Support for ANSI RBAC in CORBA

Konstantin Beznosov and Wesam Darwish

Laboratory for Education and Research in Secure Systems Engineering
lersse.ece.ubc.ca

Department of Electrical and Computer Engineering

University of British Columbia
Vancouver, Canada

Technical report LERSSE-TR-2007-01*

Revision: #61

Revision Date: 2007/07/26

*This and other LERSSE publications can be found at http://lersse-dl.ece.ubc.ca

http://lersse.ece.ubc.ca
http://lersse-dl.ece.ubc.ca

Abstract

We describe access control mechanisms of the Common Object Request Broker Architec-
ture (CORBA) and define a configuration of the CORBA protection system in more precise
and less ambiguous language than the CORBA Security specification (CORBASec). Using
the configuration definition, we suggest an algorithm that formally specifies the semantics of
authorization decisions in CORBA. We analyze support for the American National Standard
Institute’s (ANSI) specification of Role-Based Access Control (RBAC) components in CORBA
and identify the functionality that needs to be implemented—in addition to compliance with the
CORBASec—in order to support Core, Hierarchical, and Constrained RBAC. We illustrate the
discussion with a single access-policy domain as well as a multi-domain examples of the COR-
BASec protection system configuration. We also analyze support for the functional specification
of ANSI RBAC in CORBA.

Our results indicate that CORBA Security falls short of supporting even Core RBAC. Cus-
tom extensions are necessary in order for implementations compliant with CORBA Security
to support ANST RBAC required or optional components. These results can be interpreted as
either a demonstration of CORBA’s inadequacy in supporting ANSI RBAC, or as a sign of
ANSI RBAC not being sufficiently general. This paper sets up a framework for implementing
and assessing implementations of ANSI RBAC using CORBA Security, provides directions for
CORBA Security implementing ANST RBAC in their systems, and offers criteria to users for se-
lecting these CORBA Security implementations that support required and optional components
of ANSI RBAC.

CONTENTS CONTENTS

Contents
1 Introduction 1
2 Background 2
2.1 Overview of ANSIRBAC 2
2.1.1 Reference Model 3
2.1.2 Functional Specification L oL o 4
2.2 Overview of CORBA Security 5
2.2.1 CORBA 5
2.2.2 Security Subsystem oL 7
3 Related Work 10
4 CORBA Protection State 12
4.1 CORBA Access Control Architecture 12
4.2 Formalization of the Protection State 15
5 Support for ANSI RBAC in CORBA 18
5.1 Reference Model 18
5.1.1 Core RBAC e e 18
5.1.2 Hierarchical RBAC 21
5.1.3 Constrained RBAC 21
5.2 Translating RBAC Policies to CORBA 21
5.3 Examples 23
5.3.1 Single Access-Policy Domain Solution 23
5.3.2 Multiple Access-Policy Domains Solution 26
5.4 Functional Specification oL 29
6 Discussion 33
7 Conclusion 34

ii

1 INTRODUCTION

1 Introduction

The American National Standard Institute’s (ANSI) specification of Role-Based Access Control
(RBAC) [ANS04] is a standard for access control in which permissions are associated with roles
and users are assigned to appropriate roles. A role can represent competency, authority, respon-
sibility or specific duty assignments. A major purpose of RBAC is to facilitate access control
administration and review. RBAC is commonly believed to address the needs of commercial
enterprises better than lattice-based Mandatory Access Control (MAC) [BL75] and owner-based
Discretionary Access Control (DAC) [Lam71] models. Moreover, Osborn et al. [OSM00] show
that an RBAC system can indeed be configured to enforce either a DAC or a MAC policy.
Evidence of RBAC becoming a dominant access control paradigm is the approval of ANSI
RBAC standard in 2004. The ANSI RBAC standard consists of two main parts: (1) the RBAC
Reference Model and (2) the RBAC System and Administrative Functional Specification, each
comprising core, hierarchical, and constraint components.

At the same time as RBAC was introduced and evolving into a mature model ready for stan-
dardization, commercial middleware technologies—such as Common Object Request Broker Ar-
chitecture (CORBA) [OMG99], COM+ [Obe00], and Enterprise Java Beans (EJB) [DYKO01]—
also matured, and distributed enterprise applications became routinely developed using of mid-
dleware. The ability of particular middleware technology to support specific types of access
control policy is an open and practical question, for the following three reasons.

First, different middleware technologies and their subsystems are defined in different forms
and formats. For example, CORBA is specified in the form of open application programming
interfaces (APIs), whereas EJB is defined through APIs as well as the syntax and semantics of the
accompanying eXtensible Markup Language (XML) files used for configuring an EJB container.
COM-+ is defined through an implementation of APIs as well as graphical user interfaces (GUI)
for configuring the behavior of a COM+ server on Windows NT, 2000, 2003, XP, and Vista
operating systems. The variations in the form, terminology, and format of the middleware
definitions and implementations lead to the difficulty of identifying the correspondence among
the security (and other) capabilities of any two middleware technologies as well as the degree to
which they can support a particular access control model.

Second, the capabilities of the middleware security controls are not defined in the language
of any particular access control model. Instead, each middleware provides general access con-
trol mechanisms, which are supposed to be adequate for the majority of cases and scenarios,
and could be configured to support various access control models. As a case in point, Kar-
joth demonstrates how CORBASec can be configured to support lattice-based MAC [Kar00].
Designed to support a variety of policy types as well as large-scale, diverse distributed appli-
cations, the controls seem to be the result of engineering compromises involving, among other
factors, perceived customer requirements, the capabilities of the target run-time environment,
and their expected usage. For example, CORBA access controls are defined in terms of prin-
cipal’s attributes, required rights, and granted rights, whereas EJB controls are defined using
role mappings and role-method permissions. Assessing the capability of middleware controls to
enforce particular types of authorization policies is harder due to the mismatch in terminology
between the published access control models and the languages of the controls.

Third, the security subsystem semantics in commercial middleware is defined imprecisely,
sometimes ambiguously, leaving room for different interpretations. In this paper, we clarify the
semantics of the security subsystem and analyze its ability to support ANSI RBAC for one
particular industrial middleware technology—CORBA.

The contribution of this paper is twofold. First, we define the protection state of the CORBA
access control subsystem—as specified in CORBA Security v.1.8 [OMG02b] (CORBASec for
short)—in a formal language through studying its descriptions and specification. Our definitions
offer a more precise and less ambiguous interpretation of the CORBA access controls and fill in
the gap in the CORBASec specification, which uses only English prose and Interface Definition
Language (IDL) to describe access control in CORBA. The language of the CORBA protection
state enables the analysis of CORBASec on the subject of its support for specific access control

2 BACKGROUND

models.

Second, to demonstrate the utility of the protection state definition and, more importantly,
to aid application developers and owners, we analyze the degree to which CORBA supports
the reference model and functional specification defined by ANSI RBAC [ANS04]. We use
the language of the protection state configuration to analyze CORBASec in relation to its
support for particular ANSI RBAC features, e.g., role hierarchies. Where possible, we show
how the corresponding ANSI RBAC construct can be expressed in the language of the CORBA
protection state or CORBASec operations. In cases where support for a specific ANSI RBAC
feature requires implementation-dependent functionality, we explicitly state what needs to be
implemented by the CORBASec vendors, or enforced by the security administrators. When we
cannot identify the means of supporting an RBAC feature, we state so. We also suggest steps
for translating an arbitrary ANSI RBAC policy into CORBA protection state.

Although there has been no shortage of papers proposing ways of supporting earlier models
of RBAC, e.g., RBAC96 [SCFY96], in operating systems [SGJ98, Fad99, AS01, Sun00, Cha03],
databases [RS98], and distributed systems [GDS97, Bar97, Giu99, FBK99, Ahn00, Gut01,
PSA01, CO02, OF02, ZMO04], to the best of our knowledge, this is the first work that offers de-
tailed analysis of support for both reference model and functional specification of ANSI RBAC
by an industrial technology in general, and a middleware in particular.

The results of our analysis indicate that CORBASec falls short in supporting even functional
Core RBAC due to (1) the lack of a standard mechanism for enumerating all policy objects
in a CORBA deployment, (2) the lack of explicit user representation as well as the notion
of user accounts and support for their management, and (3) the inability to enumerate all
CORBA principals related to a specific user. Custom extensions are necessary in order for
implementations compliant with CORBASec to support ANSI RBAC components. These results
can be interpreted as either a demonstration of the inadequacy of CORBASec in supporting
ANSI RBAC, or as a sign of ANSI RBAC being over-engineered. Examination of support for
ANSI RBAC in other representative systems may clarify this question.

The work presented in this paper establishes a framework for implementing and assessing
implementations of ANSI RBAC using CORBA Security. The results provide directions for
CORBA Security developers supporting ANST RBAC in their systems and offer criteria to users
and application developers for selecting those CORBA Security implementations that support
required and optional components of ANSI RBAC.

The rest of the paper is organized as follows. Section 2 provides background on ANSI
RBAC and CORBA Security. Section 3 discusses related work. Section 4 describes the CORBA
Security access control architecture and formally defines the protection state of a CORBA
system. Section 5 examines the extent to which the CORBASec can support ANSI RBAC model
components, and analyzes the degree to which various CORBASec programming interfaces
can support the functional specification of ANSI RBAC. We discuss results of our analysis in
Section 6. Section 7 concludes the paper.

2 Background

This section provides background on ANSI RBAC and CORBA Security that is necessary for
understanding the rest of the paper. Readers familiar with both can skip directly to Section 3.

2.1 Overview of ANSI RBAC

Role based access control (RBAC) was introduced more than a decade ago [FK92, SCFY96].
Over the years, RBAC has gained a lot of attention as many research papers were written
on topics related to RBAC; and in recent years, vendors of commercial products have started
implementing various RBAC features in their solutions.

The National Institute of Standards and Technology (NIST) initiated a process to develop
a standard for RBAC to achieve a consistent and uniform definition of RBAC features. An

2.1

Overview of ANSI RBAC 2 BACKGROUND

initial draft of a consensus standard for RBAC was proposed in the year 2000 [SFK00]. A
second version was later publicly released in 2001 [FSGT01]. This second version was then
submitted to the InterNational Committee for Information Technology Standards (INCITS),
where further changes were made to the proposed standard. Lastly, INCITS approved the
standard for submittal to the American National Standards Institute (ANSI). The standard
was later approved in 2004 [ANS04]. The ANSI RBAC standard consists of two main parts as
described in the following sections.

2.1.1 Reference Model

The RBAC Reference Model defines sets of basic RBAC elements, relations, and functions that
the standard includes. This model is defined in terms of four major RBAC components as
described in the following sections.

Core RBAC

Core RBAC defines the minimum set of elements required to achieve RBAC functionality. Core
RBAC must be implemented as a minimum in RBAC systems. The other components described
below, which are independent of each other, can be implemented separately.

Core RBAC elements are defined as follows [ANS04, pp.4-5]:

Definition 1 [Core RBAC]

e USERS,ROLES,OPS, and OBS (users, roles, operations, and objects respectively)

e UACUSERS x ROLES, a many-to-many mapping user-to-role assignment relation

o assigned_users(r : ROLES) — 2UVSERS the mapping of role r onto a set of users. For-
mally: assigned_users(r) = {u € USRES|(u,r) € UA}

o PRMS = 2(0PSXOBS) "the set of permissions

e PAC PERMS x ROLES, a many-to-many mapping permission-to-role assignment re-
lation.

e assigned_permissions(r : ROLES) — 2PEMS ' the mapping of role r onto a set of per-
missions. Formally: assigned_permissions(r) = {p € PRMS|(p,r) € PA}

e Op(p: PRMS) — {op C OPS}, the permission to operation mapping, which gives the set
of operations associated with permission p

e Ob(p: PRMS) — {ob C OBS}, the permission to object mapping, which gives the set of
objects associated with permission p

o SESSIONS = the set of sessions

o session_users(s : SESSIONS) — USERS, the mapping of session s onto the corre-
sponding user

e session_roles(s : SESSIONS) — 28OLES " the mapping of session s onto a set of roles.
Formally: session_roles(s;) C {r € ROLES)|(session_users(s;),r) € UA}

o avail_session_perms(s : SESSIONS) — 2PBMS ' the permissions available to a user in

a session = U assigned_permissions(r)
resession_roles(s)

Hierarchical RBAC

This component adds relations to support role hierarchies. Role hierarchy is a partial order
relation that defines seniority between roles, whereby a senior role has at least the permissions
of all of its junior roles, and a junior role is assigned at least all the users of its senior roles. A
senior role is also said to “inherit” the permissions of its junior roles.

The standard defines two types of role hierarchies. These types are shown in Figure 1, and
are defined as follows:

2.1 Overview of ANSI RBAC 2 BACKGROUND

Engineering Manager Engineering Manager
authorized_permissions = {pe, Py, Ps, Pm} authorized_permissions = {Pe, Ps, Pm}
authorized_users = {uy} authorized_users = {uy}

Technical Lead Senior Engineer Technical Lead Senior Engineer
authorized_permissions = {pe, pg authorized_permissions = {pe, pg} authorized_permissions = {pe, pg authorized_permissions = {pe, ps}
authorized_users = {u, Up} authorized_users = {us, Um} authorized_users = {ug authorized_users = {us, Um}

Engineer / Engineer /
authorized_permissions = {pe} authorized_permissions = {pe}
authorized_users = {u,, Uy, Us, Uy} authorized_users = {u,, Uy, Us, Uy}
(a) General role hierarchy (b) Limited role hierarchy

Figure 1: Examples of Hierarchical RBAC

e General Role Hierarchies: provide support for arbitrary partial order relations to serve as
the role hierarchy. This type allows for multiple inheritance of assigned permissions and
users; that is, a role can have any number of ascendants, and any number of descendants

e Limited Role Hierarchies: provide more restricted partial order relations that allow a role
to have any number of ascendants, but only limited to one descendant

In the presence of role hierarchy, the following is defined:

o authorized_users(r) = {u € USERS|r' = r, (u,r’") € UA} is the mapping of role r onto a
set of users

o authorized_permissions(r) = {p € PRMS|r = v/, (p,7’) € PA} is the mapping of role r
onto a set of permissions

where Tsenior = Tjunior indicates that rsepnior inherits all permissions of 7junsor, and all users

of Tgenior are also users of 7junior-

Constrained RBAC

Static Separation of Duty (SSD) relations component defines exclusivity relations among
roles with respect to user assignments. Dynamic Separation of Duty (DSD) Relations
component defines exclusivity relations with respect to roles that are activated as part of a user’s
session.

2.1.2 Functional Specification

For the four components defined in the RBAC reference model, the RBAC System and Ad-
ministrative Functional Specification defines the three categories of various operations that are
required in an RBAC system. These categories are defined as follows.

The category of administrative operations defines operations required for the creation and
maintenance of RBAC element sets and relations. Examples of these operations are listed here.
A complete list of these operations, as well as their formal definition is included in the standard.

e Core RBAC administrative operations include AddUser, DeleteUser, AddRole, DeleteRole,
AssignUser, GrantPermission, and so on

e Hierarchical RBAC administrative operations include AddInheritance, Deletelnheritance,
AddAscendant, and AddDescendant

e SSD Relations administrative operations include CreateSsdSet, AddSsdRoleMember, SetSs-
dSetCardinality, and so forth

2.2

Overview of CORBA Security 2 BACKGROUND

e DSD Relations administrative operations include CreateDsdSet, AddDsdRoleMember, SetDs-
dSetCardinality, and so on

The administrative reviews category defines operations required to perform administrative
queries on the system. Examples of Core RBAC administrative review functions include RolePer-
missions, UserPermissions, SessionRoles, and RoleOperationsOnObjects. Other operations for other
RBAC components can be found in the standard.

The system level functionality category defines operations for creating and managing user
sessions and making access control decisions. Examples of such operations are CreateSession,
DeleteSession, AddActiveRole, and CheckAccess.

2.2 Overview of CORBA Security
2.2.1 CORBA

This section provides a brief and informal overview of CORBA. More information can be found
in the corresponding CORBA specifications. Readers familiar with CORBA are advised to
proceed to Section 2.2.2.

CORBA specifications, including the CORBA Security Service [OMGO02b], define a general-
purpose interface definition language and OS-independent infrastructure for developing and
deploying distributed applications. The distributed computing model that CORBA adheres to
is outlined in the book Object Management Architecture Guide [SS96]. The model and all other
CORBA specifications are developed by the Object Management Group (OMG), a consortium
of software vendor and user organizations. Application systems and the CORBA infrastructure,
including the Security Service, are defined using standard CORBA declarative facilities.

All entities in the CORBA computing model are specified by means of data structures
and interfaces defined in the OMG Interface Definition Language (IDL) [OMGO04]. The IDL
resembles declarative elements of C++ in its syntax and constructs. A CORBA interface is
a collection of three elements: operations, attributes, and exceptions. Interface definitions
can inherit other interfaces to allow for interface evolution and composition. The fragment in
Figure 2 illustrates a definition of an interface in IDL.

The module CompanyEmployee, shown in Figure 2, defines the following elements:

e simple data structure EmployeeName for representing an employee name
e new exception InvalidProject comprised of a textual description
e new type Experiences, which is an alias for a native type unsigned long

e new interface Employee with two read-only attributes, name and id, and the following
operations:

— assign_to_project and unassign_from_project perform steps necessary for assigning/unas-
signing an employee to/from a company’s project. Each might throw an InvalidProject
exception if the provided reference to the Project object (presumably defined in an-
other IDL file project.idl) is invalid.

— add_experience and get_experience add new experience or retrieve existing experience
for an employee.

— fire unassigns the employee from all projects, among other things.

The CORBA standards also define how IDL constructs are translated into various pro-
gramming languages. The OMG standardized multiple language bindings, which means that
CORBA objects—the implementations of the interfaces—can be coded in different programming
languages and yet interoperate with clients and each other. Because of this feature, objects from
different environments residing on different machines with different computing architectures and
different operating systems can be integrated and shared among clients, making CORBA objects
inherently distributable.

2.2 Overview of CORBA Security 2 BACKGROUND

#include <experience.idl >
#include <project.idl >

module CompanyEmployee {
struct EmployeeName {

string family_name;
sequence<string > middle_names;
string given_name;

}

typedef unsigned long Employeeld;
exception InvalidProject { string description; };
interface Employee {

readonly attribute EmployeeName name;
readonly attribute Employeeld id;

void assign_to_project(in Project prj)
raises(InvalidProject);

void unassign_from_project(in Project prj)
raises(InvalidProject);

void add_experience(in Experience new_exp);

Experiences get_experience();
void fire();

Figure 2: Defining a CORBA interface

When CORBA objects are deployed, they reside in OS processes and utilize CORBA mid-
dleware in the form of Object Request Broker (ORB) and object adapters to make their func-
tionality available to the clients as well as to receive and process invocations and to return the
results. Objects can act as clients as well, that is, make invocations on other objects, creating
chains of invocations. Clients and targets may reside in the same or different processes or on
different hosts. A CORBA ORB is responsible for core middleware functions, such as register-
ing, keeping track of, and finding interface implementations, aiding clients in connecting to the
objects, and providing communication transport from a client to a target.

CORBA ORBs communicate with each other, including sending object requests, by
means of a special protocol for inter-ORB communications called Generic Inter-ORB Proto-
col (GIOP) [OMGO04]. Because GIOP is a connection-oriented protocol and requires reliable
service and presentation of communicated data as a byte stream, GIOP messages are delivered
over the Transmission Control Protocol (TCP) in TCP/IP networks. Internet Inter-ORB Pro-
tocol (ITOP) [OMGO04] is a specialization of GIOP for TCP. GIOP messages sent between the
sender and receiver ORBs are translations of request/response interactions between the corre-
sponding CORBA client and server object. From a security point of view, it is important to
note the following about GIOP Request messages:

e To identify an object, the server uses an object key that is opaque to anybody except the
hosting ORB. The client obtains the object key from the object reference. An operation
on an object is identified by a string containing the IDL name of the operation, e.g.,
“assign_to_project”.

e A list of service contexts accompanies all request and reply messages; it is a place for
passing request-related data that different services, such as Transaction and Security, need
to exchange.

2.2

Overview of CORBA Security 2 BACKGROUND

Security service passes all of its data related to a particular request or reply in the form of
service context elements in GIOP Request and Reply messages.

In order for a CORBA object to be accessible to its clients, it needs to have some equivalent
of an address. An address of a CORBA object is presented in the form of an interoperable object
reference (IOR). The ORB that hosts the object, working together with the object adapter, can
create such references using the host IP address, the TCP port number, and other information
essential for locating the object inside the ORB. Obviously, this information is specific to the
TCP communication protocol, because the IP address and port number are part of the address.
The information is also specific to the ORB that created the reference, because the object key
is ORB specific.

Even though in theory, any CORBA client can invoke any CORBA object as long as the client
has a valid IOR for that object, the overwhelming majority of practical scenarios involve clients
and objects from same CORBA deployments, where all entities share the underlying security
technology and often belong to same administrative domain. Such deployments are commonly
limited by intranet boundaries or are subject to pre-established business relationships among
organizations. An example of the latter kind is Parlay [ETS05], a standardized CORBA-based
service for accessing functionality of a telecom network.

From a security perspective, the most interesting part of the IOR is the list of components,
which allows additional information to be attached to the IOR so that it is available when the
client establishes a connection with the server to make object invocations. We discuss several
standard components specifically defined for supporting security in the following section.

2.2.2 Security Subsystem

CORBA Security service [OMGO02b] (CORBASec for short) defines the content of security-
specific GIOP service contexts, IOR components, and, most importantly, interfaces to a col-
lection of objects for enforcing a range of security policies. It provides abstraction from an
underlying security technology so that CORBA-based applications can be independent from the
particular security infrastructure provided by the underlying computing environment.

CORBASec has an extensible model for subject security attributes to enable security run-
time and administration scalability with possibly large numbers of subjects. Another example
of grouping in CORBA security is policy domains, which allow scaling on the number of objects.
Domains are used for most security policies in CORBA. A third grouping mechanism—also
specific to access control—employs required and effective rights to allow scaling on the number
of operations.

Another design goal of CORBASec architecture was to provide totally unobtrusive protection
to applications. Most CORBA objects should be security-unaware, that is, run securely without
any special programming of the application. At the same time, it should be possible for an
object to exercise security policies that are application-specific and/or of finer granularity than
those enforced by CORBASec run-time. Such objects are referred in CORBASec terminology
as security-aware. For the purposes of this paper, we will focus on the means for protecting
security-unaware objects.

The three main parts of CORBASec are client security service (CSS), target security service
(TSS), and secure channel. The secure channel between CSS and TSS is established and man-
aged via service context in the GIOP messages. As described in the previous section, any GIOP
Request/Reply message contains a list of service context elements, which is used by different
services for inserting service-specific information into the stream of communications between
client and server. CORBASec defines a SecurityAttributeService (SAS) data type, which may be
used in GIOP message service context to associate security-specific identity, authorization, and
client authentication contexts with GIOP Request and Reply messages.

Functions performed by CSS and TSS overlap. Both sides include the following functionality:

e Creating and maintaining a secure channel with each other. While doing this, the CSS
and T'SS could authenticate each other if the applications’ policies require them to do so

2.2 Overview of CORBA Security 2 BACKGROUND

Client
Application
| \

|
; N

Message
Credentials
” Policy | .
\ |
Identities o | DPOT‘aIn |
Privileges Code © 'C
Security Subsystem
ORB

Figure 3: Enforcement of policies in CORBA security

e Protecting outgoing and verifying incoming messages according to the message protection
policies (i.e., confidentiality and integrity)

e Performing a security audit of the invocations
e Implementing nonrepudiation policy, if any, on each side

There are, however, some differences between CSS and T'SS. The CORBA CSS provides the
following security functions, in addition to those listed above:

e Obtaining the principal’s credentials by authenticating the user or retrieving credentials
from the session environment if the principal has already been authenticated, and managing
the principal’s credentials created as a result of the authentication

o If necessary, translating the principal’s credentials into those accepted by the TSS, as de-
fined by the Authorization Token Layer Acquisition Service (ATLAS) specification [OMGO02a],
before they are “pushed” to the server.

The CORBA TSS provides the following security functions, in addition to the common ones:

e Authenticating clients and verifying their credentials if they are “pushed,” or obtaining
them if they are “pulled”

e Obtaining credentials used to authenticate the target to clients, usually by retrieving cre-
dentials from the session environment or from secure storage for principals not associated
with people

e Performing an access control check on the requested object and method, based on the
received credentials

Similar to other middleware security technologies, security policies in CORBA are enforced
completely outside of an application system. Everything, including obtaining the information
necessary for making policy decisions, is done before the method invocation is dispatched to the
target object. As Figure 3 shows, the security enforcement code is executed inside a CORBA
security service when a message from a client application to a target object is passed through the
ORB. The CORBASec subsystem intercepts an invocation, determines what policy domain(s)
a target or a client belongs to, and enforces the policies associated with the domain(s). In
the rest of this section, we describe two key CORBASec functions—authentication and security
administration. We describe access control in Section 4.1.

The concept of a user is absent from CORBASec. Instead, CORBASec uses the more generic
and abstract notion of principal. “A principal is a human user or system entity that is registered
in and authentic to the system” [OMGO02b, p.2-3]. It is important for the analysis of RBAC
support in CORBA to note that the notion of a session is indistinguishable from the notion of a

2.2 Overview of CORBA Security

~ _
0 User . Client
Sponsor , Application
i Authenticate I E—
User h SN Credentials Request
Principal :
Authenticator Attributes
~— L
~ \
ORB :

Figure 4: User authentication

principal’s credentials. Thus the same principal might be represented by multiple, and possibly
different, credentials. Just like a session in the ANSI RBAC model, once a Credentials object has
been created, it begins to exist completely independently from other such objects, even those
created to represent the same principal.

To create credentials, a CORBA application uses a UserSponsor to authenticate the principal
to the CORBA Security environment (Figure 4). A UserSponsor is an implementation artifact
that authenticates on behalf of a principal with and obtains authenticated credentials from
a PrincipalAuthenticator. Instances of UserSponsor implement user interfaces specific to the
authentication methods supported by the concrete implementations of CORBASec.

CORBASec does not mandate any particular authentication method; what it does spec-
ify, however, is the interface of a PrincipalAuthenticator. A PrincipalAuthenticator conducts the
actual authentication and creates a Credentials object for a new principal. Based on the au-
thentication data it received from the UserSponsor and on the underlying security technology
(Kerberos [NT94], SESAME [PP95], or any other capable technology) as well as on the rules
it adheres to, PrincipalAuthenticator instantiates the Credentials with various information. The
Client’s ORB associates Credentials object with requests on CORBA objects.

The authenticated security attributes of the principal are part of the information stored
in the Credentials object. Hereafter, we understand attribute to mean security attribute. The
TSS uses these attributes to decide which operations this principal can invoke on the target
object (“target” for short). A variety of privilege attributes may be available, depending on the
access policies. At any given time, the principal may be using only a subset of these permitted
attributes, chosen either by the principal or by using a default set specified for the principal.
There may be limits on the duration these privilege attributes are valid for and controls on where
and when they can be used. These attributes, once established through principal authentication,
are carried from CSS to T'SS in the security-specific service context elements of GIOP messages.

CORBASec administration architecture rests on three constituents—administrative inter-
faces, defined on policy objects, each associated with a policy domain. CORBASec specifies
administrative interfaces for managing most security runtime mechanisms described above, ex-
cept authentication.! As with anything else in CORBA, these interfaces are defined in IDL.
Since the mechanisms for user-account management are beyond CORBASec’s scope, the inter-
faces for administering user-attribute assignment policies are as well. There are several types of
policies; one of them is access control policy.

The policy enforcement code uses three sources of information: (1) the information from the

'For authentication, an administrator can still specify whether a target can be authenticated and/or requires its

clients to authenticate.

2 BACKGROUND

3 RELATED WORK

client’s credentials, (2) the message itself, which specifies the target object and the name of the
method to be invoked, and (3) the policy of the domain to which the target belongs.

Any policy is associated with a policy domain—an abstraction that allows security admin-
istrators to group objects in groups and assign policies to the groups. Domains allow the
application of access control and other policies to security-unaware objects without requiring
changes to their implementations or interfaces. Policy domains are also the means by which
CORBASec runtime and administration mechanisms achieve scalability on the number of ob-
jects in a system. Policies of more than one type (for example, authorization, audit, message
protection) can be associated with the same policy domain.

The policy domain abstraction is represented in CORBASec by DomainManager objects.
Whereas the management of domain membership is implementation dependent, an application
can invoke the get_domain_managers operation on an object reference to obtain a list of the im-
mediately enclosing domain managers for that object. The structure of the domain organization
is determined by the relationships among DomainManagers. Even though an object can belong
to more than one policy domain, CORBASec v1.8 specification states that it “does not require
support for overlapping or hierarchical security policy domains” [OMGO2b, p. F-6]. As a result,
there is no standard semantics for making access control decisions for object belonging to several
domains or for domain hierarchies.

Before describing access control architecture of CORBASec in detail, we review related work.

3 Related Work

Over the past decade, there has been no shortage of papers proposing ways to support RBAC.
The overwhelming majority of this work, however, is about support for RBAC96 [SCFY96],
which defines the reference models for plain, hierarchical, and constrained RBAC but does not
specify the functions to be supported by an RBAC implementation. The paucity of analysis or
proposals for supporting ANSI RBAC is not surprising, given the fact that the standard was
published in 2004. Because of the lack of research on support for ANSI RBAC, and because
of the significant similarities between RBAC96 and ANSI RBAC, we review related work on
supporting or implementing RBAC96 in operating systems, databases, web applications, and
distributed systems, including middleware.

Since the mainstream operating systems, with the exception of Solaris [Sun00], do not pro-
vide direct support for RBAC, researchers and developers have been employing either groups
(e.g., [SGJ98, AS01]) or user accounts (e.g., [Fad99, Cha03]) to simulate roles. This choice de-
termines whether more than one role can be activated in a session. Role hierarchies are either
not supported [Fad99, Sun00] or are simulated by maintaining additional system files with the
role hierarchy and various book-keeping data [SGJ98, ASO1]. No implementations we reviewed
support static SoD. Just one case of dynamic SoD comes as a side effect with those implemen-
tations that simulate roles with user accounts (i.e., [Fad99, Cha03]): the role set in this DSD is
equal to the set of all roles in the system, and the cardinality of the role set is exactly one. In
other words, any session can have only one role activated at any given time; the current role is
deactivated while another role is activated.

We analyzed DB2 [TMO06] and MySQL [MyS07] and updated the analysis of RBAC sup-
port in commercial database management systems (DBMS)—conducted by Ramaswamy and
Sandhu [RS98]—with the latest versions of the corresponding systems. Commercial DBMS con-
tinue to have the most advanced support for RBAC96. Informix Dynamic Server v7.2 [IBMO05],
IBM DB2 [TMO06], Sybase Adaptive Server v11.5 [Syb05], and Oracle Enterprise Server v8.0 [BLLO03]
directly support roles and role hierarchies. Only Oracle and Sybase allow users to have more
than one role activated at any time. On the other hand, Informix also provides limited support
for dynamic SoD, and Sybase features support for both types of SoD.

In RBAC implementations for client-server systems, including Web applications, roles are
either “pushed” from the client to the server in the form of attribute certificates or HTTP
cookies, as in [Gut0l, PSAO01], or “pulled” by the server from a local or remote database, as

10

3 RELATED WORK

in [Bar97, FBK99, PSA01, CO02, ZM04]. The former enables selective activation of roles by
users, and the latter simplifies the implementation of client authentication but activates all of
the assigned roles for the user. However, Web implementation of NIST RBAC [FBK99] has
hybrid design, which allows the user to select the roles to be “pulled” by the server. A num-
ber of implementations use a database, possibly accessible through the Light-weight Directory
Access Protocol (LDAP) [WHK97] front-end, as in [Bar97, Gut0l, PSA01, ZMO04], to store
role and other information. Role hierarchies are only supported by some implementations, us-
ing either manual assignment of permissions of junior roles to senior ones [PSA01], additional
files [Giu99], a database [FBK99] or an LDAP server [CO02, ZM04]. JRBAC-WEB [Giu99] and
RBAC/Web [FBK99] also support both types of SoD.

The work most relevant to ours addresses support for RBAC in middleware. Ahn [Ahn00]
outlines a proposal for enforcing RBAC policies for distributed applications that utilize Mi-
crosoft’s Distributed Component Object Model (DCOM) [Mic96, BK98, Mic98]. His proposal
employs the following elements of Windows NT’s architecture: (1) registry for storing and
maintaining the role hierarchy, and permission-to-role assignment (PA), (2) user groups for
simulating roles and maintaining user-to-role assignment (U A), and (3) a custom-built security
provider that follows the RBAC model to make access control decisions, which are requested
and enforced by the DCOM run-time. Since the support for role hierarchy is indicated but not
explained in [Ahn00], we assume that the Windows NT registry can be used to encode the hier-
archy so that the RBAC security provider can refer to it while making authorization decisions.
Similar to the proposals for RBAC support in operating systems, the use of OS user groups
for simulating roles enables activation of more than one role. Yet, like with the pull model in
client-server systems, all assigned roles are activated, leaving no choice to the user. [Ahn00]
does not indicate support for any kind of SoD, nor does he explain how RBAC policies can be
enforced consistently and automatically in a multi-computer deployment of DCOM-accessible
objects.

RBAC-JaCoWeb [WF99, OF02] utilizes the PoliCap [WASFW'02] policy server to imple-
ment CORBASec specification in a way that supports RBAC. PoliCap holds all data concern-
ing security policies within a CORBASec policy domain, including users, roles, user-to-role
and role-to-permission assignments, role hierarchy relations, and SoD constraints. Most of the
authorization policy enforcement is performed by an RBAC-JaCoWeb CORBA security inter-
ceptor. At the time of the client binding to a CORBA object, the interceptor obtains necessary
data from the PoliCap server and instantiates CORBASec-compliant DomainAccessPolicy and
RequiredRights objects that contain the privilege and control attributes appropriate for the ap-
plication object. When the client makes invocation requests later, the access decisions are then
performed based on the local instances of these objects. Initially, the client security creden-
tials object—created as part of the binding—has no privilege attributes, only Accessld, which
is obtained from the client’s X.509 certificate used in the underlying SSL connection. If the
invocation cannot be authorized with the current set of client privilege attributes, the intercep-
tor “pulls” additional user’s role attributes from the PoliCap server. Only those roles that are
(1) assigned to the user, (2) necessary for the invocation in question to be authorized, and (3)
not in conflict with any DSoD constraints are activated. These role attributes are added to the
client’s credentials and are later re-used on the server for other requests from the same princi-
pal. The extent to which RBAC-JaCoWeb conforms to the CORBASec specification is unclear
from [WF99, OF02]. Nevertheless, RBAC-JaCoWeb serves as an example of implementation-
specific extensions to CORBAsec that enable better support for RBAC advanced features, such
as role hierarchies and SoD, which—as will be seen from the results of our analysis—cannot be
supported without extending a CORBASec implementation with additional operations.

This work builds on the methodology of Beznosov and Deng [BD99]—who analyze support for
RBAC96 in CORBASec—and applies it to the analysis of CORBASec support for ANSI RBAC,
which defines not only reference models but also functional specifications for each of the models.
Furthermore, we extend and correct some of the results of [BD99]. We extend their definition
of the CORBA protection state with the operational definition of the function access_allowed,
demonstrating that the definition of the protection state is sufficient for computing access control

11

4 CORBA PROTECTION STATE

decisions in CORBA. Beznosov and Deng also analyze support for RBACy_3 models in CORBA
and suggest how these models could be implemented. Similarly to our work, their results indicate
that—aside from conforming to the CORBASec specification—additional functionality needs to
be implemented in order to support RBAC96 models in CORBA.

After analyzing the functional specification of ANSI RBAC, we identify three major short-
comings of CORBASec, specifically (1) the lack of a standard mechanism for enumerating all
objects that implement the DomainAccessPolicy interface in a CORBA deployment, (2) the lack
of the notion of user accounts and support for their management, as well as the lack of explicit
user representation, and (3) the inability to enumerate all CORBA principals related to a specific
user. Based on these findings, we conclude, unlike [BD99], that CORBASec is largely inade-
quate for implementing ANST RBAC functions without resorting to vendor-specific extensions
of a CORBAsec implementation.

4 CORBA Protection State

One of the two major contributions of this paper is a formalization of the CORBA protection
state, which is defined in Section 4.2. We explain first the architecture of the access control
mechanisms in CORBA.

4.1 CORBA Access Control Architecture

Due to its general nature, CORBASec is not tailored to any particular access control model.
Instead, it defines a general mechanism that is supposed to be adequate for the majority of cases
and can be configured to support various access control models. For example, implementing
lattice-based mandatory access control (MAC) using CORBASec is shown in [Kar00].

Access control policies in CORBASec are expressed through security attributes of princi-
pals, attributes of objects, and operations implemented by those objects. Because CORBASec
defines an extensible attribute model, it enables access control policies based on roles, groups,
clearance, and any other security-related attributes of the principal. From the access control
model point of view, a Credentials object is nothing but a set of authenticated attributes. An
attribute is a four-tuple (a = {7, o, v,d}) with certain type 7, defining authority «, value v,
and delegation state 0, where 6 € DS = {i,d}. State i indicates an attribute possessed by the
immediate invoker, and d — by the intermediate one (i.e., delegated). Attribute types are par-
titioned into two families: privilege attributes and identity attributes. The family of privilege
attributes enumerates attribute types that identify principal privileges: access id, primary and
secondary groups the principal is a member of, clearance, capabilities, etc. Identity attributes,
if present, provide additional information about the principal: audit id, accounting id, and non-
repudiation id, reflecting the fact that a principal might have various identities used for different
purposes. Principal credentials may contain zero or more attributes of the same family or type.?
An example of security attributes assigned to authenticated principals is provided in Table 1.
The role attribute is one of the standard CORBA attribute types. Due to the extensibility
of the schema for defining security attributes, an implementation of CORBASec can support
attribute types that are not defined by the CORBASec standard. Although the normative part
of CORBASec does not mandate the way attributes are managed, assignment of such attributes
to users is meant to be performed by user administrators.

In the CORBA computational model, all a principal does is to invoke operations on corre-
sponding objects. In order to make a request, one needs to know two things: object reference,
which uniquely identifies an object, and operation name. An operation name is unique for
an interface.®> Thus, any operation is uniquely identified by its name and by the name of the

2This rule applies to all attribute types including accessid, although it is hard to foresee a useful implementation
of CORBASec where a principal would have multiple access identities.

3Interface inheritance in CORBA does not allow inheritance from interfaces with operations of the same name.
This rule resolves the problem of operation name overloading.

12

4.1 CORBA Access Control Architecture 4 CORBA PROTECTION STATE

] Principal | Attributes ‘

y4! ai

D2 az, ae
p3 az, a3
P4 a4, a5

Table 1: An example of security attributes possessed by authenticated principals.

Ope- Required | Combi- Meaning
rations Rights nator
11.m1 1 all Only a principal who is granted right r;

can invoke the operation.

11.M9 71,79 any Any principal who is granted either ry or
ro right can invoke the operation.

12.Mm7 72,73 all Only a principal who is granted both 79
and rg rights can invoke the operation.

19.M9 79,73,7T4 all Only a principal who is granted all o, r3,
r4 rights can invoke the operation.

3.1 r1,72,73,T4 all Only a principal who is granted r1, 72, T3,
and r4 rights can invoke the operation.

Table 2: Required rights matrix.

interface it is defined in. In this paper, we use the notation i.m, to refer to operation (a.k.a.
method) m on interface i. There is a global* set of required rights for each operation defined
by its interface’s required rights mapping.? The required rights set, together with a combinator
(all or any rights), defines what rights a principal has to have in order to invoke the operation.
Table 2 provides an example of required rights for operations on three interfaces, i1, iz, i3. It is
assumed that required rights are defined and that their semantics are precisely documented by
application developers who best know what each operation does. CORBASec Level 2 API de-
fines the operation set_required_rights(operation, interface, rights, rights combinator) for managing
required rights.

Figure 5 is useful for illustrating our discussion. Depending on the access policy (DomainAc-
cessPolicy) enforced in a particular access control policy domain, a principal is granted different
rights (GrantedRights) according to what SecurityAttributes it has. Each DomainAccessPolicy
defines what rights are granted for each security attribute. An example of a mapping between
principal privilege attributes and granted rights is provided in Table 3. Security administrators
are responsible for defining what rights are granted to what security attributes in what dele-
gation state on a domain by domain basis. CORBASec Administrative API defines operations
grant_rights(attribute, rights) (as well as revoke_rights, and replace_rights) for managing rights
granted for an attribute in the scope of a particular policy domain.

4“Global” in the context of required rights means that they are independent of the policy domain in which the
object is located.

5One caveat with respect to required rights relates to interface inheritance. Nothing prevents, say, operation m
on interface i having one set of required rights and another set on interface j, even if ¢ is a subtype of j. There-
fore, determining the most derivative interface of a CORBA object is crucial for computing required rights at the
authorization stage.

5For the sake of brevity, we omit the delegation state qualifier for granted rights. This omission does not change
the correctness of the discussion, as we show below.

13

4.1 CORBA Access Control Architecture

4 CORBA PROTECTION STATE

Right 0.n
Family: ExtensibleFamily

0.n

consists of

consists of

0.n

RequiredRights

based on

according to

1.n

Combinator: RightsCombinator

DomainAccessPolicy

0.1
requires
0.n

Operation |<1

defines

0..n

invokes

Interface
inherits 1

implements

associated with

1

applies to

makes

0..n 1 0..n
Interfacelmplementation I%I SecurityPolicyDomain
0..n 1.n

SecurityAttribute

type: AttributeType
defining_authority: Opaque
value : Opaque

0.n

contains

0 0.n

Credentials

1

0.n

has

Principal
0.1

acts on behalf of

0..n

Client

Figure 5: A model of CORBASec access control architecture in UML notation.

Attri- | Granted Rights
butes Domains
dq \ do

a1 1 T2

a2 - 1

as 2,73 -

a4 T3 71,74

as 1,172,731 72,73,74

ae 76 1

Table 3: Granted rights per attribute

Table 4: Effective rights of principals in

Principal Granted Rights
Domains
dy \ do
P1 1 72
P2 76 1
P3 2,73 1
Pa T1,72,73 T1,72,73,T4

14

each of the two domains.

4.2 Formalization of the Protection State 4 CORBA PROTECTION STATE

Permitted Operations
Principals Domains
d \ ds
P1 il.ml, il.MQ il.mg
P2 — 1., 11.M2
P3 il.mg, iQ.ml il.ml, il.mg
P4 il.ml,il.mg,ig.ml il.ml,il.mg,ig.ml,ig.m27i3.m1

Table 5: Operations that principals from the example can invoke.

Whenever a principal attempts to invoke an operation, its effective rights are computed via
operation AccessPolicy::get_all_effective_rights(...). CORBASec purposely does not define how
the operation combines rights granted through the different privilege attribute entries in Table 3.
The specifiers let CORBASec implementors define the operation’s semantics ([OMGO02b, p. 2-
123]). The simplest implementation of get_all_effective_rights would be when the set of rights
granted to a principal is a union of rights granted to every security attribute possessed by the
principal. For the rest of this paper, we will assume these semantics for the operation. If we
use our example of security attributes assigned to principals p1, p2, ps, and py (Table 1), and
granted rights (Table 3), then Table 4 shows what “effective” rights the principals have in each
domain.

The use of effective rights and policy domains makes the correspondence between the ANSI
RBAC OBS set and CORBA objects nontrivial. Note that the effective rights of the invoking
principal are computed for the object’s policy domain. At the same time, all instances of the
same interface implementation that belong to the same domain are indistinguishable for the
purpose of making access control (and other policy) decisions. That is, a principal has exactly
the same permissions on all objects that implement the same interface(s) and belong to the
same domain. To accommodate this important detail, we defined the ANSI RBAC OBS set as
a cross-product between CORBA interfaces and access policy domains: I x D.

Once the principal’s effective rights are determined, they are compared to the rights required
for the operation. If the match is successful, the request is authorized. Given the required rights
in Table 2 and the rights granted to the principals in Table 4, Table 5 shows what operations
can be invoked by the principals from our example.

4.2 Formalization of the Protection State

In this section, we formalize the semantics of the CORBA access control architecture.
Definition 2 [CORBA privilege attributes] CORBA privilege attributes are A C T X
AUTH xV x DS, where T,AUTH,V,DS are interpreted as follows:

o T = {_Public, Accessld, PrimaryGroupld, Groupld, Role, AttributeSet, Clearance, Capability}
is the set of types.

e AUTH is the set of authorities.
e V is the set of values.
e DS = {i,d} is the set of delegation states.
Definition 3 [CORBA Protection State] A configuration of a CORBA system protection

state is a tuple (I, OPS, IOPS, RIGHTS, RR, D, DOBS, A, GR, get_all_effective_rights)
interpreted as follows:

e [is the set of interfaces.

e OPS is the set of operations on CORBA objects.

15

4.2 Formalization of the Protection State 4 CORBA PROTECTION STATE

o JOPS C I x OPS specifies which operations are defined on which interfaces.

e RIGHTS is the set of rights.

e RR C IOPS x 2RIGHTS {efines rights required for invoking operations on interfaces.
o D is the set of security policy domains.

o Inst is the set of CORBA objects.

e DOBS C Inst x D associates each object with a policy domain.

o A is the set of privilege attributes as specified in Defintion 2.

e GR C Ax(DxRIGHTS) associates an attribute with a domain and a right; (a,d,r) € GR
means that attribute a is granted right r in domain d.

o get_all_effective_rights: D x 24 — 2RIGHTS "y function computing rights that are in effect
for a given set of privilege attributes in a given domain. Although this function uses GR
to obtain rights granted for each attribute, the semantics of combining the granted rights
are implementation-specific.

An implementation of security service compliant with CORBASec is supposed to yield the
same access control decision as that described by Algorithms 1 and 2. Employed by Algorithms 1
and 2, functions get_domain_policy and get_all_effective_rights are defined by CORBASec.

access_allowed(u : 24, m : OPS, 0 : Inst,i: I) — {true, false}
Require: (i,m) € IOPS
1: for all (o,d) € DOBS do

2: {Find an access policy domain.}

3: p < get_domain_policy(d, AccessPolicy)
4: if p# NULL then

5: return is_authorized(u,i,m,d)

6: end if

7: end for

Algorithm 1: Operational definition of function access_allowed. This function
makes the access control decision with regard to principal u accessing operation
m on instance o of interface i.

CORBASec standard is unclear about cases when an object belongs to more than one domain
that has AccessPolicy. To resolve the ambiguity, we chose Algorithm 1 to use first domain of
the object that has AccessPolicy. Because a policy domain might not have AccessPolicy, the
algorithm iterates until it finds a domain that does.

is_authorized(u : 24,i: I,m : OPS,d : D) — {true, false}
er < get_all_effective_rights(d, u)
if 3 (i, m,rr) € RR : rr C er then
return ftrue
else
return false
end if
Algorithm 2: Operational definition of function is_authorized.

We separated authorization logic into two functions. This separation is purely syntactical and
its only purpose is to demonstrate in Section 5.4 to the reader the capability of the CORBASec
to provide an implementation of ANSI RBAC’s CheckAccess in the form of is_authorized. This

16

4.2 Formalization of the Protection State 4 CORBA PROTECTION STATE

Subjects Interfaces
11 ‘ 12 i3
P1 i1.m1
D2 11.Mm1,111M3
D3 1.1, 11.1M2
P4 il.ml,il.mg iz.ml,iQ.mQ ig.ml

Table 6: Access matrix for domain ds

function is the same as access_allowed, except that it makes an authorization decision for a
given domain d and particular operation m on CORBA interface ¢ to be accessed by principal
u. In Algorithm 2, the operation get_all_effective_rights retrieves granted rights and combines
them according to its implementation semantics. Effective rights of the principal in the object’s
domain are checked then against RR. If the match succeeds, then access is granted. Otherwise,
access is denied. An example of an algorithm for get_all_effective_rights that returns a union of
the rights granted per each attribute are shown in Algorithm 3.

get_all_effective rights(d : D,u : 24) — 2RIGHTS
1 er 0

: for all a € u do

for all (a,d,r) € GR do

er <erur

end for
end for

7: return er
Algorithm 3: Operational definition of a sample function get_all_effective_rights
that returns a union of all rights granted to principal v in domain d.

AN

We simplified the semantics of the support for the required rights combinator in the definition
of RR and Algorithm 2. Combinator value “any” is supported via separate elements of RR.
For example, both rights 1 and ro are required for operation i.m, then (i.m,{r1}) € RR and
(i.m,{r2}) € RR. Whereas, combinator value “all” is supported by listing all the required rights
in one element of RR, e.g., (i.m,{r1,r2}).

For each domain, a Lampson’s access matrix [Lam71], such as that one in Table 6, can
be constructed. Three general observations are worth noting regarding an access matrix con-
structed for any CORBASec system. First, subjects cannot be objects, i.e., the CORBA access
control model does not support the concept of operations on principals. It only has the con-
cept of operations on interfaces, which are objects according to the terminology of the access
matrix [Lam71]. Second, since ix.m, = i;.m; <= k=1 Ap = q (i.e., just p = ¢ is not enough
for ix.m, = i;.m,), the semantics of the operations with same names but defined on different
interfaces in a general case might be different. Thus, for each subject s and object o, the con-
tent of cell [s, o] is specific to the object. That is, no operations permitted on one object can be
permitted on another, because operations are semantically different for every interface unless
the interfaces are related through inheritance. Third, since those implementations of the same
interface that are located in the same access policy domain are indistinguishable from the access
control point of view, all such interface implementations are represented by the same object
in the access matrix. This is one of the reasons policy domains are important in the CORBA
access control model.

Before we proceed to our analysis of the support for ANSI RBAC in CORBA, we would like
to note that not all sets from Definition 3 can be enumerated. Particularly, we could not find op-

17

5 SUPPORT FOR ANSI RBAC IN CORBA

erations in CORBA specifications that allow enumerating RIGHTS, Inst, A, D,OPS,I,IOPS
sets. As a consequence, a number of ANSI RBAC functions cannot be supported without re-
sorting to implementation specifics. However, membership in the last three sets can be tested
through the operation get_required_rights specified on the interface RequiredRights.

The lack of standard mechanisms for enumerating all objects (Inst) in a given CORBA
deployment accounted for the inability of CORBASec to support RolePermissions and, con-
sequently, SessionPermissions functions of the ANSI RBAC functional specification. The
implementation of these two functions requires enumeration of effective rights for a given role or
principal. In order to do so, it is necessary to obtain a reference to every object that implements
interface DomainAccessPolicy and to invoke the operation get_all_effective_rights on it.

5 Support for ANSI RBAC in CORBA

Recall that among the four sets of ANSI RBAC features (also referred in the standard as model
components), Core RBAC is the required minimum for any implementation compliant with the
standard. A system supporting Core RBAC must implement functions for administering user
accounts, roles, sessions, objects, operations, and permissions. Hierarchical RBAC has hierar-
chies of roles in addition to everything Core RBAC has. The last two standard’s components,
Static Separation of Duty (SSD) Relations and Dynamic Separation of Duty (DDS) Relations,
define relations among roles with respect to user assignments as well as role activation in user
sessions.

We first examine in Section 5.1 the extent to which a CORBA protection state—as formalized
in Definition 3—can support each of the four ANSI RBAC model components. Second, we
describe in Section 5.2 steps for translating an ANSI RBAC policy into a CORBA protection
state. Then, we illustrate the results of our analysis with two examples in Section 5.3. Finally,
we analyze in Section 5.4 the degree to which the programming interfaces defined in CORBASec
and other related parts of the CORBA specification support the functional specification of ANSI
RBAC. We discuss results of our analysis in Section 6.

5.1 Reference Model

5.1.1 Core RBAC

The five sets of Core RBAC identities are represented in CORBA Security as follows: Users
in RBAC map to user accounts in CORBASec; Roles are represented by a set of privilege
attributes of type role; each RBAC object is a collection of CORBA objects that implement the
same interface(s) and belong to the same access policy domain(s), and are thus indistinguishable
from the point of view of a CORBA protection system; Permissions are operation-object pairs;
RBAC Sessions are equivalent to CORBA principals, which can be reduced for the purpose of
this paper to just sets of security attributes. We do not mention CORBASec access control
domains because, as will be shown in the examples in Section 5.3, ANSI RBAC models can be
supported in CORBA using either a single domain or multiple domains.

The Core RBAC (see Definition 1) in the language of CORBA Security is formally defined
as follows:

Definition 4 [Core RBAC in CORBASec] Core RBAC in the language of CORBA Security
is defined by the CORBA system protection state outlined in Definition 3, as well as the following
additional elements:
o USERS is the set of user accounts.
e ROLES C A roles, which are CORBA privilege attributes of type role.
Formally: ROLES = {ala € ANT(a) = Role}.

e OBS C I x D set of objects distinguishable from the point of view of access control in
CORBA. That is, for any two elements of OBS, there could be a CORBA protection

18

5.1 Reference Model 5 SUPPORT FOR ANSI RBAC IN CORBA

system state in which the same principal p have different access rights on these elements,
even if they both implement the same interface(s). An ANSI RBAC object is mapped into
a tuple (i,d), i.e., a CORBA interface and the access policy domain it is a member of.

e UACUSERS x ROLES, a many-to-many user-account-to-role assignment relation.

o assigned_users(r : ROLES) — 2USEES " the mapping of role r onto a set of user accounts,
as in ANSI RBAC (see Definition 1).

e PRMS C OPS x OBS the set of permissions. A permission can be considered as a
three-tuple (op,i,d), i.e., operation, interface, and domain.

e assigned_permissions(r : ROLES) — 2PEMS " the mapping of role v onto a set of per-
missions. Function assigned_permissions is specified operationally by Algorithm 4.

e Op(p: PRMS) — {op € OPS}, the permission to operation mapping, which gives opera-
tion op associated with permission p.

e Ob(p : PRMS) — {ob € OBS}, the permission to RBAC object mapping, which gives
object ob associated with permission p.

e domain(p: PRMS) — D, the permission to CORBA access policy domain mapping, which
gives the domain associated with the permission. The mapping is used by Algorithm 4.

e interface(p: PRMS) — I, the permission to CORBA interface mapping, which gives the
interface associated with the permission.

e PAC PRMSxROLES, a many-to-many permission-to-role assignment relation, defined
through the function assigned_permissions.

e SESSIONS C 24. RBAC sessions are represented by CORBA principals, which in their
turn can be treated for the purpose of access control as sets of security attributes from A.

o session_users(s : SESSIONS) — USERS, the mapping of a session onto the corre-
sponding user account.

o session_roles(s : SESSIONS) — 2ROLES “the mapping of a session onto a set of roles.
Formally: session_roles(s;) C {r € ROLES)|(session_users(s;),r) € UA}.

o avail_session_perms(s : SESSIONS) — 2PRMS " the permissions available to a session

= U r € assigned_permissions(r).
resession_roles(s)

assigned_permissions(r : ROLES) — {p € 2PFEMS)

1: AP « () {Initialize the set of assigned permissions to return}
2: for all p € PRMS do
3: i« interface(p)

4 m < Op(p)

5. d <= domain(p)

6: if is_authorized({r},?,m, d) then
7 AP «— APUp

8: end if

9: end for

10: return AP
Algorithm 4: Operational definition of function assigned_permissions, which
determines permissions assigned to a given role in a CORBA system.

Definition 4 specifies all elements of Core RBAC. The elements PRM .S, Op, and Ob require
further elaboration. The definition of PRM S in ANSI RBAC (Definition 1) allows each per-
mission to comprise multiple operation-object pairs. A CORBA permission, on the other hand,

19

5.1

Reference Model 5 SUPPORT FOR ANSI RBAC IN CORBA

consists of only one such pair, which can be considered as a more restricted case of ANSI RBAC
PRMS, i.e., OPS x OBS C 20P5xOBS The ranges of functions Op and Ob are elements, not
subsets, of OPS and OBS, respectively. Given that an element of a set also comprises a subset
of the set, ANSI RBAC versions of Op and Ob functions can be substituted by their counter-
parts from Definition 4. Thus, PRM S, Op, and Ob from Definition 4 can be used instead of
the corresponding elements in Definition 1.

In the rest of this section, we explain how elements of Definition 4 are or can be sup-
ported by CORBASec. Because the notion of user accounts is missing from CORBASec,
the set USERS, relation UA, and functions assigned_users and session_users have to be
implementation-dependant. The enumeration of elements from SESSIONS, which we have
defined as a set of CORBA principals (Definition 4), was found to be not supported by CORBA
specifications either. However, CORBASec’s SecurityLevell.Current interface does define the op-
eration get_attributes, which returns a list of security attributes of the principal responsible for
the current invocation. For the purposes of our analysis, the returned list of security attributes
was sufficient to represent the current principal and therefore the current session.

An implementation of function session_roles is straightforward because an ANSI RBAC
session is a principal in CORBA, and a principal is a set of security attributes, each of a
particular type. Thus, all session_roles needs to do is to return those principal’s attributes
whose type is role.

As we explained at the end of Section 4.2, the CORBA specification does not define oper-
ations sufficient for enumerating all CORBA objects in a given CORBA deployment. An affir-
mative answer is necessary in order to enumerate the elements of the PRM S set, on which our
operational definition of the assigned_permissions function depends (specifically, line 3). Thus,
the functionality necessary for enumerating the PRM S set would have to be implementation-
dependent.

The interfaces and data structures defined by CORBASec enable, however, the construction
of individual elements of set PRMS. To demonstrate, consider data used for making access
control decisions in CORBA. For any given request on a CORBA object, the CORBA security
subsystem intercepts the request and invokes access_allowed (Algorithm 1) with the following
parameters: subject’s credentials, object’s reference, the operation to be invoked, and the name
of the interface on which the operation is defined. In its turn, access_allowed obtains the access
policy domain that object o is a member of, before invoking is_authorized (defined by Algo-
rithm 2). Thus, at the time when is_authorized is invoked, all data necessary for constructing
a corresponding permission, as specified in Definition 4, are available to the CORBASec sub-
system.

Due to the structure of permission, (op,i,d), valid implementations of the functions Op,
Ob, domain, as well as inter face, could just return the corresponding parts of the permission
argument. For example, Ob needs to return the (i, d) tuple.

The function avail_session_perms is operationally defined by Algorithm 5. Also, see the
caveat about the related function SessionRoles in Section 5.4.

avail_session_perms(s : SESSIONS) — {p € 2PEMSY

1: AP « () {Initialize the set of available permissions to return}

2: for all r € s do

3: AP «— AP U assigned_permissions(r)

4: end for

5: return AP
Algorithm 5: Operational definition of the function avail_session_perms, which
determines permissions available to a given session.

As can be seen from the above analysis of Definition 4, most elements of ANSI Core RBAC
can be provided by any implementation compliant with CORBA Security Main Functionality

20

5.2

Translating RBAC Policies to CORBA 5 SUPPORT FOR ANSI RBAC IN CORBA

Level 2. However, support for user-specific elements of the Core RBAC, as well as for enumer-
ating such sets as SESSIONS and PRM .S, must be implementation-specific.

5.1.2 Hierarchical RBAC

In order to implement ANSI RBAC role hierarchies, a system—in addition to Core RBAC—has
to provide support for modifying and reviewing a partial-order relation on roles, RH, and, more
importantly, the functions authorized_users and authorized_permissions that are defined on
RH. Specifications of all three are reproduced in Section 2.1.1. CORBASec does not provide
direct support for RH and the two functions. A CORBASec implementation, however, can
emulate the support for role hierarchies—either general or limited—in three different ways.

First, PrincipalAuthenticator can be implemented to activate not only those roles that can be
activated through direct user-to-role assignment but also the roles junior to those activated. For
example if ¥’ = r, and 7’ has been activated, then r is also activated. Proposals by [SGJ98, AS01]
follow a similar path. In this case, the RH logic can be encapsulated into PrincipalAuthenticator,
whereas the target security service (TSS) and other CORBASec components provide no special
support for role hierarchies. A valid implementation of Hierarchical RBAC using PrincipalAu-
thenticator could be one (a) that allows a user to specify any role junior to those the user is a
member of; and (b) in which PrincipalAuthenticator activates the specified role(s) as well as all
roles junior to the specified one(s).

The second choice is to shift support for role hierarchies to the TSS. Specifically,
get_all_effective_rights would be required to return not only effective rights for the activated
roles, but also for all roles junior to the activated ones, as in [Giu99]. Using the above
example, a call to the modified version of get_all_effective_rights(d, {r'}), would be equiva-
lent to get_all_effective_rights(d, {r’,r}). This option requires maintenance of RH and run-
time access to it by the TSS. Since in CORBASec, the credentials of the principal are
always “pushed” from the client to the server, we found no opportunity to support Hi-
erarchical RBAC by adding role attributes to the client’s credentials by TSS, as propos-
als [Bar97, FBK99, Ahn00, PSA01, CO02, ZM04] do.

The third option is to modify the administrative tools—similarly to [PSA01]—to ensure that
the CORBASec rights that are granted to every role include the rights this role inherits from the
junior roles. No special run-time support for role hierarchies would then be needed. However,
this option requires not only maintaining RH but also keeping track of the reason(s) a right was
assigned to a role, i.e., because of direct assignment or through inheritance from a particular
role. Such assignment details would be necessary in order to perform right revocation and RH
administration properly.

No matter which of the three options is selected, support for RH, authorized_users, and
authorized_permissions would be implementation-specific.

5.1.3 Constrained RBAC

The Constrained RBAC component of ANSI RBAC [ANS04] introduces static and dynamic
separation of duty relations to the RBAC reference model. In essence, SSD constrains user-
to-role assignment (UA set and assigned_users function) and the role hierarchy (RH set and
authorized_users function). DSD, on the other hand, constrains the role activation (SESSIONS
set and session_roles function). Since user accounts, role hierarchies, and role activation are
beyond the scope of CORBASec, the Constrained RBAC component, if supported, would have
to be implementation-dependant.

5.2 Translating RBAC Policies to CORBA

An interesting and practical question is the translation of an arbitrary ANSI RBAC policy into
a CORBA protection state. The key elements of an RBAC policy are the user-to-role and
permission-to-role assignment (PA) relations. Given that the management of user accounts and

21

5.3

Examples 5 SUPPORT FOR ANSI RBAC IN CORBA

their security attributes is beyond the scope of CORBA standards, the question boils down to
the PA relation. In this section, we describe a simple sequence of steps that allows a given PA
defined in ANSI RBAC terms to translate into the required and granted rights assignments and
the assignment of CORBA objects to policy domains.

1. Split each of the compound RBAC permissions into “atomic” ones so that each permission
comprises only one object-operation pair.

2. Associate every RBAC “atomic” permission with a CORBA object and an operation on
that object. Unless otherwise stated, we refer in the following steps to CORBA objects
and operations on them.

3. For every object, create a separate access policy domain and assign that object to its
domain.

4. For every interface and its operations that are implemented by the objects, create rights,
one per interface-operation pair. Make each right a required right for the pair’s operation.

5. For every RBAC permission-to-role assignment relationship from PA, grant the corre-
sponding right to the role in the policy domain of the permission’s object.

The main advantage of the above approach is the straightforwardness of the initial transla-
tion and the simplicity of future incremental modifications to the policy. Granting/revoking a
permission to/from a role requires adding/removing an association between a right and a role in
the object’s domain in the GR relation. Adding/removing an object results in creation/deletion
of a policy domain (and possibly several rights, if the object implements a unique interface). The
main disadvantage of this approach is the proliferation of rights and domains. The above steps
result in the creation of as many rights as the number of unique interface-operation pairs and
as many access policy domains as interface instances. Optimizations of this approach to policy
translation, although conceivable, are not discussed further due to space limitations. Another
complementary question—which could be a subject of future research—is how to determine if
a given CORBA protection state enforces a given ANSI RBAC policy.

5.3 Examples

To illustrate the results of our analysis of the ANSI RBAC reference model support in CORBA
systems, we show how a CORBA-based distributed system could be configured to protect access
to the implementations of CORBA interfaces shown in Figure 7 according to the policies listed
in Figure 8 and the general role hierarchy example shown in Figure 6. For the purposes of the
example, we suppose that the get_all_effective_rights function returns a union of granted rights
per attribute. We first show a single-domain solution, and then provide a solution that employs
several domains to illustrate the benefit of CORBASec policy domains.

5.3.1 Single Access-Policy Domain Solution

In order to implement the role hierarchy in CORBASec without using access policy domains, we
introduce two new interfaces, EngineeringProjectl and EngineeringProject2, shown in Figure 9.
The following configuration of a system protection state could be used:
o [= {Employee, EngineeringProjectl, EngineeringProject2}.

e OPS = {get_name, assign_to_project, unassign_from_project, add_experience,
get_experience, fire, inspect_quality, make_changes, report_problem,
review_changes, close, close_problem, create_new_release, get_description}.

e JOPS={

We do not use any implementations of the interface EngineeringProject. Only derived
interfaces are used.

22

5.3 Examples 5 SUPPORT FOR ANSI RBAC IN CORBA

Director (DIR)

Project Lead 1 (PL1) Project Lead 2 (PL2)

N N
_ - I - _ - N .
Production Quality Production Quality
Engineer 1 Engineer 1 Engineer 2 Engineer 2
(PE1) (QE1) (PE2) (QE2)
~_ - ~ -
~ ~ ~ ~
~ ~ ~
~_ ~_
Engineer 1 (E1) Engineer 2 (E2)
Project 1 ~_ Project 2

Engineering Department (ED)

Employee (E)

Figure 6: An example role hierarchy (from [SP98])

<< interface >>
EngineeringProject << interface >>
+ make_changes() Employee
+ review_changes() + get_name()
+ inspect_quality() + assign_to_project()
+ report_problem() + unassign_from_project()
+ close_problem() + report_problem()
+ create_new_release() || + add_experience()
+ get_description() + get_experience()
+ close() + fire()
(a) EngineeringProject (b) Employee

Figure 7: Interfaces protected in the example

23

5.3 Examples 5 SUPPORT FOR ANSI RBAC IN CORBA

1. Anyone in the organization can look up an employee’s name.

2. Everyone in the engineering department can get a description of and report problems regard-
ing any project and look up experience of any employee.

3. Engineers, assigned to projects, can make changes and review changes related to their projects.

4. Quality engineers, in addition to being granted engineers’ rights, can inspect the quality of
projects they are assigned to.

5. Production engineers, in addition to possessing engineers’ rights, can create new releases.

6. The project lead, in addition to possessing the rights granted to production and quality
engineers, can also close problems.

7. The director, in addition to being granted the rights of project leads, can manage employees
(assign them to projects, un-assign them from projects, look up experience, add new records

to their experience, and fire them) and close engineering projects.

Figure 8: Sample authorization policy for the example shown in Figure 6 describes what actions
are allowed. All other actions are denied.

<< interface >>
EngineeringProject
+ make_changes()
+ review_changes()
+ inspect_quality()
+ report_problem()
+ close_problem()
+ create_new_release()
+ get_description()

+ close()
<< interface >> << interface >>
EngineeringProject1 EngineeringProject2

Figure 9: EngineeringProject interface hierarchy

24

5.3 Examples 5 SUPPORT FOR ANSI RBAC IN CORBA

Employee.get_name, Employee.assign_to_project,
Employee.unassign_from_project, Employee.add _experience,
Employee.get_experience, Employee.fire,
EngineeringProject1.inspect_quality, EngineeringProject1.make_changes,
EngineeringProject1.report_problem, EngineeringProjectl.review_changes,
EngineeringProject1.close, EngineeringProject1.close_problem,
EngineeringProjectl.create_new_release, EngineeringProjectl.get_description,
EngineeringProject2.inspect_quality, EngineeringProject2.make_changes,
EngineeringProject2.report_problem, EngineeringProject2.review_changes,
EngineeringProject2.close, EngineeringProject2.close_problem,

EngineeringProject2.create_new_release, EngineeringProject2.get_description

}.

e RIGHTS = {gn,atp,ufp,ae, ge, f,mcl,rcl iql,rpl, cpl, cnrl, gdl, cl, me2,rc2,iq2, rp2,
cp2,enr2, gd2,c2}. We used the first letters of each operation to create a corresponding
right.

e RR is shown in Table 7.

e D={C}

o Inst = {EE7 Eed7 Eeh Ee27 Epeh Ep627 quh qu27 Eplh Epl27 Edir7 EPp’l"jlu E-Pprj2}-

e DOBS : Object E'P,;1 is an instance of EngineeringProjectl, and E P, ;2 is an instance
of EngineeringProject2. All other elements of Inst are instances of interface Employee.

o A={e ed el, e2 pel,pe2,qgel, ge2, pll, pl2,dir}. All these attributes have type Role.
e GR is shown in Table 8.

o get_all_effective_rights(d : D,u : 24) = U {r|(a,d,r) € GR}—union of granted rights per
Vacu
attribute.

The CORBA protection system configuration described above allows enforcement of the
sample policies listed in Figure 8. For example, a lead of project 1 with role pll activated
is able to invoke the operations get_name and get_experience on all implementations of the
interface Employee as well as all but close operations on all implementations of the interface
EngineeringProject1.

The extension of the CORBA protection state to support the ANSI Core RBAC reference
model system for this scenario is straightforward. For example, PRM S is almost the same set
as IOPS, except that the domain part of each tuple has value d1. We assume that Hierarchical
RBAC support is implemented in the PrincipalAuthenticator, which activates specified role(s) as
well as all roles junior to the specified one(s). No separation of duty constraints are necessary
to enforce policies for this example (Figure 8).

Observe that significant administrative overhead is associated with the configuration of the
CORBA protection system in this solution. The overhead is due to the gratuitous use of a
separate interface (EngineeringProject(1,2)) per project. This is because we purposely limited our
solution to a single-access policy domain. We show in the following section how the unnecessary
redundancy of protection system configuration data could be eliminated by employing several
access policy domains.

5.3.2 Multiple Access-Policy Domains Solution

Once we have an access policy domain per project, we can go back to using one EngineeringProject
interface for all projects. We chose to use three domains, as shown in Table 9. The following
configuration of a system protection state could be used to implement the policies listed in
Figure 8:

25

5.3 Examples 5 SUPPORT FOR ANSI RBAC IN CORBA

’ Operation Right
Employee.get_name gn
Employee.assign_to_project atp
Employee.unassign_from_project ufp
Employee.add _experience ae
Employee.get_experience ge
Employee.fire f
EngineeringProjectl.get_description gdl
EngineeringProjectl.inspect_quality iql
EngineeringProjectl.make_changes mcl
EngineeringProjectl.review_changes rcl
EngineeringProject1.report_problem rpl
EngineeringProject1.close_problem cpl
EngineeringProjectl.create_new_release | cnrl
EngineeringProject1.close cl
EngineeringProject2.get_description gd2
EngineeringProject2.inspect_quality iq2
EngineeringProject2.make_changes mc2
EngineeringProject2.review_changes rc2
EngineeringProject2.report_problem rp2
EngineeringProject2.close_problem cp2

EngineeringProject2.create_new_release | cnr2

EngineeringProject2.close c2

Table 7: Required rights for the solution with single domain

Privilege Attribute Rights
e gn
ed ge, gd1, gd2, rpl, rp2
el mcl, rcl
pel cnrl
qel iql
pll cpl
e2 mc2, rc2
pe2 cnrl
qe2 iql
pl2 cpl
dir atp, ufp, ge, ae, f, cl, c2

Table 8: Granted rights matrix for the solution with single domain

26

5.3 Examples 5 SUPPORT FOR ANSI RBAC IN CORBA

Interface Domains
Instance EP | EP,

&
wa

Epll
EPprjl
Ee?
EpeQ
quZ
Epl2
EPper

=
L

L

Table 9: Interface instance domain membership matrix (IDM) for multi-domain solution

o A OPS, get_all ef fective_rights, is the same as in the single-domain solution

o [= {Employee, EngineeringProject}.

IOPS ={

Employee.get_name, Employee.assign_to_project,
Employee.unassign_from_project, Employee.add _experience,
Employee.get_experience, Employee.fire,
EngineeringProject.inspect_quality, EngineeringProject.make_changes,
EngineeringProject.report_problem, EngineeringProject.review_changes,
EngineeringProject.close, EngineeringProject.close_problem,

EngineeringProject.create_new _release, EngineeringProject.get_description

}.

e RIGHTS = {gn,atp,ufp,ae, ge, f,me,rec,iq,rp,cp, cnr, gd, c}

e RRisshown in Table 10. It is the same as in Table 7 except one interface EngineeringProject
is used instead of two identical interfaces with different names.

° D:{C7 E.Pl, EPQ}

e Inst is the same as in in the single-domain solution except that EP,.;; and EP,, o im-
plement the EngineeringProject interface.

e DOBS is shown in Table 9.
e GR is shown in Table 11.

The CORBA protection system configuration described above allows enforcement of the
same policies as the configuration in the solution for a single domain. This time, there is no
need to have either separate EngineeringProject(1,2) interfaces or redundant rights per project.
In addition, RR (Table 10) is more compact and therefore might be more comprehensible for
administrators.

The use of separate domain per engineering project is responsible for the ability to support
more flexible policies. For example, the GR in Table 11, in addition to the sample policies

27

5.3 Examples 5 SUPPORT FOR ANSI RBAC IN CORBA

Operations Rights
Employee.get_name gn
Employee.assign_to_project atp
Employee.unassign_from_project ufp
Employee.add_experience ae
Employee.get_experience ge
Employee.fire f
EngineeringProject.get_description gd
EngineeringProject.inspect_quality iq
EngineeringProject.make_changes mc
EngineeringProject.review_changes re
EngineeringProject.report_problem rp
EngineeringProject.close_problem cp
EngineeringProject.create_new _release cnr
EngineeringProject.close c

Table 10: Required rights matrix for multi-domain solution

Role Domains
Attribute C \ EP \ EP,
e gn gn gn
ed gd, rp, ge | gd, rp, ge
el mc, Ic
qel iq
pel cnr
pll cp, ae
e2 mec, rc
qe2 iq
pe2 cnr
pl2 cp, ae
. atp, ufp, ge | atp, ufp atp, ufp
dir
ae, f, ¢ f, c f, c

Table 11: Granted rights for multi-domain solution

28

5.4

Functional Specification 5 SUPPORT FOR ANSI RBAC IN CORBA

described earlier, supports a policy that allows project leads to add experience (right ae) to the
records of the employees working under the supervision of the leaders. In order to enable it,
whenever an employee is assigned to a project the corresponding Employee object is moved to
the project’s access-policy domain. This ability, however, comes at the price of allowing project
leads to add experience to their own records, violating the separation of duty principle. It is
also possible to enforce finer-grain policy, where employees of the engineering department can
look up the experience of their colleagues from the same department only.

The extension of the CORBA protection state to support the ANSI Core RBAC reference
model system is more interesting in the multi-domain scenario. Derived from the CORBA pro-
tection state, Table 12 depicts OBS (columns 2-3), PRMS (columns 1-3), and the assignment
of permissions to roles (PA). The table serves also as an example of Lampson’s access ma-
trix [Lam71] for a CORBA system, where roles are Lampson’s domains and permissions are
objects.

Having analyzed the support for the reference model of the ANST RBAC in CORBA, we move
on to presenting results of our analysis with regard to the support of ANSI RBAC functions.

5.4 Functional Specification

This section reports on the the results of our analysis of CORBASec support for system and ad-
ministrative functional specifications of ANSI RBAC. We examined each ANSI RBAC function
defined in Section 6 of [ANS04] on the subject of its support by a CORBASec implementation
conforming to Security Functionality Level 2. That is, we did not assume any CORBASec
functionality other than that required for Level 2 conformance [OMGO02b, p.374]. Particular
implementations of CORBASec might provide additional functionality, and, as a result, support
more ANSI RBAC functions. Examining support for ANSI RBAC on an implementation-by-
implementation basis was, however, beyond the scope of this paper.

Results of our examination suggest that the CORBASec functionality, as defined through the
data structures and interfaces in Version 1.8, is largely insufficient for implementing ANSI RBAC
functions. Specifically, Hierarchical and Constrained RBAC functions cannot be supported
without extending an implementation beyond what CORBASec defines.

Even for Core RBAC, we found that most functions cannot be supported as is, as the sum-
mary of our analysis in Table 13 indicates. Because the CORBASec specification is not concerned
with the administrative and run-time management of user accounts, user attributes, and prin-
cipals (which are sessions in RBAC terms), the following functions prescribed for Core RBAC
implementations cannot be supported without implementation-specific extensions: AddU ser,
DeleteUser, AssignUser, DeassignUser, AddRole, DeleteRole. The rest of this section dis-
cusses implementation of the other Core RBAC functions using CORBASec and its application
programming interfaces (APIs), and identifies the functionality necessary for supporting these
functions that is missing from CORBASec.

GrantPermission, RevokePermission functions enable changes to the permission assign-
ment (PA) set. The CORBASec operations set_required_rights, grant_rights, revoke_rights,
and replace_rights (described in Section 4.1) allow modifications to RR and GR, and there-
fore PA, leading us to conclude that these CORBASec operations are sufficient for im-
plementing GrantPermission and RevokePermission functions. As an illustration, in
Algorithm 6 we provide an operational definition of the function GrantPermission, using
CORBASec API. RevokePermission can be defined likewise, except that more care needs
to be exercised in making sure that granted rights are revoked in all domains associated
with the given permission.

CreateSession function creates a given session with a given user account as the owner. COR-
BASec utilizes the notion of the PrincipalAuthenticator—described in Section 4.1—whose
functionality is expected to encompass the authentication of the CORBA principal, and
create the principal’s credentials, the equivalent of the ANSI RBAC session. Thus, even
though CORBASec does not define an operation for creating sessions, a functional im-

29

5.4 Functional Specification 5 SUPPORT FOR ANSI RBAC IN CORBA

Permissions Roles
Operations

o
o
—.
]
Q
[l
wn

Interface

ed
el
pel
qel
pll
e2
pe2
qe2
pl2
dir

<l e

get_name
assign_to_project
unassign_from_project
add_experience
get_experience

fire

get_name Vv
assign_to_project
unassign_from_project
add_experience
get_experience

fire

get_name v
assign_to_project
unassign_from_project
add_experience
get_experience

fire

get_description
inspect_quality
make_changes
review_changes
report_problem
close_problem
create_new_release
close

Employee
Q

EP

Employee

EP,

Employee

SN OSSO A OSSOSO

EP

<

EngineeringProject

get_description
inspect_quality
make_changes
review_changes
report_problem
close_problem
create_new_release
close

EP.

<

EngineeringProject

Vv

Table 12: RBAC objects (OBS), permissions (PRM S), and the assignment of roles to permissions
(PA) for the multi-domain case.

plementation of CORBASec would either rely on the underlying security infrastructure
or implement an equivalent of CreateSession utilized by PrincipalAuthenticator. Since
the notion of user accounts is missing from CORBA, this function cannot be completely
supported without an implementation-specific extension.

DeleteSession function deletes a given session with a given user account as the owner. Even
though CORBASec’s Credentials interface defines the operation destroy, this and other
operations on Credentials can be invoked only within the operating system process where
the Credentials object resides. Another limitation stems from the fact that there can be
multiple copies of the same Credentials object, making their complete deletion difficult
to implement; the CORBA specification does not provide a means for enumerating all
copies of a given Credentials object. For the above reasons, and because the notion of user

30

5.4 Functional Specification 5 SUPPORT FOR ANSI RBAC IN CORBA

Core RBAC Functions Functionality that
needs to be defined to
support this function

Completely supported in CORBASec
enumeration of access policy domains
retrieving attributes of a given principal

attribute to credential translation

user management
user representation
attribute management
credentials deletion

Administrative Commands
AddUser
DeleteUser
AssignUser
DeassignUser
AddRole
DeleteRole
GrantPermission Vv
RevokePermission Vv

Y=

<

Supporting System Functions
CreateSession
DeleteSession
AddActiveRole
DropActiveRole
CheckAccess Vv

Review Functions

NN
<_

AssignedUsers
AssignedRoles

<

Advanced Review Functions
RolePermissions

SessionPermissions
UserPermissions V4
SessionRoles Vv
RoleOperationsOnObject Vv
UserOperationsOnObject N4

R

Table 13: Functions defined by ANSI Core RBAC and their support in CORBA

accounts is missing from CORBA, we concluded that DeleteSession would have to be
implementation-specific.

AddActiveRole, DropActiveRole functions add/delete a role as an active role of a ses-
sion whose owner is a given user account. Even though CORBASec does not define
a function with semantics compatible to AddActiveRole/DropActiveRole according to
Liskov’s substitution principle [LW94], it does specify the set_attributes operation on the
SecurityLevel2.Credentials interface, enabling a privileged caller to modify attributes on
a credential associated with a particular principal. However, the logic for checking the

31

5.4 Functional Specification 5 SUPPORT FOR ANSI RBAC IN CORBA

GrantPermission(rbacObject, operation,role : NAME)

permission «— (operation, rbacObject)
inter face < inter face(permission)
(rights, combinator) «— get_require_rights(inter face, operation)
if combinator is “any” then
R < any right from rights
else
R «— rights {Combinator is “all”}
end if
Select any access-policy domain d from domains(permission)
grant_rights(d, role, R)

—
e

Algorithm 6: Operational definition of the function GrantPermission, which
grants a role the permission to perform an operation on an ANSI RBAC object.

preconditions session € user_sessions(user) and (user — role) € UA would have to be
implementation-specific due to the lack of standardized support for user-account manage-
ment in CORBA deployments.

CheckAccess returns a Boolean value indicating whether the subject of a given session is
allowed, or not, to perform a given operation on a given object. This function is equivalent
to is_authorized, which is defined by Algorithm 2.

AssignedUsers, AssignedRoles return the set of users/roles assigned to a given role/user,
respectively. Both functions require the notion of user, which is missing from CORBASec,
making these functions implementation-specific.

RolePermissions, SessionPermissions return the set of permissions (op, obj) granted to a
given role or session, respectively. Implementations of these functions would require query-
ing each instance of the DomainAccessPolicy interface in the given CORBA deployment in
order to determine the content of the role’s row in the granted rights matrix (see Tables 3
and 11). However, due to the lack of standard mechanisms for enumerating all objects
in a CORBA deployment in general and all DomainAccessPolicy objects in particular, the
querying would have to be implementation-specific.

UserPermissions returns the permissions a given user gets through his/her assigned roles.
This function would be implementation-specific due to the lack of both standard mecha-
nisms for enumerating all access-policy domains and a standardized support for managing
user accounts.

SessionRoles returns the active roles associated with a session. This function is partially sup-
ported by the CORBASec. Any compliant implementation of CORBASec must implement
the Current.get_attributes operation, which allows retrieving security attributes of a specific
type (e.g., role) for the principal associated with the current execution thread. However,
the standard does not define an operation for retrieving attributes for an arbitrary principal
or associating it with the current execution thread.

RoleOperationsOnObject returns the set of operations a given role is permitted to perform
on a given RBAC object. Unlike the case of RolePermissions, support for this function does
not require enumerating all DomainAccessPolicy objects. A reference of the corresponding
CORBA object in question is sufficient for employing the AccessDecision.access_allowed
operation for determining if a given role is allowed to invoke a particular operation on a
given object. In order to determine the rights of a given role on all operations of the RBAC
object, the CORBA Reflection facility [OMGO6] can be used for enumerating operations
implemented by the object. CORBASec, however, does not define operations for creating
a valid credential—a required format of the input parameter for access_allowed—out of

32

6 DISCUSSION

a security attribute (e.g., particular role). Therefore, the translation would have to be
implementation-specific.

UserOperationsOnObject returns the set of operations a given user is permitted to perform
on a given RBAC object. This function would be implementation-specific due to the lack
of a standardized notion of user.

6 Discussion

The results of our analysis suggest that the CORBASec functionality—as defined through the
data structures and interfaces in Version 1.8—is largely inadequate for implementing ANSI
RBAC functions without resorting to vendor-specific extensions of the CORBAsec implementa-
tion. Even in the case of Core RBAC alone—the mandatory part of any compliant implemen-
tation of ANST RBAC—there are three major causes of this inadequacy.

One is the lack of a standard mechanism for enumerating all objects that implement the
DomainAccessPolicy interface in a CORBA deployment, which is necessary for enumerating all
permissions granted to the corresponding user/principal/role. This limitation is due to the
lack of support for enumerating all CORBA objects in a deployment. CORBA was originally
positioned as a generic middleware architecture scalable to Internet-wide deployments [Sie00]—
where partial failures that are hard to detect and recover from are endemic—of potentially
massive numbers of fine-grained. Such objects would range from intermittent (e.g., shopping
cart for an online store customer) to long-lived and persistent (e.g., Parlay [ETS05]). Thus, its
design intentionally avoids requirements for maintaining a view of the global state of a CORBA
deployment—a prerequisite for a standardized capability to enumerate (and therefore regis-
ter) all objects, or just all instances of DomainAccessPolicy. Although maintaining a view of
the global state of an Internet-wide deployment for any application is clearly unfeasible, the
reality is that CORBA deployments enjoy small-to-moderate scale [Hen06], are confined by en-
terprise boundaries—with the notable exception of Parlay—and commonly feature only course-
grained [YD96], persistent objects. It seems reasonable to expect a standardized capability for
enumerating all instances of the DomainAccessPolicy interface given that recent results demon-
strate the feasibility of distributed lock [Bur06], table [CDG'06], and hash table [ZHS*04] data
structures capable of holding tens of thousands of records and serving similar-sized populations
of active clients. Such a capability might be featured , for example, only in enterprise-scale
deployments of CORBA.

However, even with scalable data structures, strict consistency among multiple views of the
system’s global state is commonly believed to be essentially impossible [TS01], leaving only
weaker consistency models to choose from. The semantics of the weaker models, however, varies
widely, from data-centric linearizability [HW90]—which requires a globally available clock with
finite precision—to client-centric eventual consistency [TS01]—which guarantees that all views
eventually become consistent, but only if no updates take place for a long time. The choice
of the acceptable consistency model(s) has to be explicit in ANSI RBAC in order for it to be
applicable to those distributed systems where the protection state is distributed, as is the case
with CORBA.

Another caveat is that other commercial-grade distributed technologies—e.g., COM+ [Obe00],
EJB [DYKO01], Grid [JBFT05], Web Services, and the HTTP-based Web—also lack a standard-
ized capability for enumerating all resources (or just resources of a particular type) in a deploy-
ment. If most mainstream distributed technologies do not define this capability, is the reliance of
ANSI RBAC on it realistic? Can the ANSI RBAC standard be revised to avoid the assumption
that it is possible to enumerate all resources (and therefore permissions) in a system?

The second major limitation of CORBASec is its lack of the notion of user accounts and
support for their management (i.e., adding, deleting, (un)assigning to/from roles), as well as the
lack of user representation. According to our analysis, which is summarized in Table 13, this
limitation results in over one-half of Core RBAC functions being dependent on vendor-specific
extensions. The architects of CORBASec intentionally left the notion of user and support for

33

7 CONCLUSION

user management beyond the scope of the specification. The abstraction of PrincipalAuthenticator
serves as an implementation-specific and technology-specific bridge between CORBASec run-
time, which is concerned with principal credentials, and users, on behalf of which CORBA clients
invoke operations on objects. PrincipalAuthenticator also performs user authentication and, if
successful, activates roles at run-time. In order to provide standard support for administering
and reviewing user accounts, their roles and their sessions, the corresponding administrative
interfaces would need to be added to CORBASec. However, such a revision would be contrary
to the emerging state of practice for application systems.

The notable trend in IT systems design is to re-allocate functionality for administering user
accounts, and in some cases permissions, to single sign-on (SSO) [PMO03] solutions for new ap-
plications [Got05] and to identity management (IDM) solutions for existing applications [BS03].
As a result, user accounts, and sometimes permissions, are administered across multiple appli-
cation instances and types “outside” of the applications themselves. Therefore, an application
system can only be successfully evaluated for compliance with ANSI RBAC when the applica-
tion is considered together with the corresponding SSO or IDM solution. This condition makes
evaluation of support for ANSI RBAC prohibitively expensive for systems designed to work in
conjunction with multiple SSO or IDM solutions, as the evaluation would have to be performed
for every combination of the system and the supporting SSO and/or IDM. Defining a separate
ANSI RBAC profile for SSO and IDM solutions is a possible alternative to explore further.

Even if CORBASec supported user accounts and their management, the inability to enumer-
ate all CORBA principals related to a specific user (e.g., those with the same value of the auditld
or accessld CORBASec attributes) would still prevent CORBASec from providing complete sup-
port for such Core RBAC functions as AddUser, CreateSession, DeleteSession, AddActiveRole,
DropActiveRole. All of their definitions use the helper function user_sessions, which can only
be implemented if a CORBA deployment keeps track of all principals—CORBASec surrogates
of sessions—for every user. However, principal tracking is prohibitively expensive for CORBA,
and we believe for other distributed systems, as well, due to the need for maintaining a view of
the global state in the presence of partial failures. Thus, we echo the suggestion made by Li et
al. [LBBO6] to remove the notion of sessions from Core RBAC and introduce it in a separate,
optional ANSI RBAC component.

Results of our analysis discussed in Sections 5.1.2 and 5.1.3 indicate that most functions for
Hierarchical and Constrained RBAC options of the ANSI RBAC standard cannot be supported
without extending a CORBASec implementation with additional operations. Even though there
are at least three options for supporting role hierarchies, additional operations would have to be
added to CORBASec in order to provide standard support for modification and review of the
role hierarchy and for the functions authorized_users and authorized_permissions. Since support
for Constrained RBAC is contingent on the support for user accounts, role hierarchies, and role
activation, the standardization of support for these three in CORBASec is a prerequisite for
standardization of Constrained RBAC in CORBASec.

In summary, while generic and versatile, the access control architecture of CORBASec does
not define standard functionality for enumerating all DomainAccessPolicy objects in a deployment
and all sessions for a given user. It also lacks the notion of user accounts and their run-time
representation, as well as support for their management. These are three major roadblocks on
the path of CORBASec conforming to ANSI RBAC. Our results are not conclusive, however,
as to whether this mismatch between CORBASec and ANSI RBAC is exclusively due to the
shortcomings of the former or also involves the failure the latter to be sufficiently general.

7 Conclusion
Understanding middleware access control mechanisms is critical for protecting the resources of
enterprise applications. In this paper, we described in detail the architecture of access control

mechanisms in CORBA Security and defined a configuration of the CORBA protection system
in precise and unambiguous terms of set theory. Using the configuration definition, we suggested

34

REFERENCES REFERENCES

an algorithm that formally specifies the semantics of authorization decisions in CORBASec.

We analyzed CORBASec in relation to its support for ANSI RBAC components and dis-
cussed what functionality needs to be implemented, besides compliance with the CORBASec
standard, in order to support Core and Hierarchical RBAC. We suggested steps for translating
an arbitrary ANSI RBAC policy into CORBA protection state. We illustrated our discussion
with a single access-policy domain and a multi-domain examples of the CORBASec protection
system configuration, which supports a sample role hierarchy and access policies. Finally, we
analyzed CORBASec support for the functional specification of ANST RBAC.

The results indicate that CORBASec falls short of supporting even functional Core RBAC
due to (1) the lack of a standard mechanism for enumerating all DomainAccessPolicy objects in
a CORBA deployment, (2) the lack of explicit user representation as well as the notion of user
accounts and support for their management, and (3) the inability to enumerate all CORBA
principals related to a specific user. Custom extensions are necessary in order for implemen-
tations compliant with CORBASec to support ANSI RBAC required or optional components.
These results can be interpreted as either a demonstration of the inadequacy of CORBASec
in supporting ANSI RBAC, or as an indication of ANSI RBAC not being sufficiently general.
Examination of other representative systems on the subject of their support for ANSI RBAC
may clarify this question.

The work presented in this paper establishes a framework for implementing as well as for
assessing implementations of ANST RBAC using CORBA Security. The results provide direc-
tions for CORBA Security developers implementing ANSI RBAC in their systems, and offer
criteria to users for selecting such CORBA Security implementations that support required and
optional components of ANSI RBAC.

Acknowledgments

Philippe Kruchten and Matei Ripeanu provided helpful feedback on the early versions of this
paper, and Craig Wilson helped us to improve its readability. Special thanks to Jason Crampton
whose very valuable suggestions and detailed comments on the paper drafts were instrumental
in improving it.

References

[Ahn00] Gail-Joon Ahn. Role-based access control in DCOM. Journal of Systems Archi-
tecture, 46(13):1175-1184, 2000.

[ANSO04] ANSI. ANSI INCITS 359-2004 for Role Based Access Control. American Na-
tional Standards Institute, 2004.

[ASO01] Gail-Joon Ahn and Ravi Sandhu. Decentralized user group assignment in Win-
dows NT. The Journal of Systems and Software, 56(1):39-49, 2001.

[Bar97] Larry S. Bartz. hyperDRIVE: leveraging LDAP to implement RBAC on the web.

In RBAC ’97: Proceedings of the Second ACM Workshop on Role-based Access
Control, pages 69-74, New York, NY, USA, 1997. ACM Press.

[BD99] Konstantin Beznosov and Yi Deng. A framework for implementing role-based
access control using CORBA security service. In Fourth ACM Workshop on
Role-Based Access Control, pages 19-30, Fairfax, Virginia, USA, 1999.

[BK9g] Nat Brown and Charlie Kindel. Distributed component object model proto-
col (DCOM/1.0). Technical Report draft-brown-dcom-v1-spec-03.txt, Microsoft
Corporation, January 1998.

[BL75] D. E. Bell and L. J. LaPadula. Secure computer systems: Unified exposition and
multics interpretation. Technical Report ESD-TR-75-306, MITRE, March 1975.

35

REFERENCES REFERENCES

[BLLO3] Ruth Baylis, Paul Lane, and Diana Lorentz. Oracle(©) database administrator’s
guide, December 2003. 10g Release 1 (10.1).

[BS03] D.A. Buell and R. Sandhu. Identity management. IEEE Internet Computing,
7(6):26-28, Nov.-Dec. 2003.

[Bur06] Mike Burrows. The Chubby lock service for loosely-coupled distributed systems.

In Proceedings of the Seventh Symposium on Operating System Design and Im-
plementation, pages 335-350, Seattle, WA, USA, November 6-8 2006.

[CDGT06] Fay Chang, Jeffrey Dean, Sanjay Ghemawat, Wilson C. Hsieh, Deborah A. Wal-
lach, Mike Burrows, Tushar Chandra, Andrew Fikes, and Robert E. Gruber.
Bigtable: A distributed storage system for structured data. In The 7th USENIX
Symposium on Operating Systems Design and Implementation (OSDI06), pages
205218, Seattle, WA, USA, November 6-8 2006.

[Cha03] Thomas M. Chalfant. Role based access control and secure shell - a
closer look at two solaris™operating environment security features. Sun
BluePrints™ OnLine, June 2003.

(CO02] David W. Chadwick and Alexander Otenko. The PERMIS X.509 role based priv-
ilege management infrastructure. In SACMAT ’02: Proceedings of the Seventh

ACM Symposium on Access Control Models and Technologies, pages 135-140,
New York, NY, USA, 2002. ACM Press.

[DYKO1] Linda G. DeMichiel, L. Umit Yal¢inalp, and Sanjeev Krishnan. Enterprise Jav-
aBeans Specification, Version 2.0. Sun Microsystems, 2001.

[ETS05] ETSI. Open Service Access (OSA) - Application Programming Interface (API)
- Part 1: Overview, v1.1.1 edition, 2005. pp. 61.

[Fad99] Glenn Faden. RBAC in UNIX administration. In RBAC ’99: Proceedings of

the fourth ACM workshop on Role-based access control, pages 95-101, New York,
NY, USA, 1999. ACM Press.

[FBK99] David F. Ferraiolo, John F. Barkley, and D. Richard Kuhn. A role-based ac-
cess control model and reference implementation within a corporate intranet.
ACM Transactions on Information and System Security (TISSEC), 2(1):34-64,
February 1999.

[FK92] D. Ferraiolo and R. Kuhn. Role-based access controls. In 15th NIST-NCSC
National Computer Security Conference, pages 554-563, Baltimore, MD, USA,
1992. National Institute of Standards and Technology /National Computer Secu-
rity Center.

[FSGT01] David F. Ferraiolo, Ravi Sandhu, Serban Gavrila, D. Richard Kuhn, and Ra-
maswamy Chandramouli. Proposed NIST standard for role-based access control.
ACM Transactions on Information and System Security, 4(3):224-274, 2001.

[GDS97] Mats Gustafsson, Benoit Deligny, and Nahid Shahmehri. Using NFS to imple-
ment role-based access control. In WET-ICE °97: Proceedings of the 6th Work-
shop on Enabling Technologies on Infrastructure for Collaborative Enterprises,
pages 299-304, Washington, DC, USA, 1997. IEEE Computer Society.

[Giu99] Luigi Giuri. Role-based access control on the Web using Java. In RBAC ’99:
Proceedings of the Fourth ACM Workshop on Role-based Access Control, pages
11-18, New York, NY, USA, 1999. ACM Press.

[Got05] G. Goth. Identity management, access specs are rolling along. IEEE Internet
Computing, 9(1):9-11, Jan.-Feb. 2005.

[Gut01] Kurt Gutzmann. Access control and session management in the HTTP environ-
ment. IEEFE Internet Computing, 5(1):26-35, 2001.

[Hen06] Michi Henning. The rise and fall of CORBA. ACM Queue, 4(5):28-34, June
2006.

36

REFERENCES REFERENCES

[HW90] Maurice P. Herlihy and Jeannette M. Wing. Linearizability: a correctness condi-
tion for concurrent objects. ACM Transactions on Programming Languages and
Systems, 12(3):463-492, 1990.

[IBMO5] IBM. IBM informix dynamic server administrator’s guide, December 2005. In-
formix Dynamic Server 10.0; Document ID: G251-2267-02.

[JBFTO5] Bart Jacob, Michael Brown, Kentaro Fukui, and Nihar Trivedi. Introduction to
Grid Computing. IBM Press, 2005.

[Kar00] Gunter Karjoth. Authorization in CORBA security. Journal of Computer Secu-
rity, 8(2/3):89-108, 2000.

[Lam71] Butler W. Lampson. Protection. In 5th Princeton Conference on Information
Sciences and Systems, page 437, New York, NY, USA, 1971. ACM Press.

[LBBO6] Ninghui Li, Ji-Won Byun, and Elisa Bertino. A critique of the ansi standard on
role based access control. CERIAS and Department of Computer Science, March
3 2006.

[LW94] Barbara H. Liskov and Jeannette M. Wing. A behavioral notion of subtyping.

ACM Transactions on Programming Languages and Systems, 16(6):1811-1841,
November 1994.

[Mic96] Microsoft. Dcom technical overview, 1996.

[Mic98] Microsoft. Dcom architecture, 1998.

[MySO07] MySQL AB. MySQL. http://www.mysql.com, 2007.

[NT94] B. Clifford Neuman and Theodore Ts’o. Kerberos: an authentication service for
computer networks. IEEE Communications Magazine, 32(9):33-38, 1994.

[Obe00] Robert J. Oberg. Understanding & programming COM+: a practical guide to
Windows 2000 DNA. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2000.

[OF02] Rafael R. Obelheiro and Joni S. Fraga. Role-based access control for CORBA

distributed object systems. In WORDS ’02: Proceedings of the The Seventh
IEEFE International Workshop on Object-Oriented Real-Time Dependable Sys-
tems (WORDS 2002), page 53, Washington, DC, USA, 2002. IEEE Computer

Society.
[OMG98] OMG. CORBAservices: Common object services specification, 1998.
[OMG99] OMG. The common object request broker: Architecture and specification. Spec-

ification formal/99-10-08, Object Management Group, 1999.

[OMGO02a] OMG. Authorization Token Layer Acquisition Service (ATLAS) Specification.
The Object Management Group (OMG), October 2002.

[OMGO02b)] OMG. CORBAservices: Common object services specification, security service
specification v1.8, 2002.

[OMGO04] OMG. Common object request broker architecture: Core specification v3.0.3,
2004.

[OMGO6] OMG. CORBA Reflection v.1.0. OMG document# formal/06-05-03, May 2006.

[OSMO0] Sylvia Osborn, Ravi Sandhu, and Qamar Munawer. Configuring role-based access

control to enforce mandatory and discretionary access control policies. ACM
Transactions on Information and System Security (TISSEC), 3(2):85-106, 2000.

[PMO3] Andreas Pashalidis and Chris J. Mitchell. A taxonomy of single sign-on systems.
In Information Security and Privacy, 8th Australasian Conference, ACISP 2003,
Wollongong, Australia, volume 2727 of Lecture Notes in Computer Science, pages
249-264. Springer, July 9-11 2003.

[PP95] Tom Parker and Denis Pinkas. Sesame v4 - overview. Technical report, SESAME,
December 1995.

37

REFERENCES REFERENCES

[PSAO01] Joon S. Park, Ravi Sandhu, and Gail-Joon Ahn. Role-based access control on
the web. ACM Transactions on Information and System Security (TISSEC),
4(1):37-71, February 2001.

[RS98] C. Ramaswamy and R. Sandhu. Role-based access control features in commercial
database management systems. In Proc. 21st NIST-NCSC National Information
Systems Security Conference, pages 503-511, Arlington, VA, USA, 1998. National
Institute of Standards and Technology/National Computer Security Center.

[SCFY96] Ravi Sandhu, Edward Coyne, Hal Feinstein, and Charles Youman. Role-based
access control models. IEEE Computer, 29(2):38-47, 1996.

[SFKO00] R. Sandhu, D. Ferraiolo, and R. Kuhn. The NIST model for role-based access
control: Towards a unified standard. In ACM Workshop on Role-Based Access
Control, Berlin, Germany, 2000. ACM.

[SGJ9g] R. Sandhu and Ahn. G-J. Decentralized group hierarchies in UNIX: An ex-
periment and lessons learned. In Proc. 21st NIST-NCSC National Information
Systems Security Conference, pages 486-502, Arlington, Virginia, USA, 1998.
National Institute of Standards and Technology/National Computer Security

Center.

[Sie00] Jon Siegel. CORBA 38 Fundamentals and Programming. John Wiley & Sons,
2000.

[SP98] Ravi Sandhu and Joon S. Park. Decentralized user-role assignment for web-

based intranets. In the Third ACM Workshop on Role-Based Access Control,
pages 1-12, Fairfax, Virginia, USA, 1998. ACM Press.

[SS96] Richard Mark Soley and Christopher M. Stone. Object Management Architecture
Guide. John Wiley & Sons, 492 Old Connecticut Path, Framingham, MA 01701
USA, 3 edition, 1996.

[Sun00] Sun Microsystems Inc. RBAC in the Solaris™ operating environment.
http://www.sun.com/software/whitepapers/wp-rbac/wp-rbac.pdf, 2000. White
Paper.

[Syb05] Sybase Inc. System administration guide: Volume 1 — Adaptive Server (©) En-
terprise 15.0, October 2005. Document ID: DC31654-01-1500-02.

[TMO6] Samantha Tran and Manoj Mohan. Security in-
formation management challenges and solutions.

http://www.ibm.com/developerworks/db2/library/techarticle/dm-
0607tran/index.html, 2006.

[TS01] Andrew S. Tanenbaum and Maarten Van Steen. Distributed Systems: Principles
and Paradigms. Prentice Hall PTR, Upper Saddle River, NJ, USA, 2001.

[WdASFW102] C. M. Westphall, Joni da Silva Fraga, M. S. Wangham, R. R. Obelheiro, and
Lau Cheuk Lung. PoliCap—proposal, development and evaluation of a policy
service and capabilities for CORBA Security. In SEC ’02: Proceedings of the
IFIP TC11 17th International Conference on Information Security, pages 263—
274, Deventer, The Netherlands, The Netherlands, 2002. Kluwer, B.V.

[WF99] C. Westphall and J. Fraga. A large-scale system authorization scheme proposal
integrating Java, CORBA and web security models and a discretionary proto-
type, December 1999. IEEE Latin American Network Operations and Manage-
ment Symposium (LANOMS’99), Rio de Janeiro, Brazil.

[WHKO97] M. Wahl, T. Howes, and S. Kille. RFC 2251: Lightweight directory access pro-
tocol (v3), 1997.
[YD96] Zhonghua Yang and Keith Duddy. CORBA: a platform for distributed object

computing. SIGOPS Oper. Syst. Rev., 30(2):4-31, 1996.

38

REFERENCES REFERENCES

[ZHST04] B.Y. Zhao, Ling Huang, J. Stribling, S.C. Rhea, A.D. Joseph, and J.D. Kubia-
towicz. Tapestry: a resilient global-scale overlay for service deployment. IFEFE
Journal on Selected Areas in Communications, 22(1):41-53, January 2004.

[ZM04] Wei Zhou and Christoph Meinel. Implement role based access control with at-
tribute certificates. In The 6th International Conference on Advanced Communi-
cation Technology (ICACT2004), volume 1, pages 536-541, Korea, Feb 2004. Na-
tional Computerization Agency, Electronics and Telecommunications Research
Institute, Korea.

39

	Introduction
	Background
	Overview of ANSI RBAC
	Reference Model
	Functional Specification

	Overview of CORBA Security
	CORBA
	Security Subsystem

	Related Work
	CORBA Protection State
	CORBA Access Control Architecture
	Formalization of the Protection State

	Support for ANSI RBAC in CORBA
	Reference Model
	Core RBAC
	Hierarchical RBAC
	Constrained RBAC

	Translating RBAC Policies to CORBA
	Examples
	Single Access-Policy Domain Solution
	Multiple Access-Policy Domains Solution

	Functional Specification

	Discussion
	Conclusion

