Cooperative Secondary Authorization Recycling

Qiang Wei, Matei Ripeanu, Konstantin Beznosov

Laboratory for Education and Research in Secure Systems Engineering
(lersse.ece.ubc.ca)

University of British Columbia
Typical Authorization Architecture

- **Subject** (client)
- **Policy Enforcement Point (PEP)**
- **Policy Decision Point (PDP)**

Protected application objects

Also known as request-response paradigm

Example: IBM Access Manager, EJB, XACML
Motivation Problems

- Reduced availability
- Reduced scalability

PEP "X" PEP
PEP "X" PEP

PDP "X"
Secondary and Approximate Authorization Model (SAAM)

1. reuse cached responses
2. infer approximate responses

Secondary Decision Point (SDP)

Secondary Authorization Recycling
Cooperative Secondary Authorization Recycling

SDP

Discovery Service

SDP

SDP

SDP

Each SDP serves only its own PEP!

All SDPs cooperate to serve all PEPs
A Simplified Example

Alice’s subject
- id=Alice
- role=preferred customer

allow
(an approximate response)

Bob’s subject
- id=Bob
- role=customer

allow

new request

Discovery Service

previous request

Contributions

- Proposed
 - the concept of cooperative secondary authorization recycling
 - system architecture & detailed design

- Evaluated
 - availability
 - performance
Key Design Features
Consistency: Support Critical Policy Changes

1. find affected SDPs
2. find affected caches

Security Administrator

Policy Change Manager

Policy Changes

Critical (t)

Policy Store

propagate policy changes to affected SDPs immediately
Consistency: Support Time-sensitive Policy Changes

A TTL approach: delete expired responses periodically
Support Untrusted Remote SDPs

PEP \(\xrightarrow{\text{Trusts}}\) SDP \(\xrightarrow{\text{Trusts}}\) PDP

- Malicious SDP
 - Does NOT Trust

Verify responses made by remote SDPs

1. verify the authenticity and integrity
2. verify the correctness of inference
Configurability

- **Three decision points**
 - local SDP & remote SDPs & the PDP

- **To reduce network traffic & PDP’s load**
 - *sequential* authorization

- **To reduce the response time**
 - *concurrent* authorization
Evaluation Results

via simulation & prototype implementation
Simulation-based Evaluation

- **Metrics**
 - cache hit rate

- **Methodology**

- **Affecting factors**
 - cache warmness = \[
 \frac{|\text{cached requests without replacement}|}{|\text{total possible requests}|}
 \]
 - number of cooperating SDPs
 - overlap rate \(O_{12} \) = \[
 \frac{|R_{12}|}{|R_1|}
 \]

Simulation engine

training set

testing set

SDP1

SDP2

\(R \) – resource space
Hit Rate Dependence on Cache Warmness

High hit rate is achieved even when cache warmness is low.
Hit Rate Dependence on Number of SDPs

10% cache warmness at each SDP

Increasing the number of cooperating SDPs leads to higher hit rates

Additional SDPs provide diminishing returns
Prototype-based Evaluation

- Metrics
 - average client-perceived response time
 - hit rate

- Methodology
 - Affecting factors
 - number of requests
 - presence of response verification
 - frequency of policy change
Response Time Dependence on Number of Requests

4 SDPs (CSAR), 100% overlap, 40ms RTT between PDP and each SDP

1. Cooperation can contribute to **reduced response time**
2. The **impact** of response verification is **small**
How will regular policy changes affect hit rate?

1. Hit-rate drop caused by each policy change is small
2. Cumulative effect of policy changes is significant

1. The hit rates stabilize after the knee
2. More frequent policy changes lead to lower hit rates
How does cooperation help?

100% overlap, policy changes at 100 requests/change

Cooperation improves hit rates when policy changes
Related Work

Collaborative security
(Locasto et al. 2006, Costa et al. 2005)

Authorization recycling
(Bauer et al. 2005, Borders et al. 2005)

Secondary and Approximate Authorization Model (SAAM)
(Crampton et al. 2006, Beznosov 2005)

Collaborative web caching

CSAR
Future Work

- More active cooperation
- Integrate the prototype with real applications
- Speculative authorization
- Publish-subscribe model
Summary

- Reduced availability
- Reduced scalability

PEP

SDP

Discovery Service

Graphs showing hit rate and response time with different overlap scenarios.