

Secondary and Approximate Authorizations to Improve Access Control Systems

Konstantin (Kosta) Beznosov

Laboratory for Education and Research in Secure Systems Engineering

lersse.ece.ubc.ca

Department of Electrical and Computer Engineering

Who's Konstantin Beznosov

- Education
 - M.S. (1997) & Ph.D. (2000) in CS, Florida International University
 - B.S. in Physics (1993), Novosibirsk State University
- Experience
 - Assistant Prof., Electr. and Comp. Egn., UBC (2003-present)
 - founded and directs
 Laboratory for Education and Research in Secure Systems Engineering (LERSSE)
 - US industry (1997-2003): end-user, consulting, and software vendor organizations
- Contributed to
 - OMG
 - CORBA Security revisions
 - Resource Access Decision
 - Security Domain Membership Management
 - OASIS
 - eXtensible Access Control Markup Language (XACML) v1.0

THE UNIVERSITY OF BRITISH COLUMBIA

the problem

departing assumptions

- processor resources virtually free
- commodity computing most cost-effective
- network bandwidth virtually unlimited
- human time/attention expensive

target environments

target environments

how enterprise authorization systems work

request-response paradigm

PEP-PDP decoupling: pros and cons

9Kosta Beznosov

(lersse.ece.ubc.ca)

secondary and approximate authorizations

problem summary

point-to-point authorization architectures at massive scale

- become too fragile
 - require costly human attention
 - jeopardize organizational goals
- fail to reduce latency
 - security-related performance overhead is high

existing remedies

- caching -- "precise recycling"
 - + improves performance & availability
 - + simple, inexpensive
 - serves only returning requests
- fault-tolerance solutions
 - + improve availability
 - require specialized specialized OS/middleware
 - poorly scale on large populations

outline

- junk authorizations for massive-scale enterprise services (JAMES)
- active recycling of authorizations
 - SAAM
 - SAAM_{BLP}
 - CSAR
- overview of other projects

THE UNIVERSITY OF BRITISH COLUMBIA

a solution

approach: junk authorizations for massive-scale enterprise services

(JAMES)

addressing the problem **PEP** PEP PEP PEP PEF **PDP** authorization requests PE authorization responses **PDP** PEP publish-subscribe active recycling speculative precomputing **PDP** 15Kosta Beznosov (lersse.ece.ubc.ca) secondary and approximate authorizations

active recycling of authorizations

technical contributions on recycling

- <u>secondary and approximate</u>
 <u>authorizations model (SAAM)</u>
 - concept and model for inferring new authorizations from previous
- 2. BLP-specific SAAM algorithms (SAAM_{BLP})
- 3. architecture for cooperative secondary authorizations recycling (CSAR)

secondary and approximate authorization model

(SAAM)

intuition when Bob accesses the resource ...

intuition

when Alice accesses the resource afterwards ...

basic elements

request
 <subject, object, access right, context, request id>

response

<response id, request id, evidence, decision>

```
< r, i, E, d > < 1, 10, [], allow >
```

authorization response types

```
<{id="Bob", role="customer"}, {id="eB-23"}, view, {date="05-08-15"}, 10>

< 1, 10, [], allow > -- primary (from PDP) response

< (id="Bob", role="customer"}, {id="eB-23"}, view, {date="05-08-15"}, 11>

< 2, 11, [1], allow > -- precise response

< (id="Alice", role="pr. cust."}, {id="eB-23"}, view, {date="05-08-15"}, 12>

< 3, 12, [1], allow > -- secondary and approximate response
```


use of secondary decision point

SDP types

PDP allow deny undecided safe SDP allow or deny undecided consistent SDP deny or allow safe & consistent SDP allow undecided deny

24Kosta Beznosov

(lersse.ece.ubc.ca)

secondary and approximate authorizations

SAAM summary

- basic elements
 - authorization requests <s, o, a, c, i>
 - authorization responses <r, i, E, d>
- responses can be
 - primary or secondary
 - precise or approximate
- secondary decision point
 - implemented at PEP
 - uses primary to compute secondary
 - can be safe and/or consistent

SAAM_{BLP}: Application of SAAM to Bell-Lapadula Model

BLP refresher

- S: subjects, O: objects
- DAC
- L: lattice of security labels
- λ : $S \cup O \rightarrow L$
- ss-property, *-property:
 - (s, o, read) is allowed $\Rightarrow \lambda(o) \leq \lambda(s)$
 - (s, o, append) is allowed $\Rightarrow \lambda(o) \ge \lambda(s)$
 - (s, o, write) is allowed $\Rightarrow \lambda(o) = \lambda(s)$

three scenarios

- 1. $\lambda(s)$ and $\lambda(o)$ in request
 - PEP same as PDP
- 2. $\lambda(s)$ and $\lambda(o)$ in primary responses
 - SDP has L
 - SDP caches $\langle x, \lambda(x) \rangle$
- 3. $\lambda(s)$ or $\lambda(o)$ not in request/response

28Kosta Beznosov

(lersse.ece.ubc.ca)

secondary and approximate authorizations

What's SAAM_{BLP}?

- 1. dominance graph (DG) -- ADG
- 2. algorithms for SDP to

compute secondary authorizations using DG

- 1. (s₁, o₁, read)
- 2. $(s_2, o_1, append)$
- 3. $(s_3, o_2, read)$

- 1. (s₁, o₁, read)
- 2. $(s_2, o_1, append)$
- 3. $(s_3, o_2, read)$
- **4.** (s₃, o₁, write)

- 1. (s₁, o₁, read)
- 2. $(s_2, o_1, append)$
- 3. $(s_3, o_2, read)$
- 4. $(s_3, o_1, write)$
- 5. (s₁, o₂, read)
- 6. (s₄, o₂, append)
- 7. (s₄, o₃, read)
- 8. (s₄, o₄, read)
- 9. $(s_3, o_3, write)$

- 1. (s₁, o₁, read)
- 2. $(s_2, o_1, append)$
- 3. $(s_3, o_2, read)$
- 4. $(s_3, o_1, write)$
- 5. $(s_1, o_2, read)$
- 6. $(s_4, o_2, append)$
- 7. $(s_4, o_3, read)$
- 8. (s₄, o₄, read)
- 9. $(s_3, o_3, write)$
- 10. $(s_2, o_4, write)$

allow

- 1. $(s_1, o_1, read)$
- 2. $(s_2, o_1, append)$
- 3. $(s_3, o_2, read)$
- 4. $(s_3, o_1, write)$
- 5. $(s_1, o_2, read)$
- 6. $(s_4, o_2, append)$
- 7. $(s_4, o_3, read)$
- 8. $(s_4, o_4, read)$
- 9. $(s_3, o_3, write)$
- 10. $(s_2, o_4, write)$

- \bullet (S₁, O₄, read)
- $(S_2, O_2, read)$
- $(S_4, O_1, write)$

• $(S_3, O_4, read)$

- $(S_1, O_3, write)$
- $(S_2, O_3, append)$ $(S_1, O_1, append)$

THE UNIVERSITY OF BRITISH COLUMBIA

evaluation of SAAM_{BLP}

simulation results

100 subjects, 1000 objects, 14 labels security lattice

dominance graph and security lattice

cooperative secondary authorization recycling

(CSAR)

CSAR architecture

39Kosta Beznosov

(lersse.ece.ubc.ca)

secondary and approximate authorizations

simulation results

project team

- Information Security Group,
 Royal Holloway, University of London
 - Jason Crampton
- LERSSE, UBC
 - Kosta Beznosov
 - Wing Leung
 - Matei Ripeanu
 - Qiang Wei
 - Kyle Zeeuwen

related publications

- K. Beznosov, "Flooding and Recycling Authorizations" in Proceedings of New Security Paradigms Workshop (NSPW), 2005, Lake Arrowhead, CA, USA, 20-23 September 2005, pp. 67-72.
- J. Crampton, W. Leung, and K. Beznosov, "Secondary and Approximate Authorizations Model and its Application to Bell-LaPadula Policies," In Proceedings of the Symposium on Access Control Models and Technologies (SACMAT), pp. 111-120, Lake Tahoe, California, USA, June 7-9 2006.
- Q. Wei, K. Beznosov, M. Ripeanu, "Cooperative Approximate Authorization Recycling," poster presented at the USENIX Security Symposium, Vancouver, Canada, August 1-3, 2006.

konstantin.beznosov.net