

Secondary and Approximate Authorization Model (SAAM) and its

Application to Bell-LaPadula Policies (SAAM_{BLP})

Konstantin (Kosta) Beznosov

Laboratory for Education and Research in Secure Systems Engineering

lersse.ece.ubc.ca

Electrical and Computer Engineering

how enterprise authorization systems work

GetAccess, IBM Access Manager, CORBA, EJB, XACML

request-response paradigm

PEP-PDP decoupling: pros and cons

remedies

- caching -- "precise recycling"
 - improves performance & reliability
 - simple, inexpensive
 - serves only returning requests
- fault-tolerance solutions
 - improve reliability
 - require specialized software
 - poorly scale on large populations

our contribution

- concept and model for inferring new authorizations from previous "approximate authorization recycling"
- algorithms for BLP recycling

outline

- SAAM
- SAAM_{BLP}
 - evaluation study
- summary
- current status & future work

SAAM: Secondary and Approximate Authorization Model

intuition when Bob accesses the resource ...

intuition

when Alice accesses the resource afterwards ...

basic elements

request <subject, object, access right, context, request id>

response

<response id, request id, evidence, decision>

```
< r, i, E, d > < 1, 10, [], allow >
```

authorization response types

```
<{id="Bob", role="customer"}, {id="eB-23"}, view, {date="05-08-15"}, 10>

< 1, 10, [], allow > -- primary (from PDP) response

< (id="Bob", role="customer"}, {id="eB-23"}, view, {date="05-08-15"}, 11>

< 2, 11, [1], allow > -- precise response

< (id="Alice", role="pr. cust."}, {id="eB-23"}, view, {date="05-08-15"}, 12>

< 3, 12, [1], allow > -- secondary and approximate response
```


use of secondary decision point

SDP types

PDP

allow

deny

safe SDP

allow

undecided or deny

safe & consistent SDP

allow undecided deny

consistent SDP

undecided or allow

deny

SAAM summary

- basic elements
 - authorization requests <s, o, a, c, i>
 - authorization responses <r, i, E, d>
- responses can be
 - primary or secondary
 - precise or approximate
- secondary decision point
 - implemented at PEP
 - uses primary to compute secondary
 - can be safe and/or consistent

SAAM_{BLP}: Application of SAAM to Bell-Lapadula Model

BLP Refresher

- S: subjects
- O: objects
- DAC
- L: lattice of security labels
- $\lambda: S \cup O \rightarrow L$

$$(s, o, read) \Rightarrow \lambda(s) \ge \lambda(o)$$

*-property:

(s, o, append)
$$\Rightarrow \lambda(o) \geq \lambda(s)$$

(s, o, write)
$$\Rightarrow \lambda(o) \equiv \lambda(s)$$

three scenarios

- 1. $\lambda(s)$ and $\lambda(o)$ in request
 - PEP same as PDP
- 2. $\lambda(s)$ and $\lambda(o)$ in primary responses
 - SDP has L
 - SDP caches $\langle x, \lambda(x) \rangle$
- 3. $\lambda(s)$ or $\lambda(o)$ not in request/response

What's SAAM_{BLP}?

- 1. dominance graph (DG) -- ADG
- 2. algorithms for SDP to

compute secondary authorizations using DG

 S_1 O_1 , S_3 O_2 O_3 O_4

allow

- 1. (s₁, o₁, read)
- 2. $(s_2, o_1, append)$
- 3. $(s_3, o_2, read)$

 $SAAM_{BLP}$

allow

- 1. $(s_1, o_1, read)$
- 2. $(s_2, o_1, append)$
- 3. $(s_3, o_2, read)$
- **4.** (s₃, o₁, write)

 $SAAM_{BLP}$

allow

- 1. (s₁, o₁, read)
- 2. $(s_2, o_1, append)$
- 3. $(s_3, o_2, read)$
- 4. $(s_3, o_1, write)$
- 5. (s₁, o₂, read)
- 6. (s₄, o₂, append)
- 7. $(s_4, o_3, read)$
- 8. (s₄, o₄, read)
- 9. $(s_3, o_3, write)$

allow

- 1. (s₁, o₁, read)
- 2. $(s_2, o_1, append)$
- 3. $(s_3, o_2, read)$
- 4. $(s_3, o_1, write)$
- 5. (s₁, o₂, read)
- 6. $(s_4, o_2, append)$
- 7. $(s_4, o_3, read)$
- 8. (s₄, o₄, read)
- 9. $(s_3, o_3, write)$
- 10. (s₂, o₄, write)

allow

- 1. $(s_1, o_1, read)$
- 2. $(s_2, o_1, append)$
- 3. $(s_3, o_2, read)$
- 4. $(s_3, o_1, write)$
- 5. $(s_1, o_2, read)$
- 6. $(s_4, o_2, append)$
- 7. $(s_4, o_3, read)$
- 8. $(s_4, o_4, read)$
- 9. $(s_3, o_3, write)$
- 10. $(s_2, o_4, write)$

- (S₁, O₄, read)
- $(S_2, O_2, read)$
- $(S_4, O_1, write)$
- $(S_1, O_3, write)$
- $(S_2, O_3, append)$ $(S_1, O_1, append)$

THE UNIVERSITY OF BRITISH COLUMBIA

Evaluation of SAAM_{BLP}

Availability

- How does the system availability depend on the SDP cache warmness?
- $-A_A(A_{PDP}+A_{SDP}(w)-A_{PDP}*A_{SDP}(w))$

SAAMBLE

Methodology

- Warming set $W = S \times O \times A$
- Test set |T| = 3 |W|
- Experiment
 - 1. warm SDP with W
 - 2. freeze DG
 - 3. measure hit rate with T

Preliminary Results

14-node lattice

percentage change over precise recycling

Availability: $A_A(A_{PDP}+A_{SDP}-A_{PDP}*A_{SDP})$

summary

- Secondary and approximate authorization model (SAAM)
 - authorization space
 - secondary vs. primary
 - approximate vs. precise
 - secondary decision point (SDP)
 - safe and/or consistent

SAAM_{BLP}

current status

- current work
 - SAAM
 - SAAM_{BLP}, SAAM_{RBAC}, ...
 - authorization sharing across SDPs

future work PEP PEP PEP PEP PEF PDP authorization requests PE authorization responses **PDP** PEP active recycling publish-subscribe speculative precomputing **PDP** SAAMBLE (lersse.ece.ubc.ca) Kosta Beznosov

project team

- Information Security Group,
 Royal Holloway, University of London
 - Jason Crampton
- LERSSE, UBC
 - Kosta Beznosov
 - Wing Leung
 - Kyle Zeeuwen

Other Projects at LERSSE

- HOT Admin -- brining usability to security administration (NSERC, SAP, Entrust)
- CITI failures analysis
 - joint infrastructure interdependencies research program (JIIRP) (NSERC, PCEPCI)
- policy-based access management framework for IP-based multimedia services (TELUS)