
Copyright © 2004-2006 Konstantin Beznosov & Philippe Kruchten

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Towards Agile Security Assurance

Konstantin Beznosov
Laboratory for Education and Research in Secure Systems Engineering

(LERSSE)
Electrical and Computer Engineering

University of British Columbia

2

Who’s Konstantin Beznosov
 Education

• M.S. (1997) & Ph.D. (2000) in CS, Florida International University
• B.S. in Physics (1993), Novosibirsk State University

 Experience
• Assistant Prof., Electr. and Comp. Egn., UBC (2003-present)
• Directs Laboratory for Education and Research in Secure Systems

Engineering (LERSSE)
• US industry (1997-2003): end-user, consulting,

and software vendor organizations
 Contributed to

• OMG
• CORBA Security revisions
• Resource Access Decision
• Security Domain Membership Management

• OASIS
• eXtensible Access Control Markup Language

(XACML) v1.0

3

Outline

 What is security and why is it hard?

 What is software security and why is it hard?

 Problem

 Contributions

 Conventional assurance & agile methods

 Solution

 Summary

4

Protection
Authorization Accountability Availability

A
cc

es
s

C
on

tr
ol

D
at

a
Pr

ot
ec

tio
n

Audit

Non-
Repudiation

Se
rv

ic
e

C
on

tin
ui

ty

D
is

as
te

r
R

ec
ov

er
y

Assurance

R
eq

ui
re

m
en

ts
 A

ss
ur

an
ce

D
ev

el
op

m
en

t
A

ss
ur

an
ce

O
pe

ra
tio

na
l A

ss
ur

an
ce

D
es

ig
n

A
ss

ur
an

ce

Authentication
Cryptography

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

What is Security and
Why is it Hard?

What is Security?

security -- “safety, or freedom from worry”
How can it be achieved?

• Make computers too heavy to steal
• Buy insurance
• Create redundancy (disaster recovery

services)

7

Goals of Security
 Deterrence

• Deter attacks

 Prevention
• Prevent attackers from violating security policy

 Detection
• Detect attackers’ violation of security policy

 Recovery
• Stop attack, assess and repair damage
• Continue to function correctly even if attack succeeds

 Investigation
• Find out how the attack was executed: forensics
• Decide what to change in the future to minimize the risk

8

Solovki Monastery, White Sea, Russia

9

10

11

Conventional, fortress-based,
security

Goal:

Means:
Fortification

• provides safety
• involves layering
• expensive
• requires maintenance
• eventually compromised

Prevent people from violating system’s security policy

12

Limitations of Fortresses

13

Where the Fortress Analogy Breaks

Fortress
 Against external

attackers

 Protects only insiders

 Defenses cannot
change

Computer security
 Control of insiders

 Has to keep system
usable

 Has to protect from
new types of attacks

14

What Computer Security Policies are
Concerned with?

 Confidentiality
• Keeping data and resources hidden

 Integrity
• Data integrity (integrity)
• Origin integrity (authentication)

 Availability
• Enabling access to data and resources

CIA

Protection

Conventional Approach to Security

Authorization Accountability Availability

A
cc

es
s

C
on

tr
ol

D
at

a
Pr

ot
ec

tio
n

Audit

Non-
Repudiation

Se
rv

ic
e

C
on

tin
ui

ty

D
is

as
te

r
R

ec
ov

er
y

Assurance

R
eq

ui
re

m
en

ts
 A

ss
ur

an
ce

D
ev

el
op

m
en

t
A

ss
ur

an
ce

O
pe

ra
tio

na
l A

ss
ur

an
ce

D
es

ig
n

A
ss

ur
an

ce
Authentication
Cryptography

Protection

 provided by a set of mechanisms
(countermeasures) to prevent bad things
(threats) from happening

Authorization

protection against breaking rules
Rule examples:

• Only registered students should be able to
take exam or fill out surveys

• Only the bank account owner can debit an
account

• Only hospital’s medical personnel should
have access to the patient’s medical records

Authorization Mechanisms:
Data Protection

 No way to check the rules
• e.g., telephone wire or wireless

networks

 No trust to enforce the rules
• e.g., MS-DOS

Accountability

You can tell who did what when
 (security) audit -- actions are

recorded in audit log
 Non-Repudiation -- evidence of

actions is generated and stored

Availability

 Service continuity -- you can always get to
your resources

 Disaster recovery -- you can always get
back to your work after the interruption

21

Types of Mechanisms

secure precise broad

set of reachable states set of secure states

Assurance

Set of things the system builder and the
operator of the system do to convince you
that it is really safe to use.
• the system can enforce the policy you are

interested in, and
• the system works as intended

23

It’s all about risk

A
ss

et
 V

al
ue

Vulnerability Value

Thre
at

Valu
e

Risk = Asset * Vulnerability * Threat

24

Classes of Threats and Means

 Disclosure
• Snooping

 Deception
• Modification
• Spoofing
• repudiation of origin
• denial of receipt

 Disruption
• Modification
• denial of service

 Usurpation
• Modification
• Spoofing
• Delay
• denial of service

Source: Common Criteria for Information Technology Security Evaluation. 1999

Steps of Improving Security

1. analyze risks
• asset values
• threat degrees
• vulnerabilities

2. develop/change policies
3. choose & develop countermeasures
4. assure
5. go back to the beginning

Copyright © 2004-2006 Konstantin Beznosov & Philippe Kruchten

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

What is Software Security and
Why is it Hard?

28

Security break-ins are all too prevalent

Internet security incidents reported to CERT

29

Vulnerability Report Statistics

Copyright © 2004-2006 Konstantin Beznosov & Philippe Kruchten

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

Why are there so many
vulnerabilities in software?

31

What will happen in a moment?

32

What makes simple mechanical systems predictable?
 Linearity (or, piecewise linearity)
 Continuity (or, piecewise continuity)
 Small, low-dimensional statespaces

Systems with these properties are
(1) easier to analyze, and (2) easier to test.

0

2

4

6

8

10

12

1 2

x

y

33

 Computers enable highly complex systems
 Software is taking advantage of this

• Highly non-linear behavior; large, high-dim. state spaces

34

Other software properties make
security difficult

The Trinity of Trouble

 Connectivity
• The Internet is everywhere and

most software is on it

 Complexity
• Networked, distributed, mobile,

feature-full

 Extensibility
• Systems evolve in unexpected

ways and are changed on the fly

.NET

The network is
the computer.

Copyright © 2004-2006 Konstantin Beznosov & Philippe Kruchten

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

How Are Security Bugs Different?

36

When is a security bug
not like a bug?

 Traditional non-security bugs -- often
defined as a violation of a specification.

 Security bugs -- additional behavior, not
originally intended
• Meanwhile, it is doing what it is supposed to do
• Traditional techniques not good at finding
• Even in inspections, tend to look for

• missing behavior
• incorrect behavior

• Neglect to look for ... undesirable side-effects

37

Intended vs. Implemented Behavior
Traditional faults

Intended
Functionality

Actual Software
Functionality

Unintended,
undocumented,
unknown
functionality

38

Traditional faults

 Incorrect
• Supposed to do A but did B instead

 Missing
• Supposed to do A and B but did only A.

39

Security Bugs

 Side effects
• Supposed to do A, and it did.
• In the course of doing A, it also did B

 Monitoring for side effects and their impact
on security can be challenging
• Side effects can be subtle and hidden
• Examples: file writes, registry entries, extra

network packets with unencrypted data

40

Attack pattern examples

 Exploit race
condition

 Provide unexpected
input

 Bypass input
validation

41

49 Types of Software Attacks
1. Make the Client Invisible
2. Target Programs That Write to Privileged OS

Resources
3. Use a User-Supplied Configuration File to Run

Commands That Elevate Privilege
4. Make Use of Configuration File Search Paths
5. Direct Access to Executable Files
6. Embedding Scripts within Scripts
7. Leverage Executable Code in Nonexecutable

Files
8. Argument Injection
9. Command Delimiters
10. Multiple Parsers and Double Escapes
11. User-Supplied Variable Passed to File System

Calls
12. Postfix NULL Terminator
13. Postfix, Null Terminate, and Backslash
14. Relative Path Traversal
15. Client-Controlled Environment Variables
16. User-Supplied Global Variables (DEBUG=1,

PHP Globals, and So Forth)
17. Session ID, Resource ID, and Blind Trust
18. Analog In-Band Switching Signals (aka “Blue

Boxing”)
19. Attack Pattern Fragment: Manipulating

Terminal Devices
20. Simple Script Injection
21. Embedding Script in Nonscript Elements
22. XSS in HTTP Headers
23. HTTP Query Strings

24. User-Controlled Filename
25. Passing Local Filenames to Functions That

Expect a URL
26. Meta-characters in E-mail Header
27. File System Function Injection, Content Based
28. Client-side Injection, Buffer Overflow
29. Cause Web Server Misclassification
30. Alternate Encoding the Leading Ghost

Characters
31. Using Slashes in Alternate Encoding
32. Using Escaped Slashes in Alternate Encoding
33. Unicode Encoding
34. UTF-8 Encoding
35. URL Encoding
36. Alternative IP Addresses
37. Slashes and URL Encoding Combined
38. Web Logs
39. Overflow Binary Resource File
40. Overflow Variables and Tags
41. Overflow Symbolic Links
42. MIME Conversion
43. HTTP Cookies
44. Filter Failure through Buffer Overflow
45. Buffer Overflow with Environment Variables
46. Buffer Overflow in an API Call
47. Buffer Overflow in Local Command-Line

Utilities
48. Parameter Expansion
49. String Format Overflow in syslog()

Copyright © 2004-2006 Konstantin Beznosov & Philippe Kruchten

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

clash between
assurance & agility

43

Problem

Mismatch between

• agile methodologies for software development

• conventional methods for security assurance

Hard to assure with agile development

44

Why is addressing the mismatch important?

 More security-critical software

 Agile methods are there to stay

45

Contributions

1. examined the mismatch between security

assurance and agile methods

2. classified conventional security assurance

practices according to the degree of clash

3. suggested ways of alleviating the conflict

46

What’s Conventional
Security Assurance for Software is About?

review,
validation

risk analysis
external
review

static security
analysis

risk analysis

penetration
testing

Adapted from
D. Verdon and G. McGraw, "Risk analysis in software design," IEEE Security & Privacy, vol. 2, no. 4, 2004, pp. 79-84.

Requirements
Definition

System and
software design

Implementation
and unit testing

Integration and
system testing

Operation and
Maintenance

arch. styles,
design

principles

security tests,
test depth
analysis,

validation

security
requirements
(guidelines,

analysis, review)

languages,
tools,

standards,
change

tracking
…

47

Solution(s)?

If the mountain will not go to Mahomet,
let Mahomet go to the mountain. (proverb)

Ad
ap

t
ag

ili
ty

Ad
ap

t
as

su
ra

nc
e

48

Examination Results

Assurance relies on third party
• reviews
• evaluation
• testing

Points of clash
1. direct communication and tacit knowledge
2. iterative lifecycle
3. design refactoring
4. testing “philosophy”

49

(Mis)match Classification

1. Natural Match
e.g., XP pair programming ♥ internal review & coding standards

2. Methodology-neutral
e.g., language (e.g., Java, C# vs. C, C++),

version control and change tracking

3. Can be (semi-)automated
e.g., code static analysis,

 security testing/scanning

4. Mismatch (≈ 50%)
e.g., external review, analysis,

testing, validation change authorization

50

Alleviating the Mismatch

For (semi)-automatable
• Increase acceptance through tools
• Codify security knowledge in tools

• automated fault injection, test generation

For mismatching
• Search for new agile-friendly assurance methods

• direct communication and tacit knowledge
• iterative lifecycle
• design refactoring
• testing “philosophy”

• Intermittent assurance
• apply at the first and last iterations
• use the results to “align” the development
• Have a security engineer (role) involved in all iterations

(Wäyrynen et al. 2004)

Requirements

Design
Implementation and

Testing
Integration and

Testing
Requirements

Design
Implementation

and Testing
Integration and

Testing
Requirements

Design
Implementation and

Testing
Integration and

Testing

Requirements

Design
Implementation and

Testing
Integration and

Testing
Requirements

Design
Implementation

and Testing
Integration and

Testing
Requirements

Design
Implementation and

Testing
Integration and

Testing

51

Summary
Problem

mismatch between agile development & security assurance

Contributions

1. Examined (pain points)

2. Classified assurance methods

3. Alleviated (tools, knowledge codification, new

methods research, intermittent assurance)

Copyright © 2004-2006 Konstantin Beznosov & Philippe Kruchten

T H E U N I V E R S I T Y O F B R I T I S H C O L U M B I A

konstantin.beznosov.net

K. Beznosov and P. Kruchten, "Towards Agile Security Assurance," in
Proceedings of The New Security Paradigms Workshop,

White Point Beach Resort, Nova Scotia, 20-23 September 2004. pp. 47-54.

