementation based on our approach easier to port
to other back-end databases. For instance, SQLPrevent is used with MySQL without
any modification to the SQL lexer, which was originally designed for Microsoft SQL
Server.

7 Conclusion

SQL injection vulnerabilities are ubiquitous and dangerous, yet most web appli-
cations deployed today are still vulnerable to SQLIAs. Although recent research
on SQLIA detection and prevention has successfully addressed the shortcomings of
existing SQLIA countermeasures, the effort needed from web developers—such as
application source code analysis/modification, acquisition of the training traces, or
modification of the runtime environment—has limited adoption of these countermea-
sures in real world settings. In this paper, we have presented a new approach to
runtime SQLIA detection and prevention, as well as a tool (SQLPrevent) that im-
plements our approach. Our evaluation of SQLPrevent indicates that it is effective,
efficient, portable among back-end databases, easy to deploy without the involvement
of web developers, and does not require access to the application source code.

For future work, we plan to conduct additional research to thoroughly address
the problems of false positives and/or false negatives. We also plan to finish porting
our approach to other web-application development platforms, such as ASP.NET and
PHP, in order to evaluate the feasibility of our approach for other mainstream web
platforms. To obtain more realistic data on the practical possibility of false positives

19

and false negatives, we plan to evaluate SQLPrevent on other real world web appli-
cations, and test it with SQLIA penetration testing tools such as Absinthe [NX07]
and SQLNinja [ice07]. We will also make SQLPrevent an open source project.

Acknowledgments

We thank William Halfond and Alex Orso for providing AMNESIA [HO05] testbed
applications and sample attacks for use in our evaluation, and Craig Wilson for
improving the readability of the paper. Members of the Laboratory for Education
and Research in Secure Systems Engineering (LERSSE) supplied valuable feedback
on the earlier drafts of this paper. Special thanks go to Kirstie Hawkey and Kasia
Muldner for their detailed suggestions on improving this paper.

References

[Anl02a] Chris Anley. Advanced SQL injection in SQL server application. Tech-
nical report, NGSSoftware Insight Security Research (NISR), 2002.

[Anl02b] Chris Anley. (more) Advanced SQL injection in SQL server application.
Technical report, NGSSoftware Insight Security Research (NISR), 2002.

[AQT07] AQTRONIX. WebKnight. http://www.aqtronix.com/?PageID=99,
2007.

[BBMV07] Sruthi Bandhakavi, Prithvi Bisht, P. Madhusudan, and V. N.
Venkatakrishnan. CANDID: Preventing SQL injection attacks using
dynamic candidate evaluations. In ACM Conference on Computer and
Communications Security (CCS), pages 12–24, Alexandria, Virginia,
USA, October 2007.

[BK04] Stephen W. Boyd and Angelos D. Keromytis. SQLrand: Preventing
SQL injection attacks. In Second International Conference on Applied
Cryptography and Network Security (ACNS), pages 292–302, June 2004.

[BWS05] G. T. Buehrer, B. W. Weide, and P. A. G. Sivilotti. SQLGuard: Using
parse tree validation to prevent SQL injection attacks. In International
Workshop on Software Engineering and Middleware, pages 106–113,
Lisbon, Portugal, September 2005.

[Cer03] Cesar Cerrudo. Manipulating Microsoft SQL server using SQL injection.
Technical report, Application Security Inc., 2003.

[Cor07a] Microsoft Corp. Transact-SQL reference.
http://msdn2.microsoft.com/en-us/library/ms189826.aspx, 2007.

[Cor07b] MySQL AB Corp. MySQL 6.0 reference manual.
http://dev.mysql.com/doc/refman/6.0/en/index.html, 2007.

[Cor07c] Oracle Corp. Oracle database PL/SQL.
http://www.oracle.com/technology/tech/pl sql/index.html, 2007.

20

[Cow01] Danny Coward. JSR-000053: Java Servlet specification, version 2.3.
Specification v.2.3 Final Release, Java Community Program, September
2001.

[Fou07] Apache Software Foundation. Apache JMeter.
http://jakarta.apache.org/jmeter/, 2007.

[HL03] Michael Howard and David LeBlanc. Writing Secure Code. Microsoft
Press, Redmond, Washington, 2nd edition, 2003.

[HO05] William G.J. Halfond and Alessandro Orso. AMNESIA: Analysis and
monitoring for neutralizing SQL injection attacks. In 20th IEEE/ACM
International Conference on Automated Software Engineering, pages
174–183, Long Beach, California, USA, 2005.

[HVO06] William G.J. Halfond, Jeremy Viegas, and Alessandro Orso. A classi-
fication of SQL injection attacks and countermeasures. In IEEE Inter-
national Symposium on Secure Software Engineering, 2006.

[HYH+04] Yao-Wen Huang, Fang Yu, Christian Hang, Chung-Hung Tsai, D˙ TL̇ee,
and Sy-Yen Kuo. Securing web application code by static analysis and
runtime protection. In 13th international conference on World Wide
Web, pages 40–52, 2004.

[ice07] icesurfer. SQLNinja. http://sqlninja.sourceforge.net/, 2007.

[Inc07] Breach Security Inc. ModSecurity. http://www.modsecurity.org/, 2007.

[KKH+07] Yuji Kosuga, Kenji Kono, Miyuki Hanaoka, Miho Hishiyama, and
Yu Takahama. Sania: Syntactic and semantic analysis for automated
testing against SQL injection. In 23rd Annual Computer Security Ap-
plications Conference (ACSAC), December 2007.

[LL05] V. Benjamin Livshits and Monica S. Lam. Finding security vulnerabili-
ties in Java applications with static analysis. In 14th USENIX Security
Symposium, pages 271–286, August 2005.

[MGAQ03] Andy Martin, Jeff Goke, Alan Arvesen, and Frank Quatro. P6Spy open
source software. http://www.p6spy.com/, 2003.

[MS05] Ofer Maor and Amichai Shulman. SQL injection signatures evasion.
White Paper of Imperva Inc., 2005.

[NTGG+05] Anh Nguyen-Tuong, Salvatore Guarnieri, Doug Greene, Jeff Shirley, and
David Evans. Automatically hardening web applications using precise
tainting. In 20th IFIP International Information Security Conference,
pages 296–307, Makuhari-Messe, Chiba, Japan, May 30 - June 1 2005.

[NX07] Nummish and Xeron. Absinthe. http://www.0x90.org/releases/absinthe/,
2007.

[PB05] Tadeusz Pietraszek and Chris Vanden Berghe. Defending against in-
jection attacks through context-sensitive string evaluation. In Eighth
International Symposium on Recent Advances in Intrusion Detection,
pages 124–145, 2005.

21

[Pro07] Open Web Application Security Project. OWASP top 10 threats in
web application 2007. http://www.owasp.org/index.php/Top 10 2007,
2007.

[SS02] David Scott and Richard Sharp. Abstracting application-level web se-
curity. In 11th International Conference on the World Wide Web, pages
396–407, Honolulu, Hawaii, USA, May 2002.

[Sun90] Daniel M. Sunday. A very fast substring search algorithm. Communi-
cations of the ACM, 33:132–142, 1990.

[SW06] Zhendong Su and Gary Wassermann. The essence of command in-
jection attacks in web applications. In Symposium on Principles of
Programming Languages, pages 372–382, Charleston, South Carolina,
USA, January 2006.

[VMV05] Fredrik Valeur, Darren Mutz, and Giovanni Vigna. A learning-based
approach to the detection of SQL attacks. In Conference on Detection
of Intrusions and Malware & Vulnerability Assessment (DIMVA 2005),
pages 123–140, 2005.

[XA06] Yichen Xie and Alex Aiken. Static detection of security vulnerabilities
in scripting languages. In 15th USENIX Security Symposium, pages
179–192, August 2006.

22

	Introduction
	Background
	How SQL Injection Attacks Work
	Existing Countermeasures

	Related Work
	Approach
	Abstraction of Web Applications and HTTP Requests
	Alteration of the SQL Statement's Intended Syntactical Structure by SQLIAs
	False Positive Reduction
	Detection of Attacks

	Evaluation
	Implementation
	Experimental Evaluation

	Discussion
	Conclusion
	References

