
A Framework for Implementing Role-based

Access Control Using CORBA Security Service

Konstantin Beznosov and Yi Deng

fbeznosov,dengg@cs.fiu.edu

Center for Advanced Distributed Systems Engineering

School of Computer Science

Florida International University

October 28, 1999

Overview

� CORBA access control model

� De�nition of CORBA protection state con�guration

� Framework for implementing RBAC models using CORBA Security

Service

� Example con�gurations of CORBA protection state that support RBAC

models

1

Problem Statement

� RBAC is getting popular and recognized by the industry and the

government

{ Implementations of RBAC concepts in: Oracle, NetWare, Java,

DG/UX, object-oriented systems, object-oriented databases, MS

Windows NT, enterprise security management systems.

{ proposed rules on security from the DHHS include RBAC

� Signi�cant �nancial investments in CS in commercial and government

organizations

� It is important to foresee if CS will fully support RBAC models

� No work in the research community that has explored the potential of

CS for support of RBAC reference models

2

Solution Overview

� De�ne a con�guration of CORBA protection system

� Re-de�ne RBAC models in the language of CORBA protection system

� Identify what needs to be implemented for support of RBAC0-RBAC3

besides CORBA security service

� Provide a check-list for users of CORBA Security Service

implementations

3

CS: Control Points

ORB

client application
access decision

Client
Object
Target

request

request

client-side invocation access decision

target application
access decision

target-side invocation access decision

4

CS: User Authentication

User
CreatePrincipal

Authenticator

User
Sponsor

Attributes

Credentials

Authenticate

ORB

Request

Client

5

CS: Access Control Model

6

CORBA Protection State Con�guration

Thirteen-tuple (A, IM, O, R, D, C, RRM, DS, IDM, GRM,

e�ective rights, combine, interface operation):

A { the set of privilege attributes.

IM { the set of operations uniquely identi�ed by interfaces.

O { the set of distinguishable interface instances.

R { the set of rights.

D { the set of access policy domains.

C = fall, anyg { the set of rights combinators.

RRM { required rights matrix: [IM, Rights] �R, [IM, Combinator] 2 C .
7

CORBA Protection State Con�guration (cont'd.)

DS = fi, dg { the set of delegation states.

IDM { the matrix of domain membership for interface instances.

[D, O] �fT,Fg, [d; o] == T =) o 2 d.

GRM { granted rights matrix. [A, D] �R .

e�ective rights: D� 2A �! 2R, a function mapping a set of privilege

attributes in a domain to a set of e�ective rights.

combine: 2D � 2R �! 2R, a function mapping sets of rights for every

domain to a set of e�ective rights.

interface operation: M�O �! IM , a function mapping an operation

name m and an interface instance o into an interface operation.

8

Correspondence between RBAC and CORBASEC

Notations

RBAC CS

Meaning Notation Meaning Notation

Users U Users U

Roles R Attributes of type \role" A

Role r Attribute of type \role" a

Permissions P Rights R

permission p Right r

Sessions S Principals P

Session s Principal p

9

Original RBAC0 De�nition

� U, R, P, and S (users, roles, permissions and sessions respectively)

� PA � P �R, a many-to-many permission to role assignment relation

� UA � U �R, a many-to-many user to role assignment relation

� user : S ! U, a function mapping each session si to the single user

user(si)

� roles : P ! 2R, a function mapping each session si to a set of roles

roles(si) �f r j (user(si), r) 2UAg and session si has the permissionsS
r2roles(si)
f p j (p, r) 2PAg

10

RBAC0 De�nition in the Language of CS

� U, A, R, P (users, attributes of type role, rights, and principals,

respectively)

� PA � R�A, a many-to-many assignment of granted rights to security

attributes of type role relation.

� UA � U�A, a many-to-many user to security attributes of type role

assignment relation

� user : P ! U, a function mapping each principal pi to the single user

user(pi), constant for the principal lifetime, and

� roles : P ! 2A, a function mapping each principal pi to a set of

privilege attributes of type role roles(pi) �f a j (user(pi), a) 2Ag and

principal pi has the granted rights
S

a2roles(pi)
fr j (r, a) 2PAg

11

To Support RBAC0

1. comply with CS standard

2. provide a means to administer UA relation

3. provide a means for users to select through UserSponsor a set of roles

with which they would like to activate the new principal

4. implement PrincipalAuthenticator which creates principal credentials

containing privilege attributes of type role according to relation UA

5. implement PrincipalAuthenticator which creates principal credentials

containing one and only one privilege attribute of type AccessId

12

Original RBAC1 De�nition

� U, R, P, S, PA, UA, and user are unchanged from RBAC0

� RH� R � R is a partial order on R called the role hierarchy or role

dominance relation, also written as �, and

� roles : S ! 2R is modi�ed from RBAC0 to require roles(si) �f r j

(9r0 � r) [(users(si), r
0) 2UA] g (which can change with time) and

session si has the permissions
S

r2roles(si)
f p j (9r00 � r)[(p, r00) 2PA

] g

13

RBAC1 De�nition in CS Language

RBAC1 is RBAC0 with role hierarchies. RBAC1 implemented in CS is

formally de�ned as follows:

� U, A, R, P, PA, UA and user are unchanged from RBAC0.

� RH � A� A is a partial order on R called the role hierarchy, written

as �

� roles : P ! 2A is modi�ed from RBAC0 to require roles(pi) �f a

j (9 a0 � a) [(users(pi), a
0) 2UA]g and principal pi has the granted

rights
S

a2roles(pi)
fr j (9 a00 � a) (r, a00) 2PAg

14

Implementing RBAC1

� roles implemented and enforced by a Principal Authenticator

{ A user provides a set of roles to UserSponsor

� The PrincipalAuthenticator creates new credentials of the principal

{ Credentials have roles requested by the user provided that they

satisfy the de�nition of function roles for RBAC1

� A valid implementation of RBAC1

{ Allows a user to specify any role junior to those the user is a member

of

15

To Support RBAC1

1. Implement RBAC0

2. Provide a means to administration the role hierarchy relation RH

3. Implement PrincipalAuthenticator which creates principal credentials

containing privilege attributes of type role according to relations UA,

RH as well as function roles

16

To Support RBAC2

1. Implement RBAC0, and

2. Implement support of constraints on UA relation user administrator

tools, and

3. Implement PrincipalAuthenticator with support of constraints on

functions user and roles, and

4. Enable enforcement of constraints on PA relation by security

administration tools.

17

RBAC3: RBAC1 + RBAC2+ RH constraints

To support RBAC3:

1. Implement RBAC1

2. Implement RBAC2.

3. Implement possible additional constraints on the role hierarchy.

18

Example Role Hierarchy

Production
Engineer 1
(PE1)

Quality

(QE1)
Engineer 1

Production
Engineer 2
(PE2)

Quality
Engineer 2
(QE2)

Director (DIR)

Project Lead 2 (PL2)Project Lead 1 (PL1)

Employee (E)

Engineering Department (ED)

Engineer 2 (E2)Engineer 1 (E1)

Project 2Project 1

19

Interfaces

20

Hypothetical Access Control Policies

1. Only colleagues can lookup employee experience.

2. Everyone in the engineering department can get a description of and

report problems regarding any project.

3. Engineers working on the projects can make changes and review

changes.

4. Quality engineers can inspect their project quality.

5. Production engineers can create new releases.

6. Project leaders can close problems and add experience to the records

of the employees in the project.

7. The director can manage employees ([un]assign from/to projects and

�re) and close engineering projects.

21

Multiple Domain Solution

Company (C)

Engineering Project 1 (EP1) Engineering Project 2 (EP2)

Engineering Department (ED)

22

Con�guration of a System Protection State

A, O, C, DS, e�ective rights, combine are the same as in the

single domain solution.

IM = fEmployee::get name, Employee::assign to project, Employee::unassign fro

Employee::add experience, Employee::get experience, Employee::�re,

EngineeringProject::inspect quality, EngineeringProject::make changes,

EngineeringProject::report problem, EngineeringProject::review changes,

EngineeringProject::close, EngineeringProject::close problem, EngineeringProject

EngineeringProject::get descriptiong.

R = fgn, atp, ufp, ae, ge, f, mc, rc, iq, rp, cp, cnr, gd, cg.

D = fC, ED, EP1, EP2g

23

Required Rights Matrix (RRM)

Operations Rights

Employee::get name gn

Employee::assign to project atp

Employee::unassign from project ufp

Employee::add experience ae

Employee::get experience ge

Employee::�re f

EngineeringProject::get description gd

EngineeringProject::inspect quality iq

EngineeringProject::make changes mc

EngineeringProject::review changes rc

EngineeringProject::report problem rp

EngineeringProject::close problem cp

EngineeringProject::create new release cnr

EngineeringProject::close c

24

Interface Instance Domain Membership

EP2

ED

qe2

e

C EP1

prj1

e1

pl1
pl2

pe2

ed

dir

e2

prj2

qe1

pe1

25

Interface Instance Domain Membership Matrix (IDM)

Interface Domains

Instance C ED EP1 EP2

e

p

ed

p p

e1

p p p

pe1

p p p

qe1

p p p

pl1

p p p

e2

p p p

pe2

p p p

qe2

p p p

pl2

p p p

dir

p

prj1

p p p

prj2

p p p

26

Granted Rights Matrix (GRM)

Attribute Rights

Domains

C ED EP1 EP2

e gn ge - -

ed - gd, rp - -

e1 - - mc, rc -

pe1 - - cnr -

qe1 - - iq -

pl1 - - cp, ae -

e2 - - - mc, rc

pe2 - - - cnr

qe2 - - - iq

pl2 - - - cp, ae

dir atp, ufp, f, c - - -

27

Conclusions

� Implementations compliant with CS speci�cation can support RBAC0{

RBAC3.

{ Additional functionality non-speci�ed by CS is required.

� RBAC1: Implementations of PrincipalAuthenticator interface and

UserSponsor need to be aware of roles and their hierarchies.

� Support of constraints (RBAC2): a PrincipalAuthenticator has to

enforce corresponding constraints.

� Tools to administer user-to-role and role-to-rights relations are

also required.

� We set up a framework for implementing as well as for assessing

implementations of RBAC models using CS.

{ It provides directions for CS developers to realizing RBAC in their

systems.

{ It gives criteria to users for selecting such CS implementations that

support models from RBAC0-RBAC3 family.

28

