
Proceedings of the
Second EECE 512 Mini-Conference

 on Computer Security

 Vancouver, BC, Canada
 April 10 - 12, 2007

Sponsored by
Laboratory for Education and Research

in Secure Systems Engineering

http://lersse.ece.ubc.ca
Technical report LERSSE-TR-2007-03

Table of Contents

Conference Organization...iii

Session 1: Chair Maryam Najafian Razavi

• Controlling Access to Resources Within The Python Interpreter1

 Brett Cannon

 • Speculative Authorization..9
 Jeremy Hilliker

 Session 2: Chair Brett Cannon

 • Towards Usable Privacy for Social Software ..15

 Maryam Najafian Razavi

 • Detecting, Analyzing and Responding to Security Incidents:
 A Qualitative Analysis...24
 Rodrigo Werlinger

ii

Conference Organization

General Chair: Konstantin Beznosov

Program Chair: Jeremy Hilliker

Session Chairs: Maryam Najafian Razavi
 Brett Cannon

 Proceedings Chair: Rodrigo Werlinger

iii

Controlling Access to Resources Within The Python Interpreter

Brett Cannon
University of British Columbia

brett@python.org

Abstract
Version 2.5 of the Python programming language contains no
mechanism for restricting access to resources by Python code. This
is a slight hindrance to the language as it is used in many situ-
ations, such as a domain-specific language in other applications,
where some mechanism to control what resources Python code can
access would be helpful.

Python did once have a security mechanism for restricting re-
source access, but it was disabled in version 2.3. The disabling of
the security mechanism was driven by a lack of security expertise
on the part of the Python development team. This means that any
introduced security mechanism should, if possible, not require lan-
guage support so as to prevent the need to turn off any new security
mechanism in the future.

This paper presents a security mechanism whose impact upon
the Python language is minimal. By removing four function or
methods from Python’s built-in namespace and utilizing Python’s
modularity in terms of its connection with its underlying inter-
preter, the proposed security mechanism has minimal impact upon
the language. The mechanism allows for controlling access to re-
sources within a single Python interpreter. This allows Python to
have some form of a security mechanism between Python code and
the system it is running on.

1. Introduction
The Python programming language [32] has a wide range of uses.
It is used for teaching computers science [27], as a domain-specific
language (DSL) [31], and for developing large applications [6]. Part
of this popularity stems from the fact that Python is an interpreted
language with its own virtual machine.

Something that all users of Python have in common is trust
that the code they are executing in the Python interpreter is not
malicious. The current version of Python (version 2.5) lacks any
mechanism to enforce a security policy related to controlling access
to resources (as defined by [11]). While some informal methods
exist, Python lacks any mechanism built into the language or its
implementation to prevent code from accessing resources such as
files or sockets.

The lack of a way to restrict resource access is unfortunate
because having a way to enforce a security policy for the Python
interpreter would be useful in several situations. When Python is
embedded in an application as a domain-specific language (DSL), it

Copyright is held by the author/owner(s) 2007.

would be helpful to make sure that users of the application can feel
confident that some source code they download from the Internet
for use will not delete files from their file system that it should
not have access to. In the educational realm making sure students
do not accidentally harm their own computers would help alleviate
worries of a programming mistake causing serious damage.

For these reasons and various other ones, this paper addresses
work done to introduce the needed mechanisms to control access
to resources from within the Python interpreter. The contribution
of this paper is to present an approach to introducing a mechanism
into Python that allows for controlling access to resources that does
not require changes to the Python language itself and only minor
changes to some select object types.

2. The Python Programming Language
The Python programming language is an object-oriented, inter-
preted language that has uses in a wide range of domains such as
scientific applications, web sites, and desktop applications [5]. Sys-
tems programming is essentially the only are where Python is not
currently in use.

Python supports both the procedural and object-oriented pro-
gramming paradigms along with some functional support. Python’s
embrace of object-oriented programming is deep. Within Python
everything is an object; numbers, strings, functions, etc. There is
complete support for operator overloading by objects. There is also
deep support for introspection capabilities on objects. For instance,
every object stores a reference to the class or type that the object is
an instance of (stored in the class attribute).

One of the basic tenants of Python is that “Explicit Is Better
Than Implicit” [26]. This has led to Python being designed so that
most actions taken within the language have an explicit representa-
tion through some particular object. The semantics are also explicit.
A good example of this explicitness is the promotion within Python
of modularity amongst source files.

In Python a file that contains source code is called a module. It is
a common practice to reasonably separate source code into individ-
ual modules, where semantics makes such a separation reasonable.
In order to bring a module into another module’s namespace an
explicit statement must be made using the import keyword. Spec-
ifying a module with the import keyword “imports” the module
such that the code in that module is then available to the code that
executed the import (e.g., “import foo” brings the foo module
into the current namespace and makes the objects defined within
the module accessible under the foo name).

But what makes the import keyword a wonderful example
of Python’s explicit modularity is how the statement works. The
mechanism that implements the import keyword for interpret-
ing a file and creating an object representation is handled by the
import function. Defined in the built-in namespace that is ac-

cessible by all executing code, the function is passed the name of

1

the module being requested for importation and returns the object
representation of that module: ” import (’foo’)”.

The import/ import dichotomy also serves as a good illus-
tration of how Python’s interpreted nature ties into the language.
Python itself exploits the fact that it is an interpreted language by
allowing certain language semantics to be configurable based on
the interpreter as it is running. The interpreter is not a blackbox
that one cannot change but a part of the larger system that can be
modified in certain ways to play a role in how Python code is exe-
cuted.

By providing a rich C API to support tying into the Python
interpreter, Python has garnered great success as a DSL in various
programs implemented in C. The C API also allows for modules to
not only be implemented in Python source code but also in C.

3. History of Security in Python
Currently Python lacks a mechanism for enforcing a security pol-
icy; this was not always the case. Added to Python in 1995, the
rexec module [7] (along with the related Bastion module intro-
duced in 1996) provided the ability to run source code in a sandbox.
Following the design of Safe-Tcl [23], rexec used Python’s exec
statement to run code with a restricted built-in and global names-
pace. Support was also included in the implementation of Python’s
interpreter in the form of flagging execution frames that had a dif-
fering built-in namespace from that of the interpreter as being in
a “restricted” mode. This restricted mode turned off certain intro-
spection capabilities deemed dangerous. This mechanism was also
available at the C level through Python’s C API.

The rexec module provided the means of enforcing a security
policy when executing Python code for many years. But starting in
version 2.3 of Python, both the rexec and its companion Bastion
module were disabled. This stemmed from the key fact that there
were (and still are) not any security experts among the various
developers of Python.

Because Python is an open source project the only people who
help develop Python are volunteers. An issue that stems from
Python’s open source development is there is no way to guarantee
that any member of the development team is an expert in security
as someone would need to volunteer to fulfill that role. Having no
security expert on the development team can cause issues as some-
one might make a change to the language that breaks security but
is not caught by anyone on the development team. The realization
that the security mechanism in place was being unintentionally bro-
ken happened during the development of Python 2.3 and led to the
disabling of rexec and Bastion until a developer joined the de-
velopment team who had the proper expertise on security [33].

4. Related Work
The work presented by this paper is obviously not the first attempt
to introduce a mechanism to enforce a security policy within a
programming language. As stated in Section 3, Safe-Tcl [23] was
the inspiration for Python’s first security mechanism. The approach
taken in Safe-Tcl is to allow multiple interpreters to execute within
the same process. Each interpreter has a security policy enforced by
controlling what commands are available in the global namespace.
By creating the proper delegates an interpreter can be provided
commands that have restricted abilities as the programmer deems
fit.

Perl provides two types of security. One is a taint mode on all
string inputs [25]. Tainting provides for information-flow security
by flagging all incoming data as “tainted” [36]. This allows Perl’s
interpreter to disallow tainted data to be used in any place that is
defined unsafe (e.g., writing to a file or socket, command to the
operating system, etc.).

The other type of security in Perl is the Safe module [10].
The module restricts the namespace that code will be run in. The
code being restricted is then compiled to only execute within the
namespace specified to restrict the abilities of the code in question.

CaPerl is a modified version of the Perl language that imple-
ments a capability system within the language [18]. By introducing
new keywords into the language that specify what is trusted and
what is not one is able to restrict what abilities are exposed to vari-
ous pieces of code. It is based on the ideas of capabilities which are
discussed later in Section 5.3.

Ruby’s security is much like Perl’s taint system [30]. The sig-
nificant difference between Ruby and Perl, though, is that Ruby
implements levels of security for its taint model. The taint levels
allow certain operations to allow tainted data while others don’t
based on how restrictive the security level is meant to be.

JavaScript provides several means to securely run code when
used in a web browser [3][9]. One is using access control to enforce
the security policy. By using access control lists (ACLs) a script is
restricted to accessing web pages that are listed in that code’s ACL.
JavaScript as run in a web browser can also have signed code. This
provides guarantees that if you trust the person who signed some
code that it was unmodified and thus as trustworthy as the person
who signed it.

Java has had its security implementation evolve over the life
of the language. Originally, Java followed a sandbox model where
a class loader enforced a local namespace so that untrusted code
could not influence other code [14]. The sandbox model did not
allow for fine-grained control and thus was changed [17]. With
Java 2, a security policy was possible to be set as represented by
the java.security.Policy object. Security domains were also
introduced with each class being a member of a single domain. This
allowed each object to be connected to the security policy that was
associated with the security domain. To enforce this, the execution
stack is traced to make sure that the call will not violate the security
policy [8]. Java code can also be signed like JavaScript for use in a
web browser so as to allow execution of code from trusted sources
without worrying about malicious attacks [13].

The .NET framework builds off of Java’s general design and
attempts to fix issues that have crept up over the years with Java’s
security system [24]. Like Java, .NET verifies that the file format of
the code to be run is safe. While both use policies defined externally
to the the respective runtimes, .NET uses the intersection of groups
of policies specified. Both use an analysis of the execution stack
to make sure that a call is safe. .NET can do some static security
policy enforcement, unlike Java. There is also the ability to sign
code to verify it comes from a trusted source.

Programming languages are not the only way to provide secu-
rity. Operating systems must also specify security policies on multi-
user systems. Probably one of best known instance of an operating
system’s security mechanism is FreeBSD’s “jail” facility [16]. By
altering the view of the system a user has, the jail facility helps to
prevent a user from accessing certain resources. This alteration of
view even affects the root account for the jail [19]. Further enforce-
ment is through proper user checks in system calls that can perform
possibly malicious actions on behalf of the user.

5. Design
5.1 Criteria
From the outset, the design of the security mechanism to be im-
plemented for Python has two design constraints. The first one is
that the language could not substantially change in terms of feel.
Within the Python community, the term “Pythonic” embodies this
idea. Anything deemed Pythonic is considered to follow the gen-
eral philosophies of the Python programming language. While an

2

extremely nebulous definition, the closest to an “official” definition
of the term can be found in [26]. Adding static type checking, for
instance, would not be Pythonic as it goes against Python’s promo-
tion of interface typing.

The restriction of not introducing any features to the language
that could be deemed not Pythonic has meant that any change vis-
ible at the language must first be deemed Pythonic. This is critical
in order for current Python programmers to have psychological ac-
ceptability for the security mechanism and are comfortable with it
[28][35]. If the security mechanism deviates too much from com-
mon Python practices it would be rejected by current users, severely
hindering its acceptance.

The second restriction placed upon the design is that it can-
not hinder Python’s development team. This stems from lessons
learned in Python’s history with security as discussed in Section 3.
The developers of Python should not have to shoulder a great bur-
den in order to continue to support any security mechanism that is
designed and implemented. By making it a requirement of the de-
sign that the Python developers do not have to worry about security
in every decision they make, there are two benefits. One is that the
developers are allowed more freedom in changing the language;
minimizing any inconvenience or hindrance lets Python grow and
evolve more easily. Second, by not forcing the developers to con-
stantly make sure that their work won’t break any security mech-
anism, the possibility of a vulnerability being introduced becomes
minimized. This helps prevent a reoccurrence of security holes like
what happened with the rexec module.

An unfortunate side-effect of these design criteria is that deeply
integrated security solutions are not acceptable. This makes the
solutions taken by Java and .NET not directly applicable in this
situation as both languages were designed with security in mind
and thus started with their security mechanism integrated into the
implementation. Both Java and .NET take an approach where a
class loader is directly integrated into their interpreter and that is
not acceptable in this instance as that would burden the Python
development team, something that this design is trying to avoid.

5.2 Threat Model
The purpose of the work under discussion is to handle a threat
model where arbitrary Python code is run in a single Python in-
terpreter without fear that it is able to gain access or control of re-
sources it is not explicitly given (Python supports running multiple
interpreters within a single process, but this work only addresses
the case of a single interpreter running). In terms of what kind of
adversary the security mechanism is meant to guard against, there
are two. One is where an adversary misrepresents what a piece of
Python code does in terms of accessing system resources such as
files or sockets. A trusting user then runs the code from the adver-
sary which then accesses resources that the code was not expected
to access. The access can include reading, writing, or destroying
resources. The accessing could be purely to destroy other resources
or could be to steal sensitive information.

The other kind of adversary is one where a programmer happens
to accidentally destroy a resource. This might come in the form of
a person new to programming accidentally overwriting a file when
they meant to open for reading or to write to a new file path instead
of an existing one.

With those types of adversaries being considered, the Python
interpreter cannot gain access to resources that the process the in-
terpreter is running in possesses without explicitly being given ac-
cess to those resources. The operating system bestows and restricts
the resources a program can access upon individual processes. This
makes the process, from the program’s point of view, the powerbox;
the object that has the greatest amount of power and that retains the
power to give out abilities and resources [29]. If the powerbox did

not regulate what resources the interpreter had at its disposal then
it could do anything the Python process could do.

Related to the process acting as the powerbox, the interpreter
cannot gain access to the resources of the operating system without
explicitly being given them. This issue is mediated by having to go
through the powerbox.

In the end, this work is trying to regulate the authority the
Python interpreter has upon various resources that can possibly
be granted to it by the operating system. By “authority” we mean
the “effects a program may cause on objects it can access, either
directly by permission, or indirectly by permitted interactions with
other programs” [20]. This means we are trying to mitigate the
threat posed by code run in a Python interpreter by controlling what
resources are exposed to and by the Python interpreter.

5.3 Object-Capabilities
In general there are two major types of security for controlling ac-
cess to resources, “list-oriented” and “ticket-oriented” approaches
to security, which are more commonly known as ACLs and capabil-
ity systems, respectively [28]. The former uses a list of authorized
users to control access to resources. Code that is running would be
represented as a user, and if the represented user is not listed as au-
thorized to use a resource it would be denied access. A capability
system uses tokens or tickets to represent the right to access a re-
source. When a ticket is presented to gain access to a resource then
the code is granted or denied access based on whether that ticket
was valid for approving the right to use a resource.

An analogy one might use is trying to gain access to a night
club where a special event is occurring. With ACLs, a bouncer at
the door would have a list of people authorized to attend the event.
By presenting identification establishing you are who you claim,
the bouncer can check your name against the list and either permit
or block your entrance. A capability system would be based on
invitations that every attendee was sent. If someone came to the
door and presented a legitimate invitation they would be granted
access.

A type of capability system that exists is object-capabilties
[22]. This type of security model as implemented in an object-
oriented programming language “uses the reference graph as the
access graph” [20]. Authority to use a resource is granted based
on whether a reference to an object that possesses the authority
to access the resource is available. This makes object-capabilities’
security based on the controlling of references to objects.

In order for object-capabilities to work, three things must be
in place in the language: references cannot be forged, immutable
shared state, and private namespaces [22]. Unfortunately Python
only has the first of the three abilities by default within Python it-
self. The latter two have solutions and are addressed in Section 5.4.

With the basic conditions met for using object-capabilities, the
question becomes why object-capabilities over another approach?
The answer comes from Python’s dynamic, modular design along
with not wanting to modify the Python language if it can be
avoided. Object-capabilities can be implemented on a per-object
instance. A single function can implement object-capabilities if so
desired without requiring every function to use the system as long
as the three required features of object-capabilities is met. This
case-by-case implementation approach allows for only parts of a
system to bother with security. This works well in the situation un-
der discussion as it minimizes what needs to be changed within
Python. No huge re-architecture or addition of security needs to
be added to Python but only to individual objects where security
matters.

And as object-capabilities allows for a per-object implementa-
tion it also alleviates tying into the language directly if it is not de-
sired. In the case of ACLs, the language itself needs to understand

3

ACLs in terms of identities and the proper propagation of identities.
In both Java and .NET, for instance, the security mechanism is di-
rectly integrated into the interpreters of the two systems. However
object-capabilities requires no such thing if the three implementa-
tion requirements are met. A function can implement its own token
system and decide itself how it will handle those tokens. It is op-
tional for a language to participate in the security mechanism with
object-capabilities.

In general there are two problems commonly believed to exist
with any capability system along with one weakness [11]. One
perceived problem is that of confining capabilities so that they
do not improperly propagate (e.g., authority is given to an object
that then hands to another object where it is not desired that the
second object gain the authority being passed around). In general
there is a known solution [21], but in the case of the threat model
being considered in this paper it is not an issue. As there is only a
single interpreter there is no one to improperly propagate authority
to. The powerbox which gave the interpreter the authority in the
first place is the only other party even under discussion and the
powerbox already has all authority that the interpreter has and then
some. There is no other interpreter that could be improperly given
authority for something by some other interpreter.

Another perceived problem of a capability system is that of the
revocation of rights. This is a consideration for our threat model. If
the powerbox decides to revoke the authority to access a resource
after it has been granted (e.g., a one-time access to a resource)
there needs to be a way to revoke that right. A solution exists
through delegating authority through an intermediary [21]. As will
be discussed in Section 5.4, there is a way to implement a delegate
in Python, albeit not in Python source code but in C code.

Finally, the weakness that capabilities have is in answering the
question, “given an object, what subjects can access it” [11]? But in
the case of our threat model, this is once again not an issue. As we
have only a single interpreter to consider within the powerbox there
can only ever be a single subject whose authority is being restricted.
This singularity of only having a single interpreter running makes
the plurality of “subjects” meaningless in regards to the question
being posted and thus a non-issue.

5.4 Securing a “Bare” Interpreter
As a starting point for discussing what must be done to secure
Python, consider what could be deemed a “bare” interpreter. When
the interpreter has been initialized and no code has been executed
within the interpreter it can be called “bare”. If the interpreter
cannot control what resources are exposed within the interpreter
in this bare state then there is no chance of regulating access to
resources as a bare interpreter is essentially the initial state the
interpreter is in when it begins executing code.

With no code imported, an interpreter starts off with the built-in
namespace created. The namespace contains various things con-
sidered essential or highly useful for almost all Python programs.
Exceptions, the various built-in data types, and useful functions are
contained within the built-in namespace. Controlling this names-
pace, along with the global namespace of running code, is impor-
tant as capability systems in general rely on controlling namespaces
[15].

Because the built-in namespace is exposed in all Python code,
it must be made safe such that objects in the namespace that in-
discriminately give access to resources are removed or modified.
Types must either be changed so that one cannot instantiate new
instances indiscriminately from them or be removed completely.
Methods on the various types in the built-in namespace might need
to be removed or modified if they have the authority to access re-
sources that should be protected. The same possibility or modi-
fication or removal applies to functions. Table 1 lists the various

methods and functions that need to be removed from the built-in
namespace.

In terms of functions, the execfile and open functions need to
be removed. The former takes a file path to a Python source file and
executes it in the interpreter, returning an object representing the
code that was executed. This is dangerous as it allows access to the
file system indiscriminately. The open function has the authority to
open files for reading or writing. For the same reason as execfile
needs to be removed, the open function needs to be taken out of
the built-in namespace; it has authority to access the file system
indiscriminately. It is possible to provide a delegate to allow for
restricted use of these functions; such a delegate is discussed in
Section 6.3.

Two data types in the built-in namespace that need to be
changed in order to prevent indiscriminate instantiating of them are
the code and file types. For both types the way to prevent instan-
tiation is to remove their init methods as this is the method
Python calls on a class or type when it creates a new object in-
stance.

The code type allows one to create code objects, which rep-
resent executable Python code. The type needs to restrict indis-
criminate instantiation as it is possible to create code objects with
Python’s bytecode without going through Python’s internal com-
piler. Since Python lacks any way to verify the soundness of byte-
code this becomes a possible denial-of-service (DoS) attack by
crashing the interpreter. An escalation of abilities might be possi-
ble through some very specifically crafted bytecode, although this
is pure speculation.

The other type that must be prevented from being directly in-
stantiated is the file type. As the object representation of files on
the file system, unchecked instantiating of the type would lead to
uncontrolled access of the file system. By removing the ability to
instantiate the file type directly all file access can be redirected
through a delegate (such as a delegate for the open function). This
provides a single access point for the file system within the built-in
namespace which makes for simpler control of file system access.

In a bare interpreter, there is a single method that causes Python
to not meet the immutable shared state requirement of object-
capabilities (as mentioned in Section 5.3). The subclasses
method on the object type returns a list of all subclasses. By virtue
of the object type being the root type of all objects in Python the
subclasses method returns all classes defined by any Python

code within the Python process, not just within the interpreter as
some objects are created to allow the interpreter to work. Without
the removal of this method it would not be possible to prevent
access to a class or type.

5.5 Securely Allowing Imports
The usefulness of code that runs in a bare interpreter is fairly
limited. Without the ability to import external code almost all useful
functionality would need to be re-implemented by the code running
in the interpreter. Obviously not being to import code would be a
great hindrance on programs and cripple the usefulness of Python.

A basic overview of importing modules is covered in Section 2,
but a more thorough discussion is called for to understand how im-
ports need to be changed. There are five different kinds of modules
that vary based on how the code is implemented and stored. One is
built-in modules which are implemented in C and compiled into the
Python executable. “Frozen” modules are Python bytecode stored
in C code that is then compiled into the executable. Extension mod-
ules are written in C and compiled into external object files. Python
bytecode (which typically has a .pyc or .pyo file extension) are
byte-compiled versions of Python source code. Python source mod-
ules are written entirely in Python source code (and typically has a
.py file extension).

4

To remove Type of object Purpose of removal
object. subclasses method Exposes all defined classes. Removal creates immutable shared state.

open function Allow unmitigated read and write access to files. Also exposes information about existence of files.file. init method
execfile function Allows access to any Python source file. Can also be used to query about existence of files.

code. init method Can create malicious bytecode which is never verified to be well-formed.

Table 1. Built-in methods and functions to remove from Python’s built-in namespace.

Regulating what modules can be imported is critical to control-
ling what resources Python code has access to. With a bare inter-
preter a safe environment is provided. By controlling imports the
environment can stay safe for use as imports are the only way to
introduce code that has authority to perform actions that are not
available within a bare interpreter.

Regulation of what modules may be imported is done based on
the kind of module. Python source code and bytecode modules,
in isolation, have only the abilities provided by a bare interpreter.
Modules implemented in C, though, can have the same abilities as
C code, which is essentially the ability to do anything. By blocking
or carefully controlling modules that are implemented in C code
then only those modules that can be trusted can be allowed to be
imported and thus regulate what abilities the interpreter has access
to.

Controlling built-in, frozen, and extension modules is critical to
prevent unmitigated access to executing C code. A whitelist should
be implemented for each type of module so that only those modules
deemed safe through a security audit may be imported. By making
the whitelist on a per-type basis instead of based on name alone
allows alternative implementations of a module’s interface to be
implemented by another kind of module (e.g., implementing an
extension module’s interface in pure Python source code).

Python bytecode files should not be allowed for any reason.
They are considered an optimization and not a requirement for the
Python interpreter to be able to import Python source modules.
They pose a possible risk through ill-formed bytecode by either
crashing the interpreter or gaining escalated rights. Theoretically
trusted bytecode should only be written to the file system by the
Python interpreter, but other programs could be running on the
same system that attempt to create ill-formed bytecode and trick
the interpreter into trusting the bytecode.

With imports properly controlled so that potentially dangerous
modules cannot be accessed, and the bare interpreter considered
safe, any Python source code should be trusted to run safely. The
bare interpreter provides a secured base for any pure Python source
code. By restricting imports the protected base can be safely ex-
tended through modules without losing its security.

5.6 Discussion
In what has become considered a seminal paper on computer se-
curity [28], eight design principles are laid out that any security
mechanism should strive to follow.

First, one should drive to keep a design simple: “economy of
mechanism”. Overall the design presented in this paper is straight-
forward. Making the bare interpreter safe consists removing some
functions or methods. The greatest complexity is adding support
for regulating import based on the kind of module being requested.
But since the import machinery is an integral part of the Python
language it is simple to test any modifications by running all of
Python’s regression test suite with any changes implemented. Com-
pared to rexec, the new design is simpler since no direct support
is needed within the interpreter.

“Fail-safe defaults” dictates that what is to be allowed by a se-
curity policy should be explicit, not implicit based on what is not
allowed. By excluding potentially dangerous types and functions
from the built-in namespace, the bare interpreter by default is pro-
tected. And by using whitelisting instead of blacklisting for imports
the default security is to deny instead of allow importing possibly
dangerous modules.

By having “complete mediation” all access to objects need to be
checked for authority. Object-capabilities mediate this to reference
access. Because there is no explicit check of authority, this principle
does not directly apply. Indirectly, object-capabilities performs a
“check” every time a reference is used since references cannot be
forged in Python and thus any use of a reference is an implicit
clearance to use it.

Because Python is open source software, the language itself
has an “open design”. The security mechanism proposed in this
paper does not rely on any hidden value or implementation detail.
Auditing of the security mechanism is possible for anyone and is
encouraged.

There is no need for a “separation of privilege” with this security
mechanism. There is only a single interpreter in a single process
being considered. The concept of multiple owners of a Python
process does not exist. This also applies to the principle of “least
common mechanism”.

The concept of “least privilege” is left up to the user through the
whitelisting of modules. But by using whitelisting over blacklisting
users are not given overly broad privileges by accident.

“Psychological acceptability” should be very high for this de-
sign. No new syntax or concept has been introduced into Python.
The greatest change is that of whitelisting of certain type of mod-
ules. While this is a change to how Python normally operates, it will
manifest itself in the normal error of an import error. Whitelisting
could be viewed as specifying what is installed in the interpreter
and verifying a program can run is like checking installation re-
quirements; nothing new to programmers.

6. Implementation
Since the security work occurs outside of the interpreter, most of
the implementation details are in C code. As such, unless other-
wise noted, any code mentioned relating to implementation details
should be considered in C code.

6.1 Built-In Functions
Removing the built-in functions execfile and open is straight-
forward. Python’s built-in namespace is a dictionary stored on the
C struct that represents the interpreter (i.e., the builtin field of
the PyInterpreterState struct). Removing the functions from
the dictionary is a simple call to the PyDict DelItem() function
to delete the items from the dictionary.

6.2 Built-In Types
To understand how the file and code types have been altered one
needs to understand how Python implements types at the C level.
In C code the PyTypeObject struct represents a Python type. Its

5

various fields represent internal data along with functions that are
to be exposed in Python as methods. Two such functions are those
that are stored in the tp new and tp init fields and are exposed in
Python as new and init methods. The tp new function is
used to allocate the memory for any new instance of the type along
with putting the instance in a valid state. The tp init function is
what takes the arguments passed in during the instantiating call to
the type and creates the proper state within the instance based on
those arguments.

For both the file and code types the tp init fields in
PyTypeObject have been set to NULL. This is the equivalent of re-
moving the init methods from the types. Leaving the tp new
fields alone for both types allows for either type to be instantiated
but not be initialized in any specific way that exposes the authority
to access resources.

Both types need a way to initialize new instances within C code,
though. For code objects the capiPyCode New() function already
exists for this purpose. For the file type, the PyFile Init()
function has been introduced. This allows the open built-in to
Python, at the C level, to continue to create and initialize file
instances by calling PyFile Init() after allocating the instance.

6.3 Import
For implementing the changes required for the import func-
tion to protect the import statement, the code implementing
import was completely rewritten. As it currently stands within

Python the import function is implemented entirely in C.
While this is not bad in and of itself, it does raise the level of com-
plexity for working with the code. In order to introduce the required
flexibility into the implementation of import , two design deci-
sions were made: to re-implement import in Python and to use
importers and loaders as defined in Python Enhancement Proposal
(PEP) 302 as much as possible [34].

The decision to re-implement import in pure Python code
was a practical decision. There was no specific requirement that we
not work with the existing C implementation. It was decided that
it would be more expedient to rewrite the function than trying to
work with the existing C code in order to make the second design
decision we made easier.

Our second design decision to follow PEP 302 is for flexibility
reasons. PEP 302 specifies a system that allows for flexible control
over how modules are imported. PEP 302 builds off of Python’s
idea of a search path, much like the PATH environment variable on
UNIX operating systems. Stored at sys.path, it is a list of strings
specifying places for the import machinery to look for modules.

PEP 302 extended this simple approach in two keys ways. One
is the introduction of an API for importers and loaders. Importers
are objects that implement an interface to be queried as to whether
a path entry can handle the requested import. Loaders are objects
that handle the actual loading of the module. There is machinery
in place to associate each entry on sys.path with an importer
so that each location can be handled individually. Implementing
import in terms of PEP 302 in this regard means separating the

aspects of finding and loading modules into objects for the various
kinds of modules that Python can import. This provides better
modularity and control over how different types of modules are
handled. It is also different from the original state of affairs where
a monolithic function call at the C level handled the importation of
modules.

The other key way PEP 302 enhances how Python imports
modules is the introduction of a meta path. While sys.path works
for modules that have a filesystem location, not all modules have
a specific location. Modules that are built into Python do not have
a sense of location, for instance. The addition of sys.meta path

provides a path similar to sys.path such that modules that have no
filesystem location can be included in the search path for modules.

With an implementation of import that follows PEP 302 the
needed level of modularity is available to whitelist modules based
on the kind of the module being requested. An importer and loader
for built-in modules and frozen modules has been written that re-
sides in sys.meta path. For pure Python source code, bytecode,
and C extension modules, an importer and loader that can be con-
figured to handle any of the three mentioned types of modules has
also been written that handles path entries on sys.path. All im-
porters and loaders can either be left out of the system so as to
completely block the importation of a specific kind of module (as
with Python bytecode modules) or to place a whitelist delegate in
front of an importer and loader (as for built-in, frozen, and C exten-
sion modules).

But how does one prevent the manipulation of the whitelist if
Python lacks any form of private namespace for objects? To handle
this a two-part solution is used. First, the object called to handle
imports is stored in the sys module in the import attribute. This
can be safely done as the sys module is not exposed by default
as it is a built-in module. As long as a user does not whitelist sys
then code running in the interpreter cannot reach the object stored
at sys.import .

Second, a simple delegate is implemented in C that when called
passes its arguments to the object stored at sys.import . By im-
plementing the delegate in C, sys.import is in no way exposed
as discussed in Section 5.4.

One issue that came up during implementation is how best to
handle modules that are cached during startup of the interpreter.
The Python interpreter stores all imported modules in a Python
dictionary stored at sys.modules. The cache allows future imports
to return quickly from the cache. It also provides consistency by
having all modules use the same instance of a module instead of a
newly created instance for each import. Because the cache is kept
in a module that is blocked from being imported by default it is
not a security risk itself. The issue, though, is how to not expose
modules that must be imported for the interpreter to function, and
thus cannot be deleted, but should not be exposed by default (e.g.,
the sys module).

The solution used is to hide all modules that are required for
the interpreter to function but are deemed dangerous to expose
by default to be put into a Python dictionary that is stored in
sys.modules under the .hidden key. The import function is
changed such that it does not ever allow the importation of a module
that has a leading “.”. By hiding modules based on name it allows
returning modules from the cache to be no more expensive than a
simple string prefix check on the module that is being imported.

Placing a capability on all modules that are safely imported and
checking for that capability when returning from the cache was
considered as a solution to this problem. The current solution was
chosen instead however, because it allows for providing an alter-
native implementation of a module that is hidden. If the capability
approach was used then whether a module with a specific name
could ever be imported would be an all-or-nothing proposition be-
cause name clashes would prevent an alternative module. With the
selected solution that is not the case as the name of the module
being hidden is not directly used in the cache.

7. Current Status
At the time of writing the implementation is not complete [1]. Both
the file and code types have been modified. The import
function has been rewritten in Python source code. The modules
required for Python to run but should not be exposed have been
moved into the .hidden key in sys.modules. Proper preven-

6

tion of directly trying to import .hidden has been implemented.
sys.modules is also cleared of all unessential modules.

What has not been implemented is a proof-of-concept applica-
tion where Python is used as a DSL. Because this has not been done
some changes cannot be made on the testing interpreter as the build
toolchain for Python includes a Python script that needs access to
some functionality that is considered a security risk but runs with
the newly built interpreter. The open and execfile have not been
removed because of this build dependency. Whitelisting of mod-
ules has been implemented in the import function but it has
not been integrated into the interpreter. Once the proof-of-concept
application is written it is trivial to remove the mentioned built-in
functions and integrate the whitelisting.

In terms of vetting the design presented in this paper, it has
been presented in three separate venues. The first is the e-lang mail-
ing list [2] where various people involved in the object-capabilities
world discuss object-capabilities languages. The Python develop-
ment team [4] is the second venue this work has been presented.
Finally, at the PyCon 2007 Python community conference [12] a
talk was given on the work. In all three venues no objection to the
design was brought up and it received favourable reviews.

8. Future Work
Two directions where this work can go is to is to introduce a private
namespace within the Python language itself and trying to extend
the work to act as a replacement for the rexec module. In terms of
introducing a private namespace for Python, it would remove the
necessity to utilize the barrier between Python and C exclusively to
implement delegates.

One possible way to provide a private namespace is through
closures. Python contains support for closures where free variables
can be accessed in a read-only manner (Python 2.6 will allow for
read-write access to free variables). But closures cannot be used as
a private namespace as they are currently implemented because the
values of free variables are exposed through introspection (as of
Python 2.5). If the introspection was removed then closures would
be usable for delegates when written properly. Figure 1 has an
example implementation of how removing introspection abilities
on free variables could allow a security delegate for open to be
safely implemented in Python code.

For re-implementing the rexec module, one possible approach
is to utilize Python’s ability to have multiple interpreters in a single
process. By providing a module that allowed for executing code in a
separate interpreter it may be possible to replicate the rexec mod-
ule’s abilities. It would require analysing what objects are shared
between interpreters and making sure there are no covert channels.
Analysis would also be needed to see how returned objects from
the code executed in a restricted interpreter cannot gain escalated
rights in the creating interpreter.

9. Conclusion
This paper has presented a design for a mechanism to restrict
access to resources by code running within a Python interpreter.
Thanks to the moduarity of the Python interpreter and the use
of object-capabilities, no changes of the language is necessary to
allow a certain level of security for Python code when using a
single interpreter. Only minor changes or removal of key functions,
methods, and types in the built-in namespace is needed that are
directly viewable by running code. And with a redesign of the
import machinery, proper protections are complete for preventing
access to things such as files and sockets.

Several things could have prevented this solution from working.
If the built-in namespace was not modifiable then any dangerous
built-ins would have ruined any security. Had Python not used an

from os.path import join, normpath

def protected_open(open_fxn, restricted_dir,
path_join, path_resolver):

’’’Return a closure that restricts the use of
files to a specific directory.

Parameters:
* open_fxn

Use to open files.
* restricted_dir

Directory that files are to be restricted to.
* path_join

Function that joins parts of a path together.
* path_resolver

*resolves a path (e.g., handles ’..’).

’’’
Define a closure.
def open(path, flags=’r’):

’’’Open a file at ’path’ using optional
’flags’.’’’
Construct an absolute path.
joined_path = path_join(restricted_dir, path)
abs_path = path_resolver(joined_path)
Verify the path does not violate the
directory restriction that is in place.
if not abs_path.startswith(restricted_dir):

msg = (’path leads outside of allowed ’
’directory’)

raise ValueError(msg)
Return the file object.
return open_fxn(abs_path, flags)

Return the closure.
return open

In Python 2.5, the value of the ’open_fxn’ free
variable for the open_delegate function can be
accessed at
’open_delegate.func_closure[0].cell_contents’ which
prevents closures to be used as delegates.
open_delegate = protected_open(open, ’/tmp/restricted’,

join, normpath)

Prevent functions from being exposed through
’open_delegate.func_globals’.
del join, normpath

Figure 1. Example implementation of a security delegate for open-
ing files. Requires that introspection on free variables of closures is
not allowed.

exposed function for the import keyword then proper protections
of external code would not have been possible.

And object-capabilities played a key role as well. Its design
allows for using the system in such a way that the Python lan-
guage did not require modification. By harnessing various parts of
how Python’s interpreter is implemented the required semantics of
object-capabilities could be introduced into Python through the in-
terpreter and not through the language.

7

References
[1] bcannon-objcap branch. Subversion code repository @ svn.

python.org.

[2] e-lang mailing list. http://www.eros-os.org/mailman/
listinfo/e-lang.

[3] Javascript security in communicator 4.x. http://web.archive.
org/web/20040621232800/http://developer.netscape.
com/docs/manuals/communicator/jssec/index.htm.

[4] Python development team. http://www.python.org/dev/.

[5] Python programming language. http://www.python.org/.

[6] Pythonology. http://www.pythonology.com/.

[7] rexec module. http://www.python.org/doc/2.5/lib/
module-rexec.html.

[8] Java security overview, April 2005.

[9] ANUPAM, V., KRISTOL, D. M., AND MAYER, A. J. A user’s and
programmer’s view of the new javascript security model. In USENIX
Symposium on Internet Technologies and Systems (1999).

[10] BEATTIE, M. Safe perldoc page, perl 5.8.6 ed. Perl Foundation.

[11] BISHOP, M. Introduction to Computer Security. Addison-Wesley
Professional, 2004.

[12] CANNON, B. Securing python. PyCon talk, February 2007.

[13] DEAN, D., FELTEN, E. W., WALLACH, D. S., AND BALFANZ, D.
Java security: Web browsers and beyond. Tech. Rep. TR-566-97,
Princeton University, February 1997; 20 Pages.

[14] GONG, L., MUELLER, M., PRAFULLCHANDRA, H., AND
SCHEMERS, R. Going beyond the sandbox: An overview of the new
security architecture in the Java Development Kit 1.2. In USENIX
Symposium on Internet Technologies and Systems (Monterey, CA,
1997), pp. 103–112.

[15] KAMP, P.-H., AND WATSON, R. Building systems to be shared,
securely. Queue 2, 5 (2004), 42–51.

[16] KAMP, P. H., AND WATSON, R. N. M. Jails: Confining the
omnipotent root. In In Proceedings of the 2nd International SANE
Conference (2000).

[17] KOVED, L., NADALIN, A. J., NEAL, D., AND LAWSON, T. The
evolution of Java security. IBM Systems Journal 37, 3 (???? 1998),
349–364.

[18] LAURIE, B. CaPerl. http://caperl.links.org/.

[19] MCKUSICK, K. The jail facility in FreeBSD 5.2. login 29, 4 (Aug.
2004).

[20] MILLER, M., AND SHAPIRO, J. Paradigm regained: Abstraction
mechanism for access control, 2003.

[21] MILLER, M., YEE, K., AND SHAPIRO, J. Capability myths
demolished, 2003.

[22] MILLER, M. S. Robust Composition: Towards a Unified Approach to
Access Control and Concurrency Control. PhD thesis, Johns Hopkins
University, Baltimore, Maryland, USA, May 2006.

[23] OUSTERHOUT, J. K., LEVY, J. Y., AND WELCH, B. B. The Safe-
Tcl security model. Lecture Notes in Computer Science 1419 (1998),
217–??

[24] PAUL, N., AND EVANS, D. .NET security: Lessons learned and
missed from java. In Proceedings of the 20th Annual Computer
Security Applications (2004).

[25] PERL FOUNDATION. Perl security perldoc page, perl 5.8.6 ed.

[26] PETERS, T. PEP 20: The zen of python.

[27] RANUM, D., MILLER, B., ZELLE, J., AND GUZDIAL, M. Suc-
cessful approaches to teaching introductory computer science courses
with python. SIGCSE Bull. 38, 1 (2006), 396–397.

[28] SALTZER, J. H., AND SCHROEDER, M. D. The protection of
information in computer systems. Communications of the ACM 17, 7

(July 1974).

[29] STIEGLER, M., AND MILLER, M. A capability based client: The
darpabrowser. Tech. Rep. BAA-00-06-SNK, Combex, June 2002.

[30] THOMAS, D., FOWLER, C., AND HUNT, A. Programming Ruby:
The Pragmatic Programmers’ Guide, Second Edition. Pragmatic
Bookshelf, October 2004.

[31] VAN ROSSUM, G. Extending and Embedding the Python Interpreter.
Python Software Foundation.

[32] VAN ROSSUM, G. Python language reference. http://docs.
python.org/ref/ref.html.

[33] VAN ROSSUM, G. Bastion too (was: Cross compiling). python-dev
email, January 2003.

[34] VAN ROSSUM, J., AND MOORE, P. PEP 302: New import hooks.

[35] WHITTEN, A., AND TYGAR, J. Usability of security: A case study,
1998.

[36] ZDANCEWIC, S. Challenges of information-flow security. In
Proceedings of the 1st International Workshop on the Programming
Language Interference and Dependence (PLID’04) (2004).

8

Figure 1 Authorization call diagram

Speculative Authorization
Jeremy Hilliker

UBC EECE 512 Project Report

Introduction
In authorization systems, a principal requests an
action to be preformed. A policy enforcement
point (PEP) receives this request and must enforce
a policy decision made by a policy decision point
(PDP). The PEP makes an authorization policy
request to PDP, which decides if the actor should
be granted authorization to preform the action.

The PDP may be a module within the same
program as the PEP, the PDP may be in a separate
process, on a separate host, or it may reside on a
separate network. The PDP may have to query
other data sources to retrieve information needed
to make the policy decision. It may need to know
human resources information, group memberships,
site-specific information, or other data for business
rules.

The query made to the PDP, processing done by
the PDP, and the time that the PDP waits to
receive responses to its own queries are a source of
latency in the system. The PEP (and by extension,
the principal) must wait for the query to the PDP
to finish before they can proceed with their work.

Purpose
The purpose of this project was to propose and
investigate a method for reducing the latency
between when an actor requests an action and
when the PEP can enforce a policy decision on that
request.

Significance
In simple cases, the authorization latency is not a
major source of problems. In distributed systems,
and in real-time systems, the latency for an
authorization can be a non-trivial delay.

Method
To reduce this policy delay, we speculatively pre-
decided potential requests. The authorization
system develops a model to predict what the
actor’s next request will be based on all actors’
previous requests. Given all actors’ previous
requests, and this actor’s current request, we
predict what the actor’s next likely request will be.

The prediction of the next request is used to
speculatively decide (to compute “permit” or
“deny”) the predicted action. The PEP caches this
speculative result for potential use in the future,
thereby bypassing the PEP to PDP delay in the
principal’s next request if the prediction was
accurate.

Though a raw prediction of what may happen next
is useful, it is more beneficial to attach a degree of
certainty to the prediction. To this end, we predict
the probability of the principal’s next request based
on previous requests.

9

Figure 2 Authorization with speculation

Figure 3 Simulation framework

Computing the prediction’s probability allows the
prediction algorithm to be tuned for performance.
If prediction misses are costly, or if there are idle
resources, a more aggressive system could
speculatively authorize requests of lower
probability. If resources are scarce, or if mis-
predictions are expensive, then a conservative
algorithm may choose to only execute predictions
that have a high probability of use.

The prediction is also used to determine the cache
policy. Since we compute the probability of the
next potential request (along with request itself) we
already have an indicator of the likelihood of that
request being needed. It is not necessary to hold
old predictions since the model would have re-
predicted them if they were probable.

Given this framework, we can construct a system
that speculatively authorises requests for principals
based on their previous requests.

Assumptions
The proposed solution to the problem depends on
the following assumptions:
• There is authorization latency: there is some

latency to be avoided by the speculative
authorization. This solution would not be
useful if there was no appreciable authorization
latency between the PEP and PDP to be
eliminated.

• There are idle resources which can be used to
speculatively authorize requests: the computing
of speculative authorizations would not
negatively effect the system’s throughput.

• Authorizations have a usable shelf-life and can
be cached. This solution is not useful if
authorizations must be determined based on
real-time parameters that cannot be pre-
computed.

Approach
The system is modelled in a data-driven discrete
event simulation (DES) as follows:

Data Source
In the absence of a real-world trace of
authorization requests from multiple users over
diverse resources, a log file from a campus web
server was used to simulate requests. This kind of
data-set has been studied for prediction in [2,4,5].

The previous studies have noted how noisy the
data is, and have proposed methods to scrub the
data to make it more useful. Hansen (in [2])
proposes the following techniques to clean web
logs:
• Data reduction: only consider requests for

documents (HTML, TXT, PS, and PDF files.)

10

• Grouping and cleaning: establish series of
requests based on requester IP. Use this to
eliminate requests by robots, and try to
eliminate requests made from shared IPs.

Additionally, any request made by clients with a
“user agent” string that looked like a robot was
ignored, requests to identifiable scripts (those
under “/cgi-bin/” or where the URL contained a
“?”) were ignored, and request methods other than
“get,” “post,” or “head” were ignored.

The simulation was run with 10 consecutive days
of log data. The logs totalled 1.8 GB in size, and
contained over 8 million records.

Sessions were considered to be ended after 20
minutes of inactivity. After this time, cached
authorizations were invalidated, a subsequent
request from a principle was considered to be a
“first” request for a new session, and therefore
would not be counted as a cache miss.

After cleaning, the log file consisted of only
230,000 predictable entries (entries which passed
the filtering criteria, and were not a “first” request.)

Caching
Each principle was given an associated cache to
hold their predicted authorization results. The
cache size was unbounded, but effectively limited
by a specified prediction threshold.

The system speculatively authorizes any predicted
request that has a prediction probability above a
specified threshold. For example, if a prediction
threshold of 30% is given and the model predicts
request A with 40% certainty, request B with 35%
certainty, and request C with 25% certainty, then
both requests A and B would be speculatively
determined and cached.

When given a threshold of 33%, the cache could
only hold a maximum of three entries per principal.
34% would give an upper bound of two entries,
and 51% would yield one. The cache was also
limited through the expiration of results after 20
minutes.

Markov Models
A Markov model is a stochastic process which is
used to predict state transitions in a discreet space,
meaning that when given a state, the model will
generate a probability distribution for the next
state.

Formally, a Markov chain is a sequence of random
variables with the property that the future state
depends only on the present state, and is
independent from the past states.

A Markov model is said to be n-th order when this
restriction is reduced to allow the last n states to
contribute to the probability of the next state. A
2nd order Markov model would be of the form:

Higher order Markov chains have the advantage of
having more data to work with, and may therefore
make better predictions, but they have the
disadvantage that they need more data to train
from. A higher order model will need more data to
fill its cells as the number of cells increases
exponentially with respect to the order of the
model. A first order model has n2 cells, a second
order model has n3 cells and so on.

Markov Models as Predictors
If we consider the range of possible requests from
principals to be discrete and finite, we can model
the principals’ requests as state transitions within
a Markov process. The probability distribution can
be represented by a stochastic matrix (called the
transition matrix T).

One dimension of the matrix represents a previous
requests, and the other represents the subsequent
request. Each cell will indicate the number of
times that transition has occurred. As such, the
probability of one request following another is:

11

Additional dimensions can be added to the matrix
to model higher order Markov processes.

In our simulation, the Markov model starts empty
and is populated as each request is made. If the
first request is for A, and the same principal’s
second request is B, then the entry T(A,B) = 1. A
request for A from a second principal will yield a
prediction of B as the next request with 100%
probability. If the second principal then requests
resource B, the table is updated as T(A,B) = 2. If
instead the second principal requests resource C
then the table is updated with T(A,C) = 1. In the
latter case, if a third principle makes the next
request for resource A, then its predicted next
access will be for B and C, each with 50%
probability. This way, the model will learn in an
iterative fashion, make more and more accurate
predictions over time.

Results

The simulation was run with Markov models of the
first, second, third and fourth order, each with
prediction thresholds of 30%, 40%, and 50%.

Number of cache hits, misses and total predictions
made were tracked as well as the execution time
for each run.

The table below summarizes these results. Hits,
misses, and predictions are given relative to the
total number of predictable requests, and execution
time is given relative to the baseline of no
predictions.

Predictor Threshold (%) Hits (%) Misses (%) Predictions
(%)

Time (%)

None N/A 0 100 0 100.00

1st Order
Markov

30 44 55 126 103.73

40 40 59 96 101.66

50 38 61 82 101.45

2nd Order
Markov

30 50 49 136 101.42

40 42 57 97 100.76

50 40 59 83 102.16

3rd Order
Markov

30 50 49 130 100.94

40 44 55 99 100.79

50 40 59 83 102.66

4th Order
Markov

30 48 51 126 102.65

40 43 56 89 102.39

50 39 60 81 104.41

12

Discussion
Fifty percent prediction accuracy was achieved in
the best case, and this is believed to be an
indication that the algorithms work well.

Access patterns to a website are anecdotally very
haphazard. Consider a front landing page with a
dozen or so links to various sub-pages. One
would expect that each of these sub-pages are
visited with relatively equal frequency, and that
making predictions would be hard. This model
was able to predict the top three next-page
requests with 50% certainty, and the top one and
two next requests with 40% accuracy.

As shown in the table, the prediction threshold is
the largest factor affecting the performance of the
system. Lower thresholds are more aggressive,
and will generate more hits and fewer misses.
This parameter can be changed to trade the time
and space used for speculation and caching
against the time saved by cache hits. The system
could dynamically adjust this parameter to
maximize the amount of predictions that it can
make wile staying within some specified resource
limits.

The second order model is noticeably better than
the first order model, the third order model is
only marginally better than the second order, but
the fourth order model is slightly worse than the
third order model.

The decrease in performance in the fourth order
model can be attributed to not having enough
data to train from. The fourth order model is
very large, and when not given a sufficiently large
data-set, it become sparse and its predictions are
over-fitted (it trains too closely to match its input
at the expense of future accuracy).

Each increase in model order raises the space
requirements by an exponential factor, so the first
order model should be a sufficient predictor in
most cases. If space requirements are not a major
concern, then the second order model can give
some improved prediction performance.

The execution time required by the prediction
algorithms is very small when compared to the
total execution time of the system. In our
simulation, the total execution time is dominated
by the parsing of the log file (using a widely used
regular expression library). In the worst case, the
model only accounted for 4% of the execution
time

Future Work
The performance of the first order model is nearly
as good as the second order model – so much so
that the increased space requirements for the
second order model do not seem justified.

The increased input parameters of the higher
order models give those models more information
to work with to make their predictions. They
essentially use the longer access history to predict
what kind of user the principal is, and tailor the
predictions to that type.

It is possible to capture and model these principal
groupings in a more condensed way.

If we can determine clusters of users, we can
train different models for each of those clusters.
The clusters will predict the type of principal, and
the model for that cluster will be an expert
predictor for that type of user. These experts
predictions will be mixed together based on the
certainty of the clustering, and will produce a
weighted mixture of the predictions.

More specifically, we hope to predict the
probability of the actor’s next request based on
their previous requests, and on a marginalization
over a learned clustering of users.

This has the potential to realize the gains of the
higher order Markov model while maintaining the
same exponential space requirements.

13

Mixture of Experts
In this approach, several predictors are created
for clusterings of principals, and these predictors
are weighted against each other based on a
marginalization over the probabilities that a
principal is within that cluster. The predictors the
clusters, and the number of clusters can be
learned from the data.

Both [2] and [4] have used the EM algorithm [3]
for clustering, and state that first order Markov
models are suitable for predicting web access
when used in a mixture.

EM is an iterative algorithm which assigns a
probabilistic determination that a given point
belongs to each cluster (the expectation step).
The next iteration that moves the mean of the
clusters and calculates the covariance for that
mean along each feature dimension (the
maximization step). These two steps are repeated

until the means converge to some point within a
given convergence threshold.

Although the referenced literature has found this
method to be the most accurate with acceptable
performance characteristics, it has only been
applied to analysing static data. This method has
not been examined with consideration to
predicting live data where the model must retrain
as it is in operation.

Conclusion
We have shown how a Markov model can be
used to predict what a next principal’s request
will be, and we have shown how to train that
model in real-time using a live data-stream.

The performance of the prediction algorithms
were excellent, accounting for less than 4% of
total execution time, and yielding 50% accuracy.

References
1. Beznosov, K. (2005). “Flooding and recycling authorizations.” In Proceedings of the 2005 Workshop

on New Security Paradigms (Lake Arrowhead, California, September 20 - 23, 2005). NSPW '05. ACM
Press, New York, NY, 67-72. DOI= http://doi.acm.org/10.1145/1146269.1146285

2. Hansen, M.H. and Sen, R. (2003). “Predicting Web User's next access based on log data.” Journal of
Computational and Graphical Statistics, 12(1), 143-155.

3. Bilmes, J. (1998). “A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation
for Gaussian Mixture and Hidden Markov Models.” Technical Report TR-97-021, Int'l Computer
Science Inst., Berkeley, Calif.

4. Cadez, I., Heckerman, D., Meek, C., Smyth, P., and White, S. (2003). Model-Based Clustering and
Visualization of Navigation Patterns on a Web Site. Data Min. Knowl. Discov. 7, 4 (Oct. 2003),
399-424. DOI= http://dx.doi.org/10.1023/A:1024992613384

5. Huberman, B. A., P. L. T. Pirolli, J. E. Pitkow, and R. M. Lukose (1998), "Strong Regularities in
World Wide Web Surfing," Science 280, 95--97.

6. Bishop, C. (2006). Pattern Recognition and Machine Learning. Springer.

14

People-Tagging: Towards Usable Privacy for Social
Software

Maryam N. Razavi
University of British Columbia

2366 Main Mall, Vancouver, BC
1-604-827-5909

Maryamr@ece.ubc.ca

ABSTRACT
As the use of social software for various personal and professional
purposes gets widespread, the issue of providing usable support
for managing access to the vast amount of user-created content in
such an open environment becomes more of a concern. In a recent
work, we proposed a grounded theory of how users manage
privacy of their information in a typical social software where
information sharing and online collaboration is encouraged and
users are producers as well as consumers of information. The
grounded theory suggests that users’ preferences regarding
privacy of their artifacts in such an environment depends on a
number of factors, including the current stage in the artifacts life
cycle, the nature of trust between the owner and the receiver of
information, and the dynamics of the group or community within
which the information is being shared. In this paper we discuss
what the results of the theory mean for designing more usable
privacy management mechanisms for social software, and why
existing access control models are insufficient in supporting
specific privacy requirements in this particular context. Based on
our findings, we then present the design and implementation of a
privacy control mechanism based on tagging people that provides
a more usable privacy management mechanism for social
software.

Categories and Subject Descriptors
H.5.3 [Information Interfaces and Presentation]: Group and
Organization Interfaces – Theory and model; H.1.2 [Models and
Principles]: User/Machine Systems – Software Psychology.

General Terms
Human Factors, Theory, Design, Security.

Keywords

Social software, grounded theory, information sharing,
information privacy, tagging.

1. INTRODUCTION
Recent advances in the emergence and growth of Web 2.0
applications have made the users producers as well as consumers
of information. Social software is a by-product of the Web 2.0
phenomenon: the second generation of internet-based services
that include some form of many-to-many publishing (such as
social networking, social book marking, weblogs, wikis, and
ePortfolios), enhanced organization and categorization of content,
and most importantly, encourage generation and distribution of
Web content. The Web 2.0 phenomenon is characterized by open
communication, decentralization of authority, and freedom to
share and re-use [12]. Although sharing information is one of the
major motivations behind the use of social software, not
everything is to be shared with everyone. While use of social
software has moved within the reach of non-technical mainstream,
managing selective sharing of published information still requires
expertise. Lack of proper access management mechanisms has
been identified as one of the major impediments in the wide
spread use of social software despite its obvious benefits [22, 3].
Research into access management has generally concentrated on
the needs of organizations or distributed systems. However,
privacy requirements for user-created content in social software
are different from data protection requirements in organizational
databases and operating systems: social software is often used for
both social activity and engaged work practices and as such,
provides users with the opportunity to include a wide variety of
artifacts in their environment, from work related documents, to
personal opinions expressed in a weblog, to bookmarks and
personal collections. Over time, this aggregation of ones’
information could present a rich view of his experiences and skills
in the form of a searchable life log. This creates a persistent, long-
lived online identity for the user, to which he may wish to expose
different views to various audiences. The shared artifact and the
groups in which it is shared could both be dynamic, and
preferences regarding sharing the artifact within a group have to
be flexible enough to accommodate frequent changes. Information
is not necessarily shared with identifiable, accountable
individuals, and sharing might happen in various contexts, for
example competitive as well as collaborative.

Traditional access control models generally address the problem
of enforcing well-defined rules set by central authorities and do

15

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

not account for the dynamic nature of personal preferences as
required by social software. On the other hand, access control
models that are proposed in the literature for groupware (e.g. [31,
6]) tend to be rather complex and leave the important question
unanswered whether users will be able to cope with this
complexity. Thus, there is a clear need for privacy management
models that address specific privacy requirements in social
software and yet, are easy enough for non-technical users to
understand and use. Our research has been motivated by this
need: we believe that in order to be usable, privacy mechanisms
must reflect users’ needs and must be built based on users’ mental
model of information privacy. To this end, we recently conducted
a grounded theory study of users’ information sharing behavior in
social software to identify users’ privacy needs. The study showed
that users’ privacy preferences depend on a number of factors,
including the current stage in the artifacts life cycle, the nature of
trust between the owner and the receiver of information, and the
dynamics of the group or community within which the
information is being shared. In this paper we discuss how the
results of the theory can be translated into guidelines that inform
design of more usable privacy management mechanisms for social
software. We also discuss some of the existing access control
models and their insufficiencies in supporting specific privacy
requirements in this particular context. Based on our findings, we
then propose a privacy control system to provide more usable
privacy management for social software.

2. RELATED WORK
In recent years, use of social software has moved from niche
phenomenon to mass adoption [10, 22]. This increase in use has
been accompanied by diversity of purposes and access patterns.
As a result, researchers have studied several issues that pertain to
these tools, including people’s attitudes towards disclosing
personal data.

Gross et. al [10] report on a study on patterns of information
revelation in online social networks and their privacy
implications. Their results are based on actual field data from
more than 4000 users of Facebook. They report that patterns of
information revelation depend on a number of factors, including
pretense of identifiability, type of information revealed or elicited,
and the degree of information visibility.

Researchers have also studies users’ attitude towards revealing
information in several other contexts, including work place,
online services, and location-aware mobile services. Olson et. al.
[26] take a quantitative approach in conducting an in-depth
survey of people’s willingness to share a range of everyday
information (such as web sites they visit or their health status)
with various others, including family members or co-workers.
They point out that whether data is anonymized or can be tied
directly to people plays a major role in people’s willingness to
disclose. Other relevant factors reported include general attitude
towards privacy (from privacy unconcerned, to privacy
pragmatist, to privacy fundamentalist), and personal judgment
regarding ''appropriateness'' (i.e. relevance) of sharing certain
information with certain groups.

In another work, Patil et. al [27] conduct a study on
privacy/awareness tradeoff to identify the kinds of information
that users of an awareness application are willing to share with
various others (team mates, family, friends, managers, etc.) for
various purposes in the context of the workplace. They identify

which clusters of awareness information are more likely to be
shared with whom and in what context (i.e. ''team members''
received comparable level of awareness sharing with ''family''
during work hours).

Whalen and Gates [35] report on a small-scale study on the type
of personal information that users would be willing to disclose in
open online environments, primarily focusing on uncontrolled
spaces such as search engines. Their results, although limited in
scope, point to the existence of consistencies in the way people
treat certain classes of information, which suggests it might be
possible to group related information into clusters that are treated
similarly.

Recent works in the area of knowledge management (KM) have
also recognized the need to improve people's ability to control
who sees what in their personal information. Erickson [7]
explores the concept of personal information management in
group context, by arguing that when personal information is to be
shared with a group, the way it is used and managed changes. In
his article on GIM, Group Information Management, he identifies
many research questions that need to be explored, including how
personal information is shared within a networked group, the
norms of personal information sharing within groups, and the way
those norms are negotiated in the group.

3. THE STUDY
In the view of the difficulties that HCI researchers have
encountered in locating places where the context of privacy can be
better understood, we undertook a qualitative study with the aim
of identifying privacy needs, concerns, and challenges in social
software from users’ perspective. The research method that was
selected for the study was grounded theory [9, 23]; a primarily
inductive investigation process in which the researcher aims to
formulate a small-scale, focused theory that is derived from the
continuous interplay between analysis and data collection. A
comprehensive explanation of the study and the overall theory is
provided in [28]. In this paper, we focus on the results of the
study and their implications for design.

Two main themes emerged from our grounded theory study: First,
we determined that privacy is a main concern of users of such
systems, and second, we identified factors that affect users’
privacy preferences. The next subsections present a more detailed
description of each theme.

3.1 Centrality of Privacy as a Concern
The concept map in figure 1 highlights the centrality of privacy as
a concern for our subjects. Although the tool was primarily
introduced to participants for educational purposes, they were also
using it for interacting with each other (social networking),
writing personal reflections (weblogging), and showcasing
samples of their creative works. This confirms that as with other
computer-mediated social technologies (e.g. email [36]), when
given a rich environment that provides support for both work
related and social activities, user communities will adapt it for
more purposes than was initially conceived. Many participants
mentioned they see potential benefits in using the tool, such as
having all their information in one central place and over the
Internet, where they can refer potential audiences to view things
rather than having to send them stuff individually. Many also
mentioned that it helps them keep track and reflect on their
improvement over time and in some cases, get unbiased feedback

16

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

on their creative artifacts from a community of people who share
the same interest.

Figure 1. Centrality of privacy as a concern

However, most participants agreed that the tool did not provide
sufficient support for privacy control for all their various needs:
they had a wide variety of artifacts (ranging from personal profile
and reflections to educational material and creative work) targeted
to a different groups of audiences (teachers, classmates, friends,
various communities) that were not necessarily static. These
specific characteristics of the environment plus the tendency for
long-term use, gave rise to a need for selective sharing. Two
major concerns that were brought up by most users were the
concern over loss of control and credit (mostly for creative and
educational artifacts), and the concern that their work might be
interpreted out of context (mostly for personal opinions and
reflections). Because of these concerns, many of the participants
employed certain strategies to achieve the desired level of privacy:
Some were using other platforms with better privacy management
mechanisms for their more private content; others had chosen to
stick to one platform, but write their more private content in some
sort of a "code language" so that it was meaningless to anyone
other than the writer himself; and some had decided not to
provide a link to certain material from places where their real
identity is known. These strategies pointed to the fact that there
are certain privacy needs of the users that the tool fails to support.
Almost all participants mentioned that a better privacy
management mechanism would improve their experience with the
tool.

3.2 Privacy Factors
The second theme that emerged from our grounded theory were
the factors that affect privacy of information from users’
perspective as shown in figure 2. Our study showed that rather
than a binary scale of public vs. private, users’ judgments of
privacy of resources often reflects a transition from private, to
semi-private/restricted share, to public, depending on the state of
the information, the receiver, and the context of sharing. The
study showed that users have different perceptions of privacy of
their artifacts in different stages of the artifact’s life cycle. For
example, an artifact is often considered private at the time of
creation when descriptions, goals, and personal reflections are
often included with the artifact. However, during the work-in-
progress stage, the artifact may be shared with a restricted

audience to obtain feedback, and it then may be shared with a
larger/more public audience once it is completed.

Figure 2. Factors affecting privacy preferences

We also found that users' assessment of the persons or groups who
will be the receivers of information plays a strong role in making
decisions about information sharing: users tend to share less with
people/groups with whom they are in the initial stages of trust,
and as their trust moves towards a more mature level over time,
they begin to feel more comfortable and share more. The most
influential factor in the information sharing attitudes of users
however seems to be the dynamics of the groups or communities
where the information may be shared. Our study revealed that
users often hold back from sharing information in anticipation of
loss of control and influence, and loss of credit for their work. The
theory suggested that when group/community dynamics are clear
enough to convey to the users how their information will be used
within the group, users may be better equipped to make informed
decisions regarding how much they want to share within the
group. Moreover, this predictability may be critical to making the
decision to share information in the given context at all.

4. TOWARDS A CONCEPTUAL MODEL
OF INFORMATION PRIVACY
The main objective of a grounded theory study is to improve
understanding of a phenomenon and to construct an evidence-
based theoretical framework describing the phenomenon. In
general, whether it is based on qualitative or quantitative
evidence, a theory has both explanatory and predictive force.
Whereas a theory may be initially accepted based on its
explanatory force (especially if it is about something that is
unexplained or insufficiently described), its perceived usefulness
is determined by its predictive force. To that end theories often
include a model (either formal or informal) that others can test
and apply. As such, the model is expected to make predictions
that can be evaluated in different situations. In this section, we
extend the results of our grounded theory into a conceptual model
of information privacy for social software. We discuss how the
privacy factors that were identified by the theory can be translated
into requirements that should be supported by social software
systems, and then follow up by a discussion of existing access
control models and their ability to support these requirements in
the next section.

4.1 Analysis of Findings
The first observation that follows from our study is that users have
nuanced ideas about what they want to share with whom and in
what context, and they consider it a shortcoming of the tool when
their desired level of privacy is not supported. In some cases
privacy may even determine their choice of tool or their level of
engagement with it. The fact that users try to address lack of

Potential Benefits

Long-term
Use

Variety of Artifacts Wide Range
of Audiences

Importance of Privacy

Privacy
Concerns

Privacy Strategies Privacy
Needs

Privacy Factors

Stage in
Life Cycle

Kind/Stage of Trust
in Receiver

Group
Dynamics

17

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

desired level of privacy with certain strategies points out to the
fact that even though users might adapt their behavior to the tool,
that does not mean the tool is good enough for their purpose,
which further emphasizes the need for privacy management
mechanisms with better support for users’ needs.

Considering the three privacy factors that emerged from the
second theme, we can see that the theory suggests that in practice,
users view the information sharing act as establishing and
maintaining a dynamic sharing relationship, rather than a single
event. Although the information sharing act seems like a simple
and straightforward act (user shares something with a group of
receivers based on their current relationship), there are various
levels of dynamics to this model. Over time the artifacts might
change (i.e. research results getting published, patented ideas
getting approval, personal opinions reconsidered), the receiver
group might change (i.e. competitors joining a group or
collaborators leaving), and the relationship between the user and
the receiver group might change (i.e. switching to a different
project, change of affiliation). In short, all the contributing factors
in users’ privacy preferences can change over time, and all the
three factors that were identified by our study reflect users’ needs
for support of these kinds of changes: The privacy life cycle factor
emphasizes the effect of the dynamic nature of the artifact; the
trust factor reflects the effect of change in the relationship
between the user and the receiver; and the group factor shows
how users try to deal with these changes: organizing ones’
network into various groups is a way of compartmentalizing trust
and audience, rather than having to deal with it on an individual
basis.

4.2 User-Oriented Privacy Controls
The central structure upon which we ground our design model is
the description of the kinds of control of privacy that have been
shown to be necessary for social software systems for managing
and sharing personal information or work products. In short, the
theory suggests that users need artifact control, audience control,
relationship control, and most importantly, change control for all
the three of the factors outlined above.

4.2.1 Artifact Control
The principle of artifact control reflects the need for control of
the privacy of information in terms of both individual artifacts and
collections thereof. This is of course mere confirmation of the
long-standing model that access rights should be associated with
individual objects (e.g. files) and their collections (e.g. folders).
But since social software has a different granularity and object
creation model, it may be that the way in which these rights are
managed to protect privacy and facilitate sharing needs to be
different in some essential ways.

Our study suggests that unlike static artifacts for which the set-on-
creation access management models may be sufficient, the
dynamic nature of the personal artifacts that are generally
disposed in social software systems calls for more fluid rights
management techniques. For dynamic artifacts, users seem to
dynamically match privacy and control to the artifact’s degree of
completion. We believe we can use this fact to reduce the up-front
cost of privacy management by gathering privacy context from the
environment. Since users already categorize their information for
other purposes, it makes sense then to leverage these categories
further by associating default access patterns with different user-

defined categories. Of course, categories can be defined in various
contexts and tuned to the application. They could be established
globally as a library of workflows that can be used by individuals
or groups or built from the ground-up by the users and shared like
other artifacts within the social software system. If we hope to
provide a global library of such templates though, it will be
necessary to align the models with preexisting mental models in
order to guarantee out-of-the-box usability. We suggest that
providing a set of such patterns that offer both static and dynamic
rights management would help give control to the users without
too much overhead: once a pattern is selected for an artifact, the
access restriction level of the artifact can be changed by simply
selecting which stage of its life cycle the artifact is currently in.

Furthermore, categories with default access patterns can help
catering to the needs of both novice and expert users by
conforming to the principle of safe staging [37]: users can choose
to accept the defaults while they are in the initial stages of
interacting with the tool, and once they have moved to a higher
level of expertise, they might decide to modify or extend the
defaults to better suit their needs.

Finally, if the categories are themselves treated as resources to be
shared, discussed and managed then such an evolution may
actually happen on a community-by-community basis.

4.2.2 Audience Control
The principle of audience control reflects the observation that
from a user’s point-of-view, the primary concern in assessing the
information sharing act is in understanding the audience that will
have access to that information. From an access control point of
view, this suggests that the most significant access rights to be
modeled are those pertaining to the mere visibility of an artifact
(e.g. does it even exist at all) and its readability (i.e. ability to
access its contents). For user-oriented privacy management, we
will use the term “audience control” to describe the ability to
restrict the visibility and readability of artifacts to certain user-
defined groups.

We see some of this control currently being expressed in certain
social software systems, notably Del.icio.us [15], Orkut [20], and
Facebook [16]. Del.icio.us was originally completely open (i.e.
anyone could see anyone else’s complete set of bookmarks) but
due to user demand and competition from other social
bookmarking services (notable Ma.gnolia [18] and Bluedot [14])
it added the ability to mark bookmarks as “private” in the Spring
of 2006. A private bookmark in del.icio.us is essentially invisible
to anyone else but the user himself. In Facebook and Orkut, are
services that are largely concerned with identity construction and
maintenance [2]. The greater risk of exposing identity attributes to
a worldwide audience has thus resulted in the deployment of a
great deal of audience control for one’s personal profile
information. In essence, one can choose which of a variety of
different categories of “friend” and “colleague” will be allowed to
see any particular piece of identity attribute (e.g. phone number,
address, AIM id) or posted content.

Audience control is clearly most directly related to the group and
trust factors described above. In essence, the choice of audience
for a particular artifact or personal attribute is primarily expressed
in terms of a group of others who one trusts with that particular
piece of information. While there are many models of trust in the
literature, we do not depend on any one in particular. It is
important to note, however, that our grounded theory clearly

18

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

delineates that the trust one has in a particular group with which
one might share information depends critically on the model by
which the membership in that group may change over time. We
will revisit this issue when we discuss change control below.

4.2.3 Relationship Control
The principle of relationship control reflects the finding that
many of our information sharing needs can be described in terms
of the relationship that exists between the owner of the artifact
and the person or group with whom the information may be
shared. At first blush, this seems simple and obvious, but in terms
of rights management it strongly implies that the potential
audience for some artifacts or attributes is likely defined in the
user’s own terms, and not in terms of any organizational “roles”
or groups. In other words, each and every user needs the ability to
define “groups” of friends or collaborators in their own terms and
then to be able to use this model of their relationships with others
as the basis for audience control (at minimum).

Again, we look at Orkut and Facebook for examples. In Orkut, a
user is able to define an audience for identity attributes in terms of
his/her self-designated “friends” and a limited transitivity of that
friendship network (e.g. I’ll let my friends and any friends of my
friends see my phone number). In Facebook, the relationship
categories are much finer and reflect a variety of different kinds of
relationship (e.g. we worked together on a project, we “hooked
up”). The consequences are similar, however, in that I can then
choose to allow access to particular posts or personal attributes
based on these relationships, but without the transitivity of the
Orkut model. Of course, Facebook also has more traditional
“groups” that are formed by users explicitly joining them as well,
but the audience for user attributes and personal posts is
controlled completely in terms of the relationship control that the
system allows.

Relationship control is clearly a manifestation of the need to
define trust in terms of ego-centric groups of users, so both of
these factors are essential. Less obvious, perhaps, is the way in
which this interacts with the privacy life cycle of artifacts. In
essence, it is very likely that the best match for the assignment of
audience and other rights (e.g. modification rights) to an artifact
through its life cycle are via these relationship groupings, and not
via traditional “group” or “role” assignments. Whereas it certainly
makes sense for an organization to align access rights to
organizational roles, it makes little sense for a user to align
privacy rights with those organizational roles. Given that an
egocentric relationship model naturally aligns with patterns of
trust and information sharing for personal information, it is
essential that audience and other access control rights be
assignable based on these user-controlled relationship models.

4.2.4 Change Control
The principle of change control is something of a cross-cutting
concern within the other control patterns. In essence, with social
software systems one must never forget that the artifacts, audience
and relationships used to define privacy and sharing patterns are
dynamic. In essence, our privacy and user interaction models must
reflect an assumption that artifact life cycle and categorizations
will change, that a user’s requirements to share classes of artifacts
with certain audiences will change, and that a user’s relationships
and trust patterns within those relationships will change, and that
the whatever access rights are consequences of these models must
change whenever they do.

This principle then strongly suggests that a model that assigns
access rights based on these factors at the time of an artifact’s
creation or modification will be inadequate. In essence, the access
rights must reflect changes in whatever models are used to fulfill
the above principles dynamically and visibly. This may be
implemented in many different ways, but it essentially demands
that either the access control regime be based on the privacy
model directly or that whatever rules connect the privacy model to
the access control regime be dynamic and incremental, reacting to
whatever changes are made to the social parameters that define the
sharing model.

This may, of course, require some rule-based system to maintain
this connection (e.g. [4]), but it is likely to require significant
interaction with the social software’s notification system as well.
For example, if we follow the user interface “principle of least
surprise” [13], then when a user (A) adds some other user (B) to a
relationship category, both A and B should be notified in some
way of the consequences of this change (e.g. user B now has
access to a new collection of information). For the initiating user
(A) such a notification (or at least ability to explore the
consequences of this action before it is taken) can be critical to
making the decision in the first place. For user B, the granting (or
restricting) of rights to a body of information is an important piece
of data to be able to assess their own relationship model.

5. Candidate Access Control Model
We now examine some of the existing access control models and
discuss their suitability to be applied to social software. For each
model, we use the principles and philosophy behind the model as
the basis for our discussion on its ability to support the user-
defined privacy controls as discussed in the previous section.

5.1 RBAC
We start with RBAC [30], as one of the widely accepted models
for managing access control in the literature. RBAC was
originally designed for controlling access to services and
resources within organizations. The main characteristic of the
RBAC model that makes it a suitable candidate for use within
organizations is the ability to assign enterprise-specific access
permissions to organizational roles rather than individuals. As
such, the success of RBAC model depends on clear assignment of
roles to users, and access rights to roles, by the system
administrator (thus no user-oriented artifact control or audience
control is supported). The effectiveness of the model is based on
the underlying assumption that there are pre-defined roles and that
the role/permission association changes less frequently than
user/role association (thus assuming no user-oriented relationship
control and change control). While this would be a valid
assumption for the organizations and commercial applications, it
is not necessarily true for social software: users of social software
do not conform to an underlying organizational structure and
personal information is not always shared with identifiable,
accountable individual. Assigning appropriate roles to these users
thus becomes an irrational and ad-hoc exercise.

Although our study suggests use of user-controlled group
definition as a way of enabling users to specify their trusted
audience, using roles for that matter as pertained to organizational
structures would be counter-intuitive: in order to provide support
for user-oriented controls, role definition and assignment need to
be performed by non-technical users, as opposed to a system

19

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

administrators with deep technical knowledge. Considering the
dynamic nature of user-created resources, audiences,
relationships, and privacy references in social software as shown
by our study, this calls for frequent changes in user/role
assignment that needs to be handled frequently by the user, which
would be too labor-intensive and counter to RBAC philosophy.
We conclude then, that RBAC is not a suitable candidate for
privacy management in social software.

5.2 TrustBAC
Over the years, researchers have proposed various extensions to
the original RBAC model to tailor it to the specific needs of
certain applications. One of these extended models is TrustBAC
[5]. It adds the notion of trust levels to the original model. Users
are assigned to trust levels instead of roles based on a number of
factors like user credentials, user behavior history, user
recommendation etc. Trust levels are then assigned to roles, which
are then assigned to permissions as in the conventional RBAC.
TrustBAC is proposed for open and decentralized multi-centric
systems where the user population is dynamic and the identity of
all users are not known in advance, such as service providers over
the Internet.

In social software, however, access regulations to a large part
depend on users’ privacy preferences and attitude, rather than the
receiver’s credentials. Trust in social software mostly resembles
the way face-to-face trust is shaped in the real world and between
real people, which is based on implicit group norms and cultures
rather than individuals’ credentials. The notion of credential-
based audience control as provided by TrustBAC with the
addition of the notion of trust levels does not contribute to the
support of any of the user-oriented privacy controls. Thus, like
RBAC, TrustBAC is not a suitable candidate for privacy
management in social software.

5.3 RelBAC
RelBAC [1] adds another level of abstraction to the original
RBAC model by using the Resource Access Decision facility
(RAD [29]) to include the notion of dynamic relationships
between arbitrary entities in access decisions. The model is
primarily targeted towards healthcare system, although the authors
claim that it is general enough to be applied to any domain that
requires relationships in access decisions. Relationships are
explicitly defined using UML association or dynamic attributes. A
combination of roles and relationships is then used to determine
whether a permission should be granted or denied.

Like the original RBAC model, RelBAC is suitable in domains
where there are clearly defined roles and relationships, for
example when roles and relationships are dictated by requirements
placed on access to information by the governmental or
organizational rules. Considering the notion of relationships in
addition to roles in making access decisions provides a more fine-
grained right management compared to the original RBAC. The
model supports relationship control (and audience control through
it), but not in the user-oriented form as neither roles nor
relationships are defined or controlled by the end users. Since the
model is not geared towards dynamic information, the notion of
user-oriented artifact control does not apply. Change control is
indirectly supported through the assumption that relationships are
short-lived and thus managed through other component of the

system (e.g. registration component), rather than the central
authority.

5.4 TBAC
The TBAC model is another extension of RBAC that introduces
domains with task-based contextual information. Access control
in this model is granted in steps that are related to the progress of
tasks. Each step is associated with a protection state containing a
set of permissions. The contents of this set change based on the
task. This is similar to the concept of privacy life cycle as
identified in our study, although permissions change based on
various stages of tasks, not artifacts. TBAC is an active model that
allows for dynamic management of permissions as tasks progress
to completion. The model also supports validity period and
expiration for the access rights.

The notion of artifact control is somehow supported because
artifacts are assigned different permissions at different stages,
although again this is not managed by the end users. Audience
control and relationship control are handled through role
assignment as in original RBAC and are not user-oriented. User-
oriented change control is not supported.

5.5 BCSW
Sikkel [32, 33] presents a general authorization model with an
emphasis on conceptual simplicity and ease of use. The model is
provided in two forms: The basic form and the extended form.
The basic form extends the canonical ACL model with the notion
of groups that are used for both assigning roles (user groups) and
permissions (access groups). The extended form adds support for
delegation, negative rights (exclusion), conditional authorization,
and explicit role switching. The model is modular in the sense that
the extensions that are not needed in a particular application can
be discarded, thus avoiding unnecessary complexity. Context
(time, location, etc.) is also supported by the notion of conditional
access rights applied to groups.

Use of user groups as the basic audience categorization
mechanism (based on which roles and other kinds of categories
can be modeled) seems to provide the level of flexibility in group
definition as required in social software: Since user groups are
collections of people without the attributes and operations for
various types of roles, they enable group definition based on
factors other than organizational roles. Compared to the notion of
roles used in RBAC and other models that extend it, the notion of
user groups in the BSCW model seems to be a better match for
satisfying the audience control requirement in our conceptual
model. Artifact control can be supported through the use of access
groups, by assigning an artifact to different access groups through
various stages of its life cycle. Also, the notion of conditional
authorization in the extended model could be used as the basis for
adding support for relationship control. Support for change
control, however, depends on the actual implementation of the
model and usability of the user interface that accompanies it.

As we can see, each of the discussed access control models is at
best capable of partially supporting the requirements of social
software, either directly or indirectly. Although it might be
possible to modify or extend each model to tailor it to the
requirements of social software, none of them are designed with
specific needs of social software in mind. We now move to a short
description of a privacy control system based on tagging people
that we are incorporating into an open-source social networking

20

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

and information management system, and our plans to test this
against other approaches. We claim that since our privacy system
is designed with user-oriented privacy controls in mind, inherent
support for specific privacy needs of social software is deeply
integrated in implementation, potentially creating an intuitive,
viable solution for usable privacy in social software.

6. Tagging people: a new model for
relationship control
One of the most significant challenges in developing a system for
audience and relationship control, and thus for supporting user-
oriented privacy control and information sharing, is the subtle and
nuanced way in which our patterns of trust change over time and
the ways in which this interacts with our transactional approach to
information sharing and exchange. In this respect, our study
confirmed existing theories of knowledge sharing that compare
the exchange of information between people with the exchange of
money in economic systems [8]. While the analogy is not perfect,
this observation highlights the contextual nature of the choice to
share knowledge and the degree to which these choices depend on
an assessment of the personal benefit to be gained from sharing
weighed against the risk of sharing that specific information with
that particular audience.

At minimum, a solution to this problem must involve an ability to
associate collections of information-bearing artifacts with groups
of people (the audience) defined largely in ego-centric terms (the
relationships). The insight that leads to a potential solution is that
the organization of relationships can be treated in the same way
that we organize information itself, and that the model of personal
information organization called folksonomy or tagging has exactly
the characteristics necessary to facilitate relationship management
for information sharing.

Simply put, the folksonomic information organization model
allows a user to associate a set of personal keywords (tags) with a
particular piece of information (an artifact). Each such keyword
then automatically becomes a category term that can be used to
select collections of artifacts for recall or comparison, using both
individual keywords and certain Boolean combinations of these
collections (as sets). Since this model was first introduced by the
social bookmarking system del.icio.us [15] and the photo
exchange system Flickr [17], it has been adapted to a wide variety
of uses (e.g. blogging and RSS syndication), has become
widespread in its exposure to the Internet community, and has
been the subject of a body of research. While much of this
research has been focused on the social aspects of the model, our
interest is primarily on its usefulness as a model for organizing
information for completely selfish purposes (what Vander Wal
has termed broad folksonomy).

In relating information management to relationship management,
we highlight a number of features of the tagging model:

1. Many tags (and thus categories) can be associated with
each artifact;

2. The choice and control of tags is entirely in the control
of the individual user;

3. The act of tagging is simple, intuitive and well-adapted
to granular information collections (e.g. web
bookmarks); and

4. The collections created by coincidental tagging (i.e. all
artifacts tagged with the same words or the same set of
words) form natural categories.

For these reasons, we propose to model relationships for
information sharing by tagging people, represented by their
profile pages in a social information sharing network.

Opntag is a web-based, open source system for note taking and
bookmarking we have developed to experiment with personal
information management and exchange in sensitive environments
(e.g. within corporations). The fundamental unit of information
storage in opntag is the “memo”, a tagged textual annotation that
may optionally refer to any URL-addressable object. Fundamental
to its implementation is an ability to restrict the visibility of these
memos to one or more groups (including the “private” group
consisting only of oneself). To this point, we have used a fairly
traditional model of user groups, based on the hierarchical BSCW
model (e.g. a particular memo and its associated tags may only be
visible to the “opntag developers” group).

One of the experimental focuses of opntag has been to exploit the
opportunities presented by tagging or creating memos that refer to
other objects in the system. For example, a memo that refers to
another existing memo is considered to be a “reply” to that memo
and becomes automatically threaded into the conversation that the
first memo is part of. Memos on collections become associated
with those collections and we are investigating the consequences
of other tags applied to collections (e.g. in one experimental
extension such tags are viewed as “implication markers” that
signal semantic implication and automatic tagging).

Within this environment then we have started to experiment with
the tagging of your own (identity tagging) and others profile pages
as a way of “categorizing” friends and collaborators. This might
be useful simply as a way of signaling our assessment of others
(e.g. I might tag a seller on eBay as “unreliable”) or as a way of
signaling a relationship (e.g. I will tag my graduate students as
“student” and “grad student”). When viewing that profile page
then, I may be able to see the person’s own tags for himself (e.g. a
self-assessment of identity), my tags (signals of our relationship)
and other’s tags (third-party opinions). This is all, of course
controlled by opntag’s visibility management facility, so I will
only see those tags that the taggers have allowed me to see, and
thus it is reasonably safe to “opinion tag” others, but this is highly
volatile and private information, so likely to be lightly shared.

As we have highlighted above though, associating the visibility of
these tags with invitation-only or open membership groups (e.g.
online communities) is probably not sufficient in most cases, since
we often make such sharing decisions based on relationships more
personal than shared membership in a community. For example, I
may want my “friends” (i.e. those others I have tagged with
“friend”) to see that they are included and have special privileges
to my information store as a result, but non-friends should not be
visibly excluded. The obvious solution to this then is to treat each
of these “tagged categories” of other users as a “relationship
group” which is usable as a visibility category. Thus, the act of
“tagging a person” (via their profile page) is equivalent to
asserting their membership in a group whose membership is
entirely under my control.

Currently, this implementation is incomplete and scientifically
untested, but we can assert that it fulfills all of the control criteria
outlined above. Sharing control within opntag is already done on

21

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

the basis of artifact-specific privacy control, since each memo in
the system and its associated tags is visible only to its specific
audience. The visibility management model in opntag is also
clearly a user-driven audience control approach, with the
audience for an item defined as the set of users the object is
visible to1. The people tagging establishes the egocentric
relationship control our study suggested and tying that to the
visibility model allows one to exploit these relationships for
audience management. The one aspect of the problem not directly
addressed by this solution is change control, although the
visibility of a memo or tag a user has created is always modifiable.
What is needed is a way to match the changes in audience to
identifiable stages in a privacy life cycle model, still to be
developed.

The most salient comparison with this approach is the one
exemplified by Facebook. A contrast to the bottom-up, user-
defined vocabularies is the traditional application- or community-
defined taxonomy. In Facebook, relationships are classified with a
set of standard assertions represented by the dialogue in Figure 3:
Facebook friend categories. We suggest that there are two
problems with this model: 1) the categories are clearly incomplete
(e.g. how do I indicate that I “taught” a student in a particular
course?), and 2) I can’t designate that individual photos, notes,
etc. are to be shared with only a subset of my friends or networks
(Facebook’s groups).

Figure 3: Facebook friend categories

We are on track to complete the “tagging people” implementation
in opntag and release it to a wider audience than the lab within a
few weeks (on the hosted opntag.net site). Once we do so, we will
conduct a survey and controlled tests comparing opntag’s
approach to relationship-based information sharing with that
implemented in Facebook.

7. DISCUSSION
The representations of the data that emerged from our grounded
theory analysis provide a set of propositions for understanding
privacy requirements in social software. Our most important
finding was that users have a fundamental assumption that when
they put something in the tool, they should have control over it.
Our data confirm the intuition that users can be reluctant to share
personal information when the consequences of doing so are
unclear, or when they are unable to control the transactional
aspects of knowledge sharing activities. A counterintuitive
consequence of this may be that some users are more ready to
share personal information in a space that affords virtually no
privacy control (e.g. blogs or Myspace pages) than one which

1 In opntag, visibility implies readability, so there is no “I can see

that it exists but can’t read it” issue.

offers them an inadequate set of privacy management tools. In our
study, users were made aware that they could have some control
of privacy and should manage the audience for their personal
information by the promise of an access control system in the
social system they used. When they found it inadequate, they
often chose to not place information into the system because of
the inflexibility of the tools or the lack of ability to model
consequences of their actions.

This points to the importance of perceived affordances of privacy
management mechanism for social software (as for any other user-
oriented tool). As defined in the HCI field, perceived affordance
is “action possibilities which are readily perceivable by an actor
[11, 25]”. Simply put, the concept emphasizes that suggested
interactions with a tool must be in accordance with the ability of
the actors to perceive those interactions. Perceived affordance has
been identified as a major contributor to enhancing usability of a
design [21, 24]. Because our privacy management mechanism is
based on users’ mental model of information privacy, we believe
it provides better perceived affordance, thus improving the overall
usability.

Even though the required privacy controls that were identified by
our results were mere confirmation of the factors known by
existing access control models, the fact that in social software
these controls need to be in the hands of the users calls for new
approaches in design of privacy management mechanisms in this
context. We believe the insufficiencies of current mechanisms are
the results of a significant gap between the perceived affordances
of the underlying model and user requirements. We expect our
findings to contribute to reducing that gap.

8. CONCLUSIONS
Although the use of social software for a variety of purposes has
moved from leading edge to mainstream over the past few years, it
is still in the early-adopter phase. Among issues that need further
investigation are the issues of privacy and access management in
these environments. We believe that the ability to understand and
control information sharing in a natural, fluid manner is essential
to the acceptance of these tools by a broad set of users, and yet,
none of the existing access control models in the literature address
the specific privacy needs of social software.

This research summarizes the results of our investigation into
privacy issues as they pertain to the specific context of social
software. We used the results of a grounded theory study of
information sharing behavior to propose guidelines for the design
of privacy control mechanisms. We discussed current access
control models and explained why they are not sufficient for
specific needs of social software, and then presented our proposed
solution for a privacy management mechanism for social software
that we believe can address those insufficiencies.

An important distinction between this study and previous
investigations is how it goes beyond speculation to propose
explanations as to why certain factors are important: our results
are grounded in data gathered from users' experiences and
opinions rather than deduced from the literature. As such, they
give valuable insights into the processes entailed in information
sharing in social software, and they provide a framework to direct
further research.

It is yet to be determined whether our proposed solution has been
successful in improving users’ experience with the privacy

22

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

management mechanism. Clarifying where our solution stands
compared to existing solutions (through performing usability
studies) is part of our continuing research agenda.

9. REFERENCES
[1] Barkley, J., Beznosov, K., and Uppal, J. 1999. Supporting

relationships in access control using role based access
control. In Proceedings of the Fourth ACM Workshop on
Role-Based Access Control (Fairfax, Virginia, United States,
October 28 - 29, 1999).

[2] Boyd, D. 2006. Identity Production in a Networked Culture:
Why Youth Heart MySpace., In American Association for
the Advancement of Science, St. Louis, MO. February 19.

[3] Burrow, A. L. (2004). Negotiating access within Wiki: a
system to construct and maintain a taxonomy of access rules,
In Proceedings of the fifteenth ACM conference on Hypertext
and hypermedia, Santa Cruz, CA, USA, pp 77 - 86.

[4] Cao, X. and Iverson, L. 2006. Intentional access
management: making access control usable for end-users. In
Proceedings of the Second Symposium on Usable Privacy
and Security (Pittsburgh, Pennsylvania, July 12 - 14, 2006)

[5] Chakraborty, S. and Ray, I. 2006. TrustBAC: integrating
trust relationships into the RBAC model for access control in
open systems. In Proceedings of the Eleventh ACM
Symposium on Access Control Models and Technologies
(Lake Tahoe, California, USA, June 07 - 09, 2006).

[6] Coulouris, G. and Dollimore, J. (1994), A security model for
cooperative work, Technical Report 674, Dept. of Computer
Science, Queen Mary and Westfield College, University of
London, 1994.

[7] Erickson, T. From PIM to GIM: Personal Information
Management in Group Contexts, in Communications of the
ACM, January 2006.

[8] Fuller, S. (2002). Knowledge management foundations.
Boston: Butterworth-Heinemann.

[9] Glaser, B., Strauss, A., The Discovery of Grounded Theory:
Strategies for Qualitative Research, Chicago, 1967

[10] Gross, R., Acquisti, A., and Heinz, H.J. III, Information
revelation and privacy in online social networks, In
Proceedings of the 2005 ACM workshop on Privacy in the
electronic society, p. 71– 80

[11] http://en.wikipedia.org/wiki/Affordance

[12] http://en.wikipedia.org/wiki/Web_2.0

[13] http://en.wikipedia.org/wiki/Principle_of_least_astonishment

[14] http://bluedot.us/

[15] http://del.icio.us

[16] www.facebook.com/

[17] http://www.flickr.com

[18] http://ma.gnolia.com/

[19] http://opntag.net

[20] http://www.orkut.com

[21] McGrenere, Joanna, Ho, Wayne (2000): Affordances:
Clarifying and Evolving a Concept. In Proceedings of

Graphics Interface 2000, May 15-17, 2000, Montreal,
Quebec, Canada. p.179-186.

[22] Millen, D. R., Feinberg, J., and Kerr, B. 2006. Dogear:
Social bookmarking in the enterprise. In Proceedings of the
SIGCHI Conference on Human Factors in Computing
Systems (Montréal, Québec, Canada, April 22 - 27, 2006).

[23] Morse, J. M., Richards, L., README FIRST for a User's
Guide to Qualitative Methods, Sage publications, 2002

[24] Norman, Donald A. (1988): The Design of Everyday Things.
New York, Doubleday

[25] Norman, Donald A. (1999): Affordances, Conventions, and
Design. In Interactions, 6 (3) p. 38-41

[26] Olson, J.S., Grudin, J., and Horvitz, E., A study of
preferences for sharing and privacy, In Proceedings of CHI
2005, Portland, Oregon

[27] Patil, S, Lai, J. Who gets to know what, when: Configuring
privacy permissions in an awareness application, In
Proceedings of CHI 2005, Portland, Oregon

[28] Razavi, M. N. and Iverson, L. 2006. A grounded theory of
information sharing behavior in a personal learning space. In
Proceedings of the 2006 20th Anniversary Conference on
Computer Supported Cooperative Work (Banff, Alberta,
Canada, November 04 - 08, 2006)

[29] Resource Access Decision (RAD), Object Management
Group Healthcare Domain Task Force, Revised submission,
OMG TC Document corbamed/99-04-04, April 26, 1999.

[30] Sandhu, Ravi S., Coyne, Edward J., Feinstein, Hal L., &
Youman, Charles E. (1996), Role-Based Access Control
Models. Computer, Volume 29, Number 2, February 1996,
38-47.

[31] Shen, H. and Dewan, P. 1992. Access control for
collaborative environments. In Proceedings of the 1992
ACM Conference on Computer-Supported Cooperative Work
(Toronto, Ontario, Canada, November 01 - 04, 1992).

[32] Sikkel, K. (1997a), A Group-Based Authorization Model for
Cooperative Systems. European Conference on Computer
Supported Cooperative Work (ECSCW’97), Lancaster, UK,
345–360.

[33] Sikkel, K. (1997b), A Group-Based Authorization Model for
Computer-Supported Cooperative Work. Arbeitspapiere der
GMD 1055, GMD, Sankt Augustin, Germany.

[34] Thomas, R., Sandhu, R., Task-based authorization controls
(TBAC): Models for active and enterprise-oriented
authorization management. In Database Security XI: Status
and Prospects, North-Holland, 1997.

[35] Whalen, T., Gates, C., Private Lives: User attitudes towards
personal information on the web, poster, in SOUPS 2000

[36] Whittaker, S., and Sidner, C. 1996. Email overload:
exploring personal information management of email. In
Proceedings of the SIGCHI Conference on Human Factors
in Computing Systems: Common Ground (Vancouver,
British Columbia, Canada, April 13 - 18, 1996).

[37] Whitten, A., and Tygar, J.D., Safe staging for computer
security. In HCI and Security Systems Workshop, CHI 2003,
Ft. Lauderdale, Florida, April 2003.

23

http://www.pdfonline.com/easypdf/?gad=CLjUiqcCEgjbNejkqKEugRjG27j-AyCw_-AP

Detecting, Analyzing and Responding to Security
Incidents: A Qualitative Analysis

Rodrigo Werlinger,

University of British Columbia, Vancouver, Canada
rodrigow@ece.ubc.ca

ABSTRACT
Using grounded theory as qualitative method, this study
provides a better understanding of the tasks performed by
security practitioners during security incidents and the re-
sources (tools, specific knowledge and skills) that these prac-
titioners need to perform those tasks. The data for the
analysis came from 24 questionnaires and 14 interviews of
security practitioners mainly from academic organizations.
The results show that a security incident can be separated
in three stages linked by a temporal relationship: detection,
analysis and response. Each stage is comprised by tasks that
are performed using different skills, strategies and resources.

The paper also provides some recommendations about de-
veloping security tools. Central points of these recommen-
dations are: Correlation of multiple sources of information,
including the activities of different projects in distributed
environments, and better trade-off between portability and
visualization.

Categories and Subject Descriptors
K.6.5 [Management of Computing and Information
Systems]: Security and Protection

General Terms
Security Incident

Keywords
Security Tasks, Resources

1. INTRODUCTION
Security incidents are critical in the context of information

security. To avoid them, organizations try proactively to ap-
ply preventive measures either to mitigate security risks, or
to be prepared to respond to security incidents with minimal
impact to the organization. Whatever strategy adopted, or-
ganizations need to invest a good part of their information

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.

technology (IT) budget solely on security: Two studies from
Forrester Research, Inc. estimated this expenditure in over
$100 billion USD in 2007 [14, 15]

Despite these efforts, security incidents are still frequent
[10, 17, 18], implying negative and even disastrous financial
consequences for organizations. Several studies and efforts
have been devoted to report the cost of security breaches [19,
20, 21, 16]. To illustrate, a recent survey conducted in USA
[21] revealed that, when a security incident implies the dis-
closure of customers’ information, on average, an incident
could cost to an organization USD$4.8 million.

Persistence and cost are the two factors that have moti-
vated several studies about better practices for dealing with
security incidents [24, 23]. Nevertheless, the literature is
sparse concerning investigating IT professionals who have
to deal with security incidents, in terms of which tasks they
actually perform and which resources they need to face the
complex scenarios given by real incidents [1]. This lack of
research makes it difficult to evaluate and improve the sup-
port that IT security professionals need to not only handle
security incidents, but also be efficient in their work.

This study aims at empirically investigating how security
practitioners deal with security incidents by answering three
central questions:

• Which tasks are performed by security practitioners to
manage security incidents?

• Which resources, in terms of skills, knowledge, and
tools are needed by security practitioners to face se-
curity incidents?

• What tools used by security practitioners can be im-
proved to deal with security incidents?

In order to answer the previous questions this paper adopted
an empirical focus, using ethnographic techniques [28] —
questionnaires and interviews — to engage security practi-
tioners’ perspective during security incidents. These tech-
niques enabled the study of security incidents in real con-
texts [7].

The ethical approval for contacting participants, the re-
cruiting process, the interviews themselves and their tran-
scriptions, were managed in the context of the HOT Admin
project1. This project’s field work provided 24 question-
naires and 14 interviews of IT security professionals with

1HOT Admin aims to devise a methodology for evaluating
the effectiveness of IT security administrative tools, and to
design effective technological solutions, guidelines, and tech-
niques to aid security administrators [4].

24

responsibilities in IT security. The analysis started with the
identification of the data with information about security in-
cidents. To do so, a standard definition of security incident
from the Computer Emergency Response Team (CERT) was
used [3]. Afterwards, the chunks of text labeled with the
theme security incident were analyzed using grounded the-
ory [6, 5]. The open codes generated with this analysis were
iteratively compared with the data. Axial and theoretical
coding followed the open coding stage.

As a primary result of the analysis, the first two research
questions of this study were answered by modeling: (1) the
tasks performed by security practitioners during security in-
cidents, and (2) the skills, knowledge and tools necessary to
deal with security incidents.

The task model showed that the process of dealing with se-
curity incidents can be separated in three stages: detection,
analysis and response. Detection accounted for all the tasks
necessary for security practitioners to perceive anomalies in
their environment. Then, the analysis stage comprised: (1)
verification and assessment of the detection’s outcome, (2)
the tasks necessary to find out the source of the anomaly
and track the source of the attack, and (3) interaction with
other specialists. This last task was the most recurrent,
supporting previous theories about the interdependency of
security management tasks [11].

Three skills were used by the participants to perform their
tasks: pattern recognition, generation of hypothesis, and
collaboration. Knowledge about the IT infrastructure, pro-
tocols and attack patterns was used during security inci-
dents. Tools used by the participants comprised a myriad
of applications ranging from general IT to specific security
tools to home made scripts.

Another result from the analysis was the discovery of an-
other dimension of required resources to deal with security
incidents: strategies. Strategies of isolation and simulation
were mentioned as a way to find out the source of the inci-
dent and verify the existence of malicious software respec-
tively.

The last research question was answered by providing rec-
ommendations about features that tools should have to sup-
port the work of security practitioners during security inci-
dents. Correlation of multiple sources of information includ-
ing the activities of different projects in distributed environ-
ments, and trade-off between portability and visualization
are central points of these recommendations.

Another contribution of this paper is the comparison of
the tasks modeled from the grounded theory analysis with
those described in the standard RFC2350: “Expectations
for Computer Security Incident Response” [22]. This com-
parison is used as reference for incorporating new questions
in future interviews about, for example, the format of the
reports used during security incidents.

The rest of the paper is organized as follows. The next sec-
tion discusses related work. Section 3 describes the method-
ology, including data collection and analysis. Section 4 re-
ports the results. Section 5 analyzes the results. Conclusions
and future work are in Section 6.

2. RELATED WORK
Several lines of research can be distinguished from work

related to security incidents. For the purpose of this study,
these lines of research are separated in two parts. The first
one, standard and best practices, summarizes standards and

best practices developed by professionals working in the in-
dustry of IT Security. The second one, ethnographic and
case studies about IT and IT security, covers IT and IT Se-
curity works that have used ethnographic methodologies to
study IT administrators and IT security administrators.

Standards and Best Practices
Research and IT security communities have been prolific
producing standards and best practices for dealing with se-
curity incidents [22, 24, 23, 8]. For example, the Computer
Emergency Response Team (CERT), hosted at Carneggie
Melon University, has published on its web site several re-
sources about handling security Incidents [3]. Another ex-
ample is the RFC2350:“Expectations for Computer Secu-
rity Incident Response” [22], which sketches a framework
about what to expect from Computer Security Incident Re-
sponse Teams (CSIRTs). The same RFC defines CSIRT
as the “team that performs, coordinates, and supports the
response to security incidents that involve sites within a de-
fined constituency.” Despite the fact that these standards
and best practices provide valuable information to orga-
nizations, in terms of designing and implementing policies
and procedures to deal with incidents, none of them is in-
tended to unfold the complexity of the tasks, interactions
and processes that security practitioners have to face dur-
ing a security incident.

Ethnographic studies about IT and IT Security
Barrett et al. [26] used ethnographic methods to study sys-
tems administrators. They used several quantitative and
qualitative methods to gather information from IT adminis-
trators in large industrial service delivery centers. With 101
preliminary surveys, 12 interviews (sysadmins, managers,
team leads, and others in various roles), 6 case studies (at
4 industrial service delivery centers), a log diary kept by a
system administrator for 10 months (2002-2003), and ob-
servations of the tasks of 12 system administrators (over
25 days), they give several recommendations about develop-
ing tools to effectively support system administrators’ tasks.
Although Barrett et al.’s findings touch a broad spectrum
of IT administration (e.g., database, web server, operating
system), nothing is mentioned about specific practices, tasks
and needs of administration in the domain of IT security. In
addition, they are more focused on tool development, rather
than providing models of the tasks performed by their par-
ticipants.

Björck [2] empirically answered two research questions:
“What problems do organisations face and what processes
do they go through as they are aiming to establish a bal-
anced management system for information security?” and
“What perceptions do information security managers hold as
regards the management of information security in organi-
sations?” He used grounded theory to analyze the data that
came from 29 semi-structured interviews: 8 with IT security
managers, 13 consultants, and 8 auditors. All the partici-
pants belonged to Swedish companies. Björck’s methodol-
ogy is similar to the one used in this paper — an empirical
perspective to answer his research questions. Nevertheless,
his questions are more general: he endeavors to discover
high level factors, models and perceptions that are involved
in the design and implementation of information security
management systems (ISMS); he is not focused on security
incidents.

25

Kandogan and Haber [1] study aimed at evaluating secu-
rity administration tools in real environments. They spent
40 days performing an ethnographic study of security ad-
ministrators from a University in USA. Based on some real
situations faced by these security administrators, they give
recommendations about future developments of IT security
tools. As Barrett et al., Kandogan and Haber do not provide
models of the tasks and resources related to the participants.
In contrast, my paper not only aims at providing recommen-
dations about improvements on tools and resources used by
security practitioners, but also obtains a deeper understand-
ing of the task space and complexities during security inci-
dents.

3. METHODOLOGY
The approach used in this study is based on ethnographic

and qualitative techniques. The use of ethnography [28]
makes it possible to study security practitioners in the con-
text of security incidents within their organizations. To an-
swer my research questions, this context is relevant because
it not only accounts for complexities that could not be oth-
erwise reproduced in a laboratory [7], but it also needs to
be incorporated into the analysis for a better understanding
of the phenomenon.

The ethnographic data were analyzed using grounded the-
ory. Similar to Orlikowski [13], “the inductive, contextual,
and processual” characteristics of grounded theory are used
in this paper to construct an interpretation of security prac-
titioner’s view during security incidents. This constructivist
posture also follows Charmaz’s view about what means to
build theories in grounded theory [5].

The ethical approval for contacting participants, the re-
cruiting process, the interviews themselves and their tran-
scriptions, were managed in the context of the HOT Admin
project [4].

HOT Admin started with a field work study with 24 ques-
tionnaires and 14 interviews from IT professionals with dif-
ferent levels of IT security responsibilities. The profile of
the participants and their organizations is described in the
next section.

3.1 Data Sources
The 14 interviews from HOT Admin project comprised

the main source of data for this study: thirteen of them
mentioned IT incidents or IT security incidents. The inter-
views were accompanied by a questionnaire submitted by
the participants, with general information about their re-
sponsibilities and technical background. The summary of
this information is shown in table 1. All the interviewees
came from British Columbia, and most of them (12) were
from academic organizations.

Academic organizations have been the focus of other sim-
ilar studies [1, 25]. The main reason for taking participants
from academic organizations is they are easier to recruit
than from other organizations. Undoubtedly, recruitment is
a serious issue in IT security studies, as shown in [27].

One possible drawback of academic institutions is that
the criticality of the information is not as high as in other
fields (financial, commercial, military, etc). This could mean
that sometimes IT security is not a priority, leaving some
interesting IT security issues without further evaluation or
investigation [25].

3.2 Data Analysis
The analysis of the data started with the identification of

information about security incidents within the interviews .
A security incident was considered as : “any real or sus-

pected adverse event in relation to the security of computer
systems or computer networks ” [3]. The aspects of security
that were used to materialize this definition were confiden-
tiality, integrity and availability [12].

About 13 situations related to security incidents were iden-
tified. This information was coded in an iterative process,
starting with open coding and continuing with axial and
theoretical coding [5]. At this stage, two models were gen-
erated. The first one comprised the tasks that the partici-
pants performed during security incidents. The second one
accounted for the tasks in terms of resources (skills, knowl-
edge and tools) necessary to deal with these incidents.

The posterior analysis was based on further elaboration
of the “memos” [5] written during the coding process, which
were initially used to draft any idea, comment or interesting
finding from the data. Afterwards, these memos were used
as the basis for the grounded theory results.

4. RESULTS
This section lists and classifies the security incidents men-

tioned by the practitioners. Further, the tasks performed
by security practitioners are described. The section finishes
with the resources used to support these tasks.

4.1 List of Security Incidents
Table 2 lists the incidents mentioned by the participants

in different types. This classification takes into account the
source of the incident, rather than its consequences.

The most common incidents reported were related to ma-
licious software. Within this type of incident, our partici-
pants distinguished between specific types of malicious soft-
ware (trojan, malware, worm), the quantity of compromised
machines, the type of asset compromised (user’s PC or in-
ternal Host), and the regularity of the event. The last three
aspects were used as criteria to determine the way in which
the incidents were handled. To illustrate, a large outbreak
of virus required the participation of 20 specialists of dif-
ferent levels during more than 48 hours, whereas regular
compromises of specific machines were covered by prede-
fined procedures applied at the first level technical support
service within the organization. As one of our participants
said: “If its infected [the machine] through ad-ware or that
kind of scenario, then it just goes for re-image —that’s our
process...Usually I don’t get involved if it’s routine stuff.”

Incidents related to Human Resources were mentioned
in terms of the violation of internal policies. These viola-
tions were related with improper use of the organization’s
resources. These incidents were also characterized for the
sensitivity of the internal communications during their in-
vestigations: “if it’s dealing with a sensitive nature where
people’s reputation could be damaged, that kind of stuff, then
it tends to come directly, and it’s quietly, whereas the rest of
them tend to come through the help desk.” Incidents related
to launch attacks against third parties make it necessary to
be aware not only of the incoming traffic, but also of the
outgoing.

Phishing was a type of incident mentioned by one of the
two participants in the private sector. This was handled by

26

Table 1: Demographics of the interviewed participants. N/A accounts for not available. This happened
because participants were not obliged to answer all the questions from the questionnaire.
Job Position Organization

type
% of time spent
on IT security

Security train-
ing

Security Specialist / Business Continuity Process Specialist Banking N/A N/A
Tech Specialist II Insurance 20 yes
Network Security Manager/System Administra-
tor/Videoconferencing

Academia

10 yes

Application Programmer 40 N/A
Director, IT Services N/A No
Information Security Officer N/A yes
IT Security Officer N/A yes
Senior Systems Analyst 25 N/A
Senior Systems Analyst N/A yes
N/A N/A N/A
Security Analyst N/A yes
Systems Administrator 60 N/A
Network/Security Lead 40-60 yes
Systems Analyst 20 N/A

only one person. It had different characteristics from the
other incidents, and was classified in a different category.

Suspected security incidents includes those incidents that
either were being investigated and there was no clarity about
their causes, or those incidents that could materialize seri-
ous compromises in the future. In the former case, two of
the participants reported situations where the source of the
problem was not clear, and they had to speculate about the
presence of a malicious source. One of them specified: “So
we try to put a proxy in between —a very powerful Linux
machine— and then it started crashing. So like I said: I
don’t think it’s malicious, it’s all firewalled away.” These
incidents were interesting because the participants needed
to perform more tasks and use more resources and skills to
discover the source of the problem. In the latter case, port
scanning was an alerting signal for the participants, in terms
of expecting a security incident if they did not address the
situation. One participant commented about port scanning:
“They’re basically just probing and looking for an open port,
so you say yep, this person’s probing. You just take their IP
address, you send a complaint to their network administra-
tor...”

4.2 Tasks
Table 3 shows the main tasks performed by our partici-

pants during the security incidents. These tasks were grouped
in three main stages: Detection, Analysis and Response.
These stages account for the temporal sequence since a se-
curity incident is “perceived” by the security practitioner
until a concrete action to stop it is taken. In between, dur-
ing the analysis, security practitioners have to perform sev-
eral tasks to confirm the incident, assess its scope, and find
out the source of the problem or the attack. In section B is
shown in detail the temporal relationship of these tasks for
the incidents described by the participants.

Monitor systems and networks: The objective of this
kind of task was to detect incidents by either direct inspec-
tion of systems and networks, or by using SW tools that
detect anomalies in the systems’ behavior. This kind of task
was common for all types of incidents.

Receive notifications: This kind of task was also com-

Table 2: List of security incidents
Description Incidents [number of occur-

rences in the data]

Malicious SW 1. Host infected with a worm [1]
2. A user’s PC with Malicious Soft-
ware [3]
3. Large outbreak of virus [2]
4. A Host with a Trojan [1]

Human Resources 5. Download porn [1]
6. Hack other systems using organi-
zation’s infrastructure [1]
7. Send threats emails from organi-
zation’s servers [1]

Phishing 8. One case of phishing reported by
a client [1]

Suspected inci-
dents

9. Peaks of traffic [1]

10. Unreachable systems [1]
11. Devices crashing [1]
12. Network slow [1]
13. Port scanning [1]

mon for all types of incidents. Some notifications came from
third parties external to the organizations, as the participant
who dealt with the phishing attack explained “...we had a
person, not even a member of any of our organizations or
customers, who emailed our privacy office.” Another exam-
ple comes from a participant who described how his organi-
zation received notification e-mails from myNetWatchman,
an external IDS system, that detected anomalies in remote
networks: “This morning it happened that I got an e-mail
through myNetWatchman, which was relating to basically a
worm on a machine here.”

Other notifications came from users who reported their
problems to the helpdesk. From here, these complains were
communicated by automatic reporting systems to the par-
ticipants, like tickets or e-mails: “as a general rule a lot
of the calls for stuff like viruses and problems with the com-
puter all go to the help desk...we have an automated incident

27

Table 3: List of tasks performed during a security
incident

Stage Task

Detection Monitor systems or networks
Receive notifications

Analysis Assess the incident
Verification
Track the source of the attack
Find out source of the problem
Coordinate with other specialists
Generate action plan
Evaluate legal implications

Response Turn off ports or services
Clean-up systems
Re-initialize services
Patch or reconfigure systems
System’s restoration
Administrative sanctions

monitor system that is our helpdesk automated system.”
Assess the incident: Assess the incident is the first

task in the line after detecting the incident. The primary
objective of this kind of task was to evaluate the incident,
in terms of its magnitude and possible consequences.

One possible output from assessing the incident was to re-
prioritize tasks and start handling the incident before other
pre-scheduled tasks: “If it looks like a compromise, I might
go through the logs to see what kind of traffic I’m getting
from this IP address — everywhere else in the campus; is it
scans; is it a successful compromise. So it depends on what
I find, depends on what I do.”

Other possible outputs after assessing the incident were
either to assign or reassign a coordinator for dealing with
the incident or generate internal notifications. Usually it
was a helpdesk in charge of redirecting incident notifications:
“they [the help desk] would reassign the open-call... we have
an automated incident monitor system that is our helpdesk
automated system, so they would route it back to his queue
as an open call.”

Verification: The main objective of this kind of task was
to confirm that the information from the detection stage (ei-
ther from notification or monitoring) was accurate and there
was effectively a compromise (i.e. not a false positive). To
do this, participants either checked directly with the peo-
ple responsible for the suspected machine, or used log files
from other systems and tools to perform their own analy-
sis. One example of the first comes from a participant from
academia. This person did not manage all the information of
the projects on the IT infrastructure: “If a machine has way
more traffic than a web server or some other kind of high-use
server, then there’s something funny going on with that ma-
chine, and then we trace it back, and sometimes it’s [some-
one’s legitimate]project...” The same participant described
the use of different sources of data for verification purposes:
“I always try and verify by a second or third source. So [I
would, again] go back to the Argus...check the Argus logs and
see what’s actually happened; what have I seen in terms of
the traffic going towards that machine; what ports is it go-
ing after; what’s the size of the data. Then I would actually
go to one of my other logs [say from a] windows box; what
have I seen in the logs of the windows box; was that a real

compromise or not.”
Another case of verification also required interaction with

other specialists and the execution of specific subtasks such
as finding the responsible of the suspected machine, and
tests in-situ: “Resolved the IP address to a name and looked
up the name in our site data base to see who is supposed
to be responsible for the machine, and then forwarded an e-
mail to that person and [to] the person that looks after that
Windows machines on site.”

Track the source of the attack: The participants
rapidly recognized some incidents as attacks. In this case,
just after the notification, the participants started tracing
the originator of the malicious activity. For example, in the
case of the phishing, the participant used the information
from the e-mail that notified about the phishing attack to
find where the web page that impersonated the web page of
his organization was hosted. He was able to trace back the
source of the attack to a host in Germany. At this stage, he
had to interact with the administrator of the service provider
that owned the IP of the server, to block access to the fake
web page.

Find out source of the problem: Some incidents re-
quired more analysis from the participants to find the source
of the problem. Usually this was a case of detection by mon-
itoring, where the monitored systems showed symptoms of
being compromised without further information. Some inci-
dents triggered by malicious SW were characterized by this
kind of task. For example, one participant mentioned how
difficult was to trace an infected machine source of a DoS
attack: “One machine can create a Denial of Service for
everyone on the network —and then to [find its source is
difficult] because [the network is] so overloaded.”

Coordinate with other specialists:The coordination
with other specialists was necessary either to complete in-
formation about the incident, or to come up with specific
plans of action or to investigate.

Evaluate legal implications: This kid of task was unique
for incidents related to policy violations. When an organi-
zation’s resources were used as a platform to attack other
organizations, it was necessary to interact with legal experts
to analyze the legal responsibilities of each party involved.

Generate action plan: An action plan was the main
output by a group that analyzed the large outbreaks of
viruses. This action plan was the result of the analysis of
the virus, and consisted of a procedure to stop the the virus
and clean the affected machines.

Turn off ports or services: This was a usual action
taken for isolating the source of an incident.

Clean up systems: Usually for incidents due to mali-
cious SW, the infected machines were just cleaned up.

Re-initialize services: This kind of task was performed
when configurations of certain devices were suspected to be
corrupt. This kind of task was performed when the cause of
the incident was not clear.

Reconfigure systems: This kind of task was performed
particularly when a firewall had been configured to send its
log files to a syslog server. As this traffic made the network
collapse, the firewall had to be reconfigured.

System restoration: This kind of task takes a system
backup to restore the service. In some cases the task was
very complex, because it was necessary to perform several
tests to check that everything was working. As one partic-
ipant explained: “I came in — we had had a serious VPN

28

server failure on Friday, so I had actually to bring on a
secondary unit, and there were some serious problems asso-
ciated with bringing that unit on-line...”

Administrative sanction: This task was unique for
cases of internal policy violation, and was related to the
sanctions of the persons involved in the incident.

4.3 Resources
To perform tasks during security incidents, our partici-

pants needed to make use of several resources that included
SW tools, specific knowledge, skills and strategies, as de-
scribed below.

4.3.1 Tools
SW tools comprised a resource. A recurrent example was

the use of Shell/Perl scripts written by themselves to mon-
itor systems. These scripts looked for specific patterns of
suspicious activity in firewalls and IDSs’ log files. They
then generated automatic e-mails to those responsible for
handling the incidents. As one participant said: “I have
scripts that go off of the logs to analyse stuff there. So the
first thing is to check the e-mail and, if there’s any alert in
them, it could be that some machines are issuing to much;
there’s probably virus activity. We have flags for that.”

There were also specialized tools to monitor virus activity.
Two participants said they used McAfee EPO to get reports
of quantity of viruses per machine: “We’ve got MacAfee.
That’s another one, partly, that we use with the EPO. It
[reports] all the viruses too, so I can keep track at machine
level.”

To receive notifications, participants needed either an e-
mail client or a connection to the system used by the orga-
nization to generate tickets via the Helpdesk. In the case of
external parties sending notifications, there was necessary
an inventory of the parameters of network’s configurations
(autonomous systems (AS) or IP addresses space) with the
contact information of those in the organization who were
responsible to configure such parameters.

To analyze the packets of the network and find out the
source of the attack or the problem, tools like TCPDump
and Ethereral were used. In this case, a participant had to
not only know how to use these tools, but also to have knowl-
edge about filtering techniques to reduce and extract those
parts of the files that were useful for the investigation:“I mix
and max between TCP Dump and ethereal. So TCP Dump
can read the binary file and a can re-write another binary
file after applying a filter.”

To clean-up systems, antivirus and spywares were used.
Automatic updates were often used to patch systems.

4.3.2 Specific knowledge
To verify a suspected compromise, participants needed to

compare other sources of information. Sometimes, this in-
formation came from other people, who were contacted to
check what was happening. Besides a phone and an e-mail
client, participants needed to know the contact information
of other specialists in charge of IT infrastructure. This in-
ventory was critical in academic organizations, given the
distribution of responsibilities around the IT infrastructure.

In the case of the phishing incident, the participant used
both his experience in configuring networks, and specific
knowledge about phishing attacks. He actually had a plan
prepared by himself beforehand to respond to phishing in-

cidents.
To generate hypothesis, the participants needed to know

the IT infrastructure, the ways that the systems interacted
and specific knowledge about protocols. To validate the hy-
pothesis, they needed to know how to analyze the traffic
that traversed the network. As this traffic is not stored, one
participant needed to write a script to take advantage of the
network capabilities and mirror the packets of the affected
area to mount another server to capture and store those
logs: “I was creating a script that basically would capture
the packets that are coming, the mirrored packets, and plac-
ing it in a file, putting a time stamp, and archiving it after
two days or three days when we no longer need it.”

4.3.3 Skills
Pattern recognition: Pattern recognition was a recur-

rent skill that our participants had to use specially dur-
ing the first tasks to handle the incidents. One participant
used this skill during the detection stage, setting a prede-
fined threshold in the number of e-mails per machine. He
knew that more than a certain number of e-mails per ma-
chine corresponded to virus activity patterns: “machines
that are kicking out more than 50 e-mail connections an hour
[gives]us an indication of virus activity...”

Other participants described how they were able to match
DoS attacks with predefined patterns. One participant said
“Denial of services are easy to spot, cause its sending mil-
lions of the same thing, actually over and over and over
again, with very little iteration or very little permutation.”
The other stated: “This is a typical pattern of a hacker.
They get into a machine through some exploit or some way
they have in, and then they start downloading stuff with
WGet or Curlo or things like that...”

The participant in charge of handling the phishing attack
described how he tried to find a typical pattern when he
was assessing the magnitude of the incident: “Usually when
there’s a large phishing event, there are a lot of emails sent
out —your email server is innundated with non-deliverable,
because its like spam...”

Hypothesis generation: Two participants had to gen-
erate hypothesis about those incidents where the cause of the
problem was not clear. One of them described: “What we
are trying to do is that we have noticed in the past that we’ve
gotten spikes in traffic to one of our production servers and
we haven’t been able to trace what the spike is due to...We
think that there has been a breakdown in TCP/IP connec-
tions between our router and our server.” About the same
type of incident, one participant hypothesized: “So we sus-
pected the network and then we both sort of came to the
conclusion it had to be upstream.” During the investigation
of a proxy device crashing without apparent reason, a par-
ticipant said: “As soon as we put the bridge in, it stopped
crashing without filtering. It just should be a transparent
network device for all valid packets, so we hypothesize that
it was a malformed packet.”

Another participant generated hypothesis around the way
that a machine was infected with a malicious software: “That
particular machine has a running VNC server so one pos-
sibility is that somebody is able to scan that and guess a
password for the VNC server. Or another possibility is that
somebody just downloaded a Trojan on the machine.”

Collaboration: Collaboration with other specialists was
recurrently mentioned by the participants. The motivations

29

for this cooperation were diverse: make a more efficient in-
vestigation, execute specific actions in-situ, gather network
information and design a response plan to clean-up systems
infected by a virus.

To investigate what was causing an incident, a participant
interacted with a colleague “because two eyes are better than
one...” Another participant remarked about the positive
results after interacting with other specialist: “Between the
two of them we finally isolated — hey, its that new firewall
that we just brought up.”

In distributed environments it was necessary to get from
other areas information about the physical location of com-
promised machines: “So I would pass it over to the network
guys and they’ll find out where the IP address sits.” The
same participant explained how other specialists were re-
quired to clean-up systems or disconnect ports in-situ “They
[network guys]’ll forward it off to our helpdesk people to clean
it up, and so they’ll actually go out and clean it up ” and
“they actually logically unplug it so they disable the port.”

During the phishing attack one participant had to interact
with an administrator in Germany to take down the false
web site. Another participant explained a more complex
interaction during a big incident because of a virus. In this
case, there was a group of 20 people that had organized
in two different subgroups: “There were a few of us who
just kind of kept up with what was going on, tracked all the
decisions that were made, the status of where we were, how
many services were being disrupted, how many systems were
infected, kind of kept track of where we were, and while the
rest of them at the time had to go out desktop to desktop.”

4.3.4 Strategies
The concept of strategies for dealing with security inci-

dents emerged unexpectedly through grounded theory analy-
sis. Below two examples are described.

Isolation Isolation was a strategy used to either verify
incidents or to find out what was causing the anomaly or the
attack. Examples of the former case were already mentioned
in the description of the verification task. For the latter
case, one participant who was investigating why the internet
connection was slow stated: “We also contacted IT services
[to] see if they could see, based on traffic utilization on the
network, where it was coming from...we finally isolated —
hey, its that new firewall that we just brought up.” This
example shows how, by comparing observations with other
specialists, the source of the problem was isolated.

Simulation To investigate security incidents, participants
sometimes needed to simulate the compromise, either in a
controlled environment or in the production network. In
the interviews, these simulations had the objective to either
verify the existence of malicious software in a compromise,
or get more evidence and clues about the the source of the
incident.

To illustrate the first case, one participant explained how
he downloaded the same suspected malicious software to
check it: “It’s saying...downloading a tool from some web-
site. Okay, so I do that, download this tool and run it
through the antivirus and it says okay, this is some dial-
up ...” In the second case, another participant mentioned
how he was trying to collect information from real situations
where he repeated the conditions of failure: “ So we try
to put a proxy in between...and then it started crashing...as
soon as we put in no filtering...bad things stop happening...”

5. DISCUSSION
The previous section described the main results from the

grounded theory analysis of the interviews. This section
discusses those results in terms of: (1) what to expect from
security incidents; (2) a comparison of the task model from
this study with that from a specific standard; (3) relation-
ship between the results of this study and the concept of
interdependency of IT security tasks; and (4) recommenda-
tions for improving the tools used by security practitioners
focused on their security tools.

5.1 What to expect from a security incident
Our participants described 10 security indents in detail,

and 3 partially. Although this fact is highly determined by
the types of questions during the interviews, all the partic-
ipants mentioned at least once to be involved in security
incidents. This shows that handling security incidents is a
common activity of security practitioners.

The descriptions given by the participants ranged from
specific characteristics that made their environments com-
plex in terms of IT security (see appendix A), to the con-
sequences that a security incident could have within their
respective organizations (see appendix C). Although investi-
gating what makes security practitioner’s work more difficult
or easier was out of the scope of this study, the two charac-
teristics of decentralization and academic freedom may make
the results of this study extensible to other organizations
which are not regulated in terms of security. The conse-
quences of security incidents described by the participants
seem general enough to be extended to other organizations,
although more validation is required.

Another important result from the analysis is that a secu-
rity incident can be separated into three phases: detection,
analysis and response. Each one has its own tasks and re-
sources, and accounts for the temporal sequence of events
since the incident or suspected incident is perceived until a
concrete action is taken.

The results showed no strong correlation between the se-
curity training specified in the questionnaire and the specific
tasks performed or resources used by the security practition-
ers. Only in the case of the phishing attack, was training
explicitly highlighted as an asset to handle that type of in-
cident.

The results also showed that not all the incidents required
that the participants perform the same tasks or use the same
skills, strategies or resources. This information is useful
to “predict” what to expect from different types of secu-
rity incidents. On the one hand, we had incidents where it
was clear what to do after the notification. For example,
the phishing incident had a very defined pattern that was
quickly recognized to start finding the source of the attack.
The same happened with incidents related to violations of
internal policies, and to malicious software in user’s PC.

On the other hand, other incidents are expected to have
a stronger analysis component. This happens when the in-
formation from the detection stage is not specific, or only
accounts for general symptoms of the problem. The response
to these incidents would be quicker if there were tools able to
detect more specific patterns of attacks and better reporting
capabilities.

Another aspect to consider in handling security incidents
is the way that people interact and the different roles in-
volved. There was no incident in which the same person

30

performed all the tasks from detection to response. Usually
the information from the detection stage was concentrated
in the person who assessed or verified the incident. This per-
son could be someone from the helpdesk or the same security
practitioner. In the case of the helpdesk, other notifications
were generated internally to the predefined coordinators or
“owners” of the incident. The criteria used for assessing the
incident in this case were not explained during the inter-
views, and is one of inputs for the next step in this study
(see D section).

After the assessment or verification there were other in-
teractions already explained in section 4.3.3. Some of these
interactions were with specialists who actually performed
the final tasks in the response chain. Some of these spe-
cialists would need to be interviewed in order to unfold the
complexity of response tasks.

5.2 Contrast with RFC2350 standard
Standards and best practices are intended to provide gen-

eral recommendations about handling security incidents. They
provide an overview of the steps that a CSIRT should follow
to content and eradicate an incident.

One representative example of these standards is the RFC2350:
“Expectations for Computer Security Incident Response”,
whose purpose is “to express the general Internet commu-
nity’s expectations of Computer Security Incident Response
Teams (CSIRTs).” As a standard, the RFC2350 does not in-
tend to propose a model that comprises tasks, skills, strate-
gies and resources used during an incident as the present
study does. Nevertheless, it is possible to draw a compar-
ison based only on the tasks resulting from the qualitative
analysis and on the list of services the RFC2350 proposes a
CSIRT should provide to respond to security incidents.

Both the RFC2350 and the results of the present study
recognize the presence of tasks related to assessment (report
assessment in the RFC), verification, interaction with other
specialists (coordination in the RFC) and restore the system
(recovery in the RFC). Although forced, a match may be es-
tablished between the tasks “Track the source of the attack”
and “Find out the source of the problem” from this study
and “Technical assistance” from the RFC. The same exer-
cise may be done between the tasks “Clean-up systems” and
“Reconfiguration of systems” from this study and “Eradica-
tion” from the RFC.

The tasks related to the detection stage described by our
participants are not mentioned in the RFC. In the other di-
rection, “Information categorization” (categorization of the
incident related information with respect to the information
disclosure policy) was not a task identified in the results of
my analysis. Future interviews should provide more infor-
mation about this difference.

Another aspect to explore in future interviews is the use
of formal reporting templates for registering security inci-
dents; the participants did not make reference to the use of
specific reporting procedures during the interviews. Future
interviews will be used to obtain more information about
this difference.

5.3 Interdependence
Knapp et al [11] reported high interdependence of infor-

mation technology security tasks from a survey performed
on 936 certified information systems security professionals
(CISSPs). This interdependency refers to “the extent to

which individuals depend upon other individuals and re-
sources to perform a job.” My results confirm the Knapp
et al findings in the context of handling security incidents.
This conclusion comes from noticing that the most common
task performed by the participants during the analysis stage
was the interaction with other specialists.

5.4 Better security tools
Within the resources used to handle security incidents,

SW tools played an important role. Some of them were spe-
cific security tools, whereas other belonged to the IT world
in general. Examples of the first ones were: Kasperski and
McAfee antivirus, IDSs as Snort and Argus, and Firewalls’
administration software. In the group of the second ones
participants mentioned TCPDump and Ethereal.

SW tools were usually complemented with scripts written
by the same participants. Sometimes scripts aimed at not
only complementing but also replacing the functionality of
well known tools. For example, one participant used only
his scripts to monitor the systems, discarding the informa-
tion from the IDS snort because of the big quantity of false
positives. The same participant expressed his need about a
specific tool able to monitor suspected SQL queries on the
databases.

Another participant used TCPDump and ethereal sequen-
tially to generate and analyze the log files he needed for his
analysis. He alternated between the advantages of portabil-
ity (TCPDump) and good visualization (Ethereal): “[TCP-
Dump provides] common analysis format... it’s also a portable
format... [Ethereal runs] colours things...it shows the SYN
and Reset in one colour and then the Push commands in an-
other colour — so it is obvious — there is content in there.”

The experiences described by our participants could be
improved by tools that:

• Monitor the networks and systems correlating other
sources of information as project’s inventories to dis-
card false positives. In this case the tool should cor-
relate not only with the protocols that are in the net-
work, but also with the list of projects that affect dif-
ferent IT infrastructures in the distributed environ-
ment. The tool in this case should help the prac-
titioner to discriminate what activity comes from a
project from what’s not.

• Monitor specific systems and specific protocols, as SQL
queries.

• Integrate scripts on them.

• Are able to use as inputs different types of files and
generate portable outputs, with good visualization. This
tool would be used to analyze log files from different
sources.

6. CONCLUSIONS AND FUTURE WORK
This study showed the results of a qualitative analysis on

how security practitioners deal with security incidents. The
data for the analysis came from 14 interviews of security
practitioners, mostly from academia.

The results of the analysis comprised a list of incidents, a
model for the tasks, the skills and the strategies used during
security incidents.

31

The discussion of these results contrasted the results of the
analysis with related work and highlighted from the analysis
those aspects that enable prediction of what to expect from
security incidents.

The qualitative analysis performed represents the first
step in applying grounded theory. The next step in this
study is to gather more data to refine the results shown in
this paper. To do so, more security practitioners need to
be interviewed about incidents. These practitioners should
come from fields different from academia.

7. REFERENCES

[1] Eser Kandogan and Eben M. Haber, “Security
Administration Tools and Practices”, Security
Administration tools and practices, O’Reilly, August
2005, chapter 18, ISBN: 0-596-00827-9.

[2] Fredrik J. Bjorck, “Discovering Information Security
Management”, Doctoral Thesis, Stockholm University
/ Royal Institute of Technology, Report series No.
05-010, ISSN 1101-8526

[3] Computer Emergency Response Team (CERT):
Computer Security Incident Response Team (CSIRT)
main page (2007), available at:
http://www.cert.org/csirts (accesed February 2007)

[4] HOT Admin project (2007), available at:
http://www.hotadmin.org (accesed February 2007)

[5] Kathy Charmaz, “Constructing Grounded Theory”,
SAGE publications, 2006.

[6] Barney Glaser and Anselm L. Strauss, “The Discovery
of Grounded Theory, Strategies for Qualitative
Research”, Aldine Publishing Company, Chicago,
Illinois, 1967.

[7] Qualitative Research in Information Systems (2007),
available at: http://www.qual.auckland.ac.nz/
(accesed February 2007)

[8] Computer Emergency Response Team (CERT): Main
Page (2007), available at: http://www.cert.org/
(accesed February 2007)

[9] Bagchi, K. and G. Udo, “An Analysis of the Growth
of Computer and Internet Security Breaches”,
Communications of the AIS, 2003. 12(46): p. 684-700.

[10] Gordon, Lawrence A., Loeb, Martin P., Lucyshyn
William and Robert Richardson, CSI/FBI Computer
Crime and Security Survey, 2006, available at:
http://www.gocsi.com/ (accesed February 2007)

[11] Kenneth J. Knapp, Thomas E. Marshall, R. Nelly
Rainer and F. Nelson Ford, “Managerial Dimensions
in Information Security: A Theoretical Model of
Organizational Effectiveness”, research report
prepared for the (ISC)2 Constituency, October 25,
2005, available at:
https://www.isc2.org/download/auburn study2005.pdf
(accesed April 2007)

[12] Wikipedia, CIA triad web page definition (2007),
available at: http://en.wikipedia.org/wiki/CIA triad
(accesed April 2007)

[13] Orlikowski, Wanda J., “CASE Tools as Organizational
Change: Investigating Incremental and Radical
Changes in Systems Development”, Management
Information Systems Quarterly, Vol 17, No. 3,
September, 1993

[14] Khalid Kark, Jonathan Penn, Christine E. Atwood,
and Jennifer Albornoz Mulligan “The State Of
Information Security Spending, Information Security
Spending Trends Downward”, Forrester Research,
Inc., 2006

[15] Bartels, A. and Holmes, B. J. and Lo, H., “Global IT
Spending and Investment Forecast, 2006 to 2007”,
Forrester Research, 2006.

[16] Garg, A., J. Curtis, and H. Halper (2004),
“Quantifying the financial impact of IT security
breaches?” Information Systems Security, 2004. Vol.
11 No. 2, pp. 74-83.

[17] Web application security consortium, main page
(2007), available at:
http://www.webappsec.org/projects/whid/statistics.shtml
(accesed April 2007)

[18] National ICT Security & Emergency Response Centre
(2007), available at:
http://www.niser.org.my/statistics/2006.html
(accesed April 2007)

[19] The Fifth Workshop on the Economics of Information
Security (WEIS 2006): Main Page (2007), available
at: http://weis2006.econinfosec.org/ (accesed
February 2007)

[20] “National Survey on Data Security Breach
Notification”, PGP Research Report Summary,
November 2005, available at: (accesed February 2007)

[21] “2006 Annual Study: Cost of a Data Breach
Understanding Financial Impact, Customer Turnover,
and Preventative Solutions”, PGP Research Study
Summary, October 2006, available at:
http://www.computerworld.com/pdfs/PGP Annual Study PDF.pdf(accesed
February 2007)

[22] Brownlee, N., Guttman, E., “RFC 2350 - Expectations
for Computer Security Incident Response”, June 1998,
available at: http://www.ietf.org/rfc/rfc2350.txt
(accesed February 2007)

[23] TCP/IP Network administration: chapter 12. Network
Security (2007), available at:
http://www.unix.org.ua/orelly/networking/tcpip/ch12 01.htm
(accesed February 2007)

[24] Forum for Incident Response and Security Teams:
Main Page (2007), available at: http://www.first.org/
(accesed February 2007)

[25] Sherri Davido and Bob Mahoney, “Incident Response
and Large Event Handling in the Research
University”, 16th Annual FIRST Conference on
Computer Security Incident Handling, Budapest,
Hungary, June 2004.

[26] Barrett, R. and Haber, E. and Kandogan, E. and
Maglio, P. and Prabaker, M. and Takayama, L., “Field
studies of computer system administrators: Analysis
of system management tools and practices”,
Proceedings of the Conference on Computer
Supported Collaborative Work, 2004.

[27] Andrew G. Kotulica, Jan Guynes Clark, “Why there
aren’t more information security research studies”,
Information & Management 41 (2004) 597607.

[28] Fetterman, David M., “Ethnography, Step by Step”, Ap-
plied Social Research Methods Series, Volume 17, second
edition, 1998.

32

Table 4: Flow of tasks for some security incidents
Incident Sequence of tasks

1 D1 - A1 - A2 - A5 - R2
2 D2 - A1 - R2 or D1 - A1 - A5 - R2
3 D2/D1 - A1 - A4 - A5 - A6 - R2
4 D1 - A2 - A4 - R2
5 D2 - A1 - A7 - R6 or D1 - R6
8. D2 - A1 - A3 - A5 - R1
9. D1 - A4
10. D1 - A2 - A4 - R5
11. D1 - A2 - R5
12. D2 - A1 - A4 - R4

APPENDIX

A. THE WORKPLACE
Most of the participants came from academic organiza-

tions. In terms of IT security, participants described this
environment as particularly challenging for two reasons: de-
centralization of responsibilities and academic freedom.

Regarding decentralization of responsibilities, a partici-
pant recognized that decentralization has its advantages,
but they are at the expense of security: “the decentralized
nature does not help. Decentralization can bring particu-
lar strengths and can bring flexibility and agility in certain
things, but those are often at the expense of security.”

About challenges related to academic freedom, one partic-
ipant stated: “Some of the things that would be best practices
in the security suite of tools we can’t necessarily implement
quite as easily as a private sector organization can, simply
due to the academic freedoms and expectations and needs of
faculty and students. I know that’s an interesting trade off
all the time. You’re constantly trading access versus risk.”
Nevertheless, academic freedom was also considered a posi-
tive attribute in terms of trying new solutions for IT issues:
“I think basically because of the fact that we have that aca-
demic freedom...I think I could be a little more creative here
than I could in another organization, so, for example, I could
have a server of my own set up exactly how I want set up
with all my own tools on it ... without having to make a case
for it, or without having to say everybody is using this shell
and this type of box, I can do whatever I want to do.”

The two interviews from participants that were not from
academic organizations mentioned challenges related to trading-
off security and the business model, and getting privileged
information from internal databases. Nevertheless, this is
preliminary, and it will be developed in the next steps of
the study.

B. TEMPORAL SEQUENCE OF TASKS
Figure 1 shows the relationship in time of the tasks per-

formed during security incidents. Table 4 shows in detail
the sequence of tasks for the incidents described by the par-
ticipants.

C. CONSEQUENCES
One possible consequence of a security incident is the re-

vision of policies: “Other times it’s when security incidents
would arise and we would look to see, is there a policy to
cover this? or we would need to interpret our current policy

in light of an incident, and we find that there either wasn’t
a policy that covered that particular case where there needed
to be.”

Another consequence is that security issues become a first
priority: “They’re most responsive after an incident, not
before. So we generally have a two week period after some-
thing major happens, where you’ve got a two week window
to get some stuff pushed forward as top priority, and then
it’s bottom priority.”

D. TOPICS TO REFINE THE RESULTS

1. Sequence of events followed during a security incident.
Possible question: Could you describe the sequence of
events during the security incidents you have been in-
volved?, How it was detected, analyzed and solved?

2. Roles of people involved in the incident. Possible ques-
tion: Could you detail who was involved in the inci-
dents and which role they played?

3. Decisions they had to make during the incident. Pos-
sible question: Which decisions had to be made dur-
ing security the security incident?, which criteria were
used? there was any standard?

4. Resources. Possible question: Which tools or infrastruc-
ture was necessary to handle the incident?

5. Validation of the information. Possible question: Do
you have a written procedure to handle security in-
cidents?, Would you be willing to be observed when
handling a security incident?

33

Detection Analysis Response

D1. Monitor systems

and Network

D2. Receive

notifications

A1. Verification

A2. Assessment

Generate internal

notifications

Re-Prioritize tasks A5. Interact with

other specialists

A3. Track the source

of the attack

R3. Clean up the

system

R4. Turn-off ports or

services

A7. Evaluate legal

implications

A6. Generate action

plan

R2. Re-initialize

devices

A4. Find out the

source of the problem

R1. Patch/reconfigure

systems

R5. Restoration

R6. Administrative

sanction

Figure 1: Sequence of tasks during security incidents. Thicker arrows represent more common transitions

34

	proceedings_v6.pdf
	proceedings_v5.pdf
	proceedings_v4.pdf
	proceedings_v3.pdf
	proceedings_v2.pdf
	proceedings_v1.pdf
	EECE_512_Mini_conference_proceedings_2007.pdf
	Title Page
	Table of Contents
	Conference Organization
	1. Kartik.pdf
	2. Ranjeet.pdf
	I. INTRODUCTION
	A. Current State of Practice
	II. Client authentication
	A. Object Technology

	III. Revoking the authorization of authorized client
	IV. Secure Ports
	V. File authorization
	VI. Security performance analysis
	VII. Future work
	VIII. Conclusion

	3 . Hafiz.pdf
	4. Jeannette.pdf
	1. Bill.pdf
	2. Johnson.pdf
	3. Rishi.pdf
	4. Wing.pdf
	INTRODUCTION
	Basic SAAM
	Enterprise System
	SAAM Component: Authorization Request
	SAAM Component: Authorization
	SAAM Component: Authorization Process

	SELECTING Sufficient set of authorizations
	BLP SAAM
	RBAC SAAM

	Time Complexity
	Related works
	Conclusion and Future work

	5. Qiang.pdf
	1. Victor.pdf
	INTRODUCTION
	Secure software in commercial sector
	methods and processes
	Team software process (TSP)
	Correctness-by-Construction
	Cleanroom Software Engineering
	Trustworthy Computing Security Development Lifecycle
	summary and conclusions

	2. Kevin Jianwen pi.pdf
	3. Kevin.pdf
	4. Wesam.pdf
	I. INTRODUCTION
	II. Background
	I. XML Signature
	II. XML Encryption
	III. XML Key Management Specification (XKMS)
	1) X-KISS Requests
	B. X-KRSS Requests

	IV. Security Assertion Markup Language (SAML)
	V. Extensible Access Control Markup Language (XACML)
	VI. Related Standards
	VII. Conclusion

	rodrigo_eece512_paper.pdf
	Introduction
	Related work
	Methodology
	Data Sources
	Data Analysis

	Results
	List of Security Incidents
	Tasks
	Resources
	Tools
	Specific knowledge
	Skills
	Strategies

	Discussion
	What to expect from a security incident
	Contrast with RFC2350 standard
	Interdependence
	Better security tools

	Conclusions and future work
	References
	The workplace
	Temporal sequence of tasks
	Consequences
	Topics to refine the results

	eece512_paper_2_todelete.pdf
	Introduction
	Related work
	Methodology
	Data Sources
	Data Analysis

	Results
	List of Security Incidents
	Tasks
	Resources
	Tools
	Specific knowledge
	Skills
	Strategies

	Discussion
	What to expect from a security incident
	Contrast with RFC2350 standard
	Interdependence
	Better security tools

	Conclusions and future work
	References
	The workplace
	Temporal sequence of tasks
	Consequences
	Topics to refine the results

	eece512_paper_2.pdf
	Introduction
	Related work
	Methodology
	Data Sources
	Data Analysis

	Results
	List of Security Incidents
	Tasks
	Resources
	Tools
	Specific knowledge
	Skills
	Strategies

	Discussion
	What to expect from a security incident
	Contrast with RFC2350 standard
	Interdependence
	Better security tools

	Conclusions and future work
	References
	The workplace
	Temporal sequence of tasks
	Consequences
	Topics to refine the results

