
The Secondary and Approximate Authorization Model and
its Application to Bell-LaPadula Policies

Jason Crampton
Information Security Group

Royal Holloway, University of
London

jason.crampton@rhul.ac.uk

Wing Leung
LERSSE∗

University of British Columbia

wingl@ece.ubc.ca

Konstantin Beznosov
LERSSE∗

University of British Columbia

beznosov@ece.ubc.ca

ABSTRACT
We introduce the concept, model, and policy-specific algo-
rithms for inferring new access control decisions from pre-
vious ones. Our secondary and approximate authorization
model (SAAM) defines the notions of primary vs. secondary
and precise vs. approximate authorizations. Approximate
authorization responses are inferred from cached primary re-
sponses, and therefore provide an alternative source of access
control decisions in the event that the authorization server
is unavailable or slow. The ability to compute approximate
authorizations improves the reliability and performance of
access control sub-systems and ultimately the application
systems themselves.

The operation of a system that employs SAAM depends
on the type of access control policy it implements. We
propose and analyze algorithms for computing secondary
authorizations in the case of policies based on the Bell-
LaPadula model. In this context, we define a dominance
graph, and describe its construction and usage for generating
secondary responses to authorization requests. Preliminary
results of evaluating SAAMBLP algorithms demonstrate a
30% increase in the number of authorization requests that
can be served without consulting access control policies.

Categories and Subject Descriptors
D.4.6 [Security and Protection]: Access Controls; K.6.5
[Management of Computing and Information Sys-

tems]: Security and Protection; C.2.0 [Computer Com-

munication Networks]: Security and Protection

General Terms
Security, Theory

∗Laboratory for Education and Research in Secure Systems
Engineering (lersse.ece.ubc.ca)

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
SACMAT’06, June 7–9, 2006, Lake Tahoe, California, USA.
Copyright 2006 ACM 1-59593-354-9/06/0006 ...$5.00.

Keywords
SAAM, authorization recycling, access control, Bell-
LaPadula model

1. INTRODUCTION
Architectures of modern access control solutions—such

as [13, 8, 19, 25, 21, 6]—are based on the request-response
paradigm. In this paradigm, the policy enforcement point
(PEP) intercepts application requests, obtains access con-
trol decisions (or authorizations) from the policy decision
point (PDP), and enforces those decisions.

In large enterprises, PDPs are commonly implemented as
dedicated authorization servers [13, 8, 19], providing such
important benefits as consistent policy enforcement across
multiple PEPs and the reduction of authorization policy ad-
ministration. The drawbacks are also critical: reduced per-
formance due to communication delays between the PEP
and PDP, as well as reduced reliability, since each PEP de-
pends on its PDP and the network connecting them.

The state-of-the-practice approach to improving overall
system reliability and decreasing processing delays observed
by system users is to cache authorization decisions at each
PEP—what we refer to as authorization recycling. Enter-
prise authorization solutions [13, 8, 19] commonly provide
PEP-side caching. However, these solutions employ a simple
form of authorization recycling: a cached decision is reused
only if the authorization request in question exactly matches
the original request for which the decision was made. We
refer to such reuse as precise authorization recycling. This
paper explores the possibilities of improving system reliabil-
ity and performance by inferring approximate authorizations
based on information in the PEP’s cache.

The prospect of recycling approximate authorizations is
attractive for two reasons: the lack of fault tolerance (FT)
techniques that scale to large populations while remain-
ing cost-effective; and the high cost of requesting, making,
and delivering an authorization due to communication de-
lays. A conventional approach to improving reliability and
availability of a distributed infrastructure is failure masking
through redundancy—either information, time, or physical
redundancy [10]. However, redundancy and other general-
purpose fault-tolerance techniques for distributed systems
scale poorly, and become technically and economically in-
feasible to employ when the number of entities in the system
reaches thousands [12, 27].

Consider, for instance, an enterprise with hundreds of
thousands of networked commodity computers. Even if the

http://lersse.ece.ubc.ca

mean time to failure (MTTF) of each computer (and all its
critical software and hardware components) were one year,
in an enterprise with half a million computers,1 over 1,300
would fail every day. With the average availability of each
machine maintained at a level of 99.9% (a somewhat un-
realistically high expectation for such a large population of
commodity equipment and software), almost 500 computers
would be unavailable at any given moment. As generic FT
techniques do not scale for enterprises of such size, domain-
specific approaches become attractive. SAAM is a repre-
sentative approach in which the specifics of access control
policies are employed to mask PDP-related failures.

Making access control decisions can also be time consum-
ing. In a large enterprise, arriving at an authorization deci-
sion could be computationally expensive due to the hetero-
geneity and large size of the object and subject populations.
In addition, evaluating authorization policy could require
obtaining just-in-time data from human resources, medical
records, and other repositories of business data, which com-
monly further increases the time required for making an ac-
cess control decision. The overall delay in requesting and ob-
taining an authorization for short transactions could make
the authorization overhead prohibitively expensive. With
business and policy decisions often made to be just good
enough, low-cost approximate authorizations could provide
a viable alternative.

In this paper, we introduce a general framework for mak-
ing use of PDP responses that are cached by the PEP. These
responses are based directly on information contained in the
access control policy—so-called primary evidence. We use
these cached responses to infer responses to new access re-
quests in the event that the PDP is unavailable. Such re-
sponses are based on secondary evidence contained in the
PEP’s cache.

The secondary and approximate authorization model
(SAAM) is a conceptual framework for authorization re-
quests and responses. It is independent of the specifics of the
underlying application and access control policy. For each
class of access control policy, specific algorithms for making
inferences about the authorization responses generated by a
particular access control policy need to be provided.

After introducing SAAM, we extend it to include infer-
ence algorithms for access control policies based on the Bell-
LaPadula (BLP) model [1, 2]. Our approach to authoriza-
tion inference for BLP is based on the idea of a dominance
graph, which provides a partial mapping of subjects and ob-
jects to security labels. We illustrate how to use the dom-
inance graph to compute secondary responses, and briefly
discuss the computational complexity of our approach.

We are in the process of evaluating our SAAMBLP algo-
rithms. Preliminary results indicate that even with small
numbers of objects and subjects per security label, our al-
gorithms yield up to a 30% better “hit rate” for a SAAM-
enabled PEP cache than for a conventional one, which recy-
cles precise authorizations only.

The rest of the paper is organized as follows. The next
section introduces the fundamental elements of SAAM. Sec-
tion 3 defines SAAMBLP, the extension of SAAM to the Bell-
LaPadula model. We describe the dominance graph and al-
gorithms for constructing and querying the graph. Section 4

1Some enterprises, such as Amazon.com, are not far away
from having that many computers, which have MTTF as
short as two months [27].

discusses related work. In Section 5, we draw conclusions
from the obtained results and discuss future work.

2. SAAM BUILDING BLOCKS
Users of a computer system generate requests to access

resources maintained by that system. We assume that the
computer system enforces some kind of access control policy,
by which different users have different degrees of access to
the protected resources of the system. In particular, we are
interested in distributed computer systems in which distinct,
trusted software components are used to

1. intercept application requests;

2. decide whether each request should be granted by eval-
uating the request with reference to the system’s access
control policy.

These components are often known as the policy enforce-
ment point (PEP) and the policy decision point (PDP), re-
spectively. Figure 1 illustrates a generic access control ar-
chitecture for distributed computer systems. PEPs vary de-
pending on the technology and the application. They can be
security interceptors, as in CORBA [21], ASP.NET [17], and
most Web servers, or part of the component container, as in
COM+ [7] and EJB [6]. They can also be simply application
code, as in the case of current implementations, sometimes
based on static or dynamic “weaving” using aspect-oriented
software development techniques [14].

We distinguish between the application request generated
by the user process, which is intercepted by the PEP, and
the authorization request, which is generated by the PEP
and forwarded to the PDP for evaluation. We make this
distinction because in distributed computing environments,
the format of the authorization request must be compatible
with the PDP logic and is commonly quite different from the
format and content of the application request. For example,
this transformation is performed by the context handler in
the XACML-compliant PEP. The context handler generates
an XACML request context, which is sent to the PDP for pro-
cessing [20]. Another example is the authorization request
made by the CORBA Security Interceptor to the Access De-
cision Object (ADO), which acts as a PDP. The request to
the ADO supplies subject’s attributes, target object ID, im-
plemented interface, and operation to be invoked, but omits
the parameters of the application request. For the sake of
brevity, we will write request for authorization request.’

The PDP returns an authorization decision (or simply,
decision) to the PEP, which enforces that decision. The
decision is based on the access control policy (a.k.a. autho-
rization information) maintained by the PDP.

In what follows, we assume that the PDP is unable to
make a timely decision, either because of hardware or soft-
ware failures, or because of communication problems or high
network latency. Instead, the PEP caches authorization re-
quests and responses, and compares new requests with this
cached information in order to compute authorization deci-
sions. As these decisions are not obtained from the PDP,
they are by necessity secondary. The following sub-sections
define the building blocks of a general model and specific al-
gorithms for making timely and safe secondary decisions:
authorization requests and responses, secondary decision
point, and the strategy for computing approximate autho-
rizations.

Subject PEP PDP

Protected
resource

Application

application
response

authorization
request

authorization
response

a
p
p
lic

a
tio

n
re

sp
o
n
se

a
p
p
lica

tio
n

re
q
u
e
st

application
request

Figure 1: Generic access control architecture

2.1 Authorization Requests
Users are modelled as subjects, which are generally under-

stood to be the computer processes or threads associated
with the application program(s) run by the user. A subject
is associated with security-relevant attributes, which typi-
cally include identifiers for the user and groups or roles to
which the user belongs. Resources are modelled as objects.
Generally there may be more than one form of interaction
between a subject and an object: typical examples include
read, write, and execute. Hence, an access request has tra-
ditionally been modelled as a triple (s, o, a), where s is a
subject, o is an object, and a is an action or access right. It
is common nowadays to include contextual information in
an access request, for example, the time of the request or
the location of the subject.

Definition 1. An authorization request is a tuple
(s, o, a, c, i), where s is a subject, o is an object, a is an
access right, c is contextual information, and i is a request
identifier.

Each request has a unique identifier. It is commonly
supported by the underlying technologies for matching au-
thorizations to the corresponding requests. For example,
in middleware based on the semantics of remote procedure
calls (RPC), such as CORBA [21], EJB [6], DCOM [4], and
DCE [15], an object request broker (ORB) uses request IDs
to pair the outgoing requests on remote objects with the in-
coming responses. The format and representation of request
identities are technology-specific.

In many cases we are interested in requests that are identi-
cal except for their respective identifiers. Hence we use the
following notation for requests interchangeably: (q, i) and
(s, o, a, c, i). We say that the requests (q, i) and (q, i′) are
equivalent.

2.2 Authorization Responses
An authorization response may be generated by the PDP

or it may be generated by the PEP using cached information.
In this paper, we will be concerned with the latter case.

Definition 2. An authorization response for request
(q, i) is a tuple (r, i, E, d), where r is a response identifier,
d is a decision and E is a list of response identifiers.

To maintain the generality of SAAM, the decision element
of the response tuple may take a number of different values
apart from the standard responses of allow and deny. In
particular, a decision may return an undecided response to
indicate that a response could not be computed.

Definition 3. If a response has the form (r, i, [], d),
where [] denotes the empty list, then we say that it is a
primary response. Otherwise, we say that (r, i, E, d) is a
secondary response.

A primary response is made by the PDP, and is based
directly on the access control policy, which we call primary
authorization information (namely, the access control pol-
icy). Other responses are made by the PEP, based on ear-
lier requests and decisions. The list of response identifiers
E forms the evidence that was used to make the decision.
Secondary responses are said to be based on secondary au-
thorization information (namely, the cached responses and
the corresponding requests).

Definition 4. Let (q, i) be a request. Then the response
(r, i, E, d) is precise if either the response is primary, or it is
secondary and there exists an equivalent request (q, i′) with
response (r′, i′, [], d). In the former case E = [], and in
the latter E = [r′]. A response is approximate if it is not
precise.

Precise

Primary
(PDP)

Secondary
(SDP)

Approximate

Figure 2: Relationships between different response

types

Figure 2 illustrates the relationships between different
types of responses. The set of primary responses, for exam-
ple, is a subset of the set of precise responses. The intersec-
tion of precise and secondary responses, the middle section
of the diagram, represents the set of responses made by the
PEP for which there is a cached response to an equivalent re-
quest. These are the responses that the state-of-the-practice
PEPs provide. The left-most part of the diagram indicates
the set of approximate responses. It is this set of responses
that will be the focus of the remainder of the paper.

2.3 Secondary Decision Point
When the subject had not previously made an equiva-

lent request, the PEP is unable to compute a precise re-
sponse. We must therefore define what information is re-
quired to make an approximate response that is consistent
with the underlying access control policy. A PEP compo-
nent that implements SAAM algorithms for computing sec-
ondary responses is called a secondary decision point (SDP).

allow deny

(a) PDP

allow undecided
or deny

(b) Safe SDP

xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx
xxxxxxxxx

denyallow

xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx
xxxxxxxxxx

undecided

(c) Safe and consistent SDP

denyallow or
undecided

(d) Consistent SDP

Figure 3: Response sets of a PDP and the corre-

sponding safe and consistent SDPs

In SAAM, we define two basic types of SDPs according to
the properties of their response spaces in relation to the PDP
responses.

Definition 5. We say that an SDP is safe if any request
it allows would also be allowed by the PDP. We say that
an SDP is consistent if any request it denies would also be
denied by the PDP.

A safe SDP returns either undecided or deny for any re-
quest for which it cannot infer an allow response. A safe
SDP can be configured or designed to implement a closed
world policy by simply denying any request that it cannot
evaluate. In other words, such as SDP would ”fail safe”
– one of the important principles identified by Saltzer and
Schroeder in their seminal paper [24]. The SAAMBLP SDP
described in Section 3 is safe. In general, we would wish to
implement a safe and consistent SDP. Such an SDP returns
the same response as the PDP would have for any request
that it can evaluate. However, the limitations of the under-
lying access control policy, time or space complexity of the
inference algorithms, or business requirements could limit
an SDP implementation to being either safe or consistent,
but not both.

2.4 On the Strategy for Computing Approxi-
mate Authorizations

The most important consideration when constructing an
SDP is to decide on the appropriate response strategy when
faced with incomplete information. In other words: What
relationship should an approximate response have to the
precise response for the same request? Speaking in gen-
eral terms, this strategy has to make various assumptions
about the structure of the space of either subjects, object,
access rights, or any combination of the above. It might also
have to make assumptions about the structure of the access
constraints defined by the access control policy in question
(e.g., simple security property and *-property in BLP). In
this section, we discuss the thinking behind our approach to
this strategy. In Section 3, we present a specific strategy for
BLP.

We assume that the authorization policy is not readily
available to the SDP. In other words, the secondary response
is based on the set of cached primary responses and any in-
formation that can be deduced from an application request
and the system environment. In the simplest case, we can
consider two requests (q, i) and (q′, i′) such that if q had pre-
viously been allowed, then q′ should also be allowed, and if
q had previously been denied, then q′ should also be denied.

Let us assume, for example, that r denotes generic read
access and w denotes generic write access, where w is im-
plemented as allowing read and write access (as in the
Bell-LaPadula model). Then the request (s, o, r, c, i′) can
be granted if the request (s, o, w, c, i) has previously been
granted. Conversely, the request (s, o, w, c, i′) should be de-
nied if the request (s, o, r, c, i) has previously been denied.
In this case, the ability to make an approximate response is
based on the structure of the access-right space, namely the
fact that w “implies” r.

Alternatively, it might be that the SDP is provided with
a summary or “digest” of the authorization policy. This di-
gest could simply provide an ordering on the set of subjects
derived from the information in the authorization policy.2

Specifically, we define an ordering on the set of subjects
such that s > s′ if the set of requests authorized for s is a
superset of the requests authorized for s′.3 Then the request
(s′, o, a, c, i′) is allowed if the request (s, o, a, c, i) has previ-
ously been allowed and s′ > s. Conversely, (s′, o, a, c, i′) is
denied if (s, o, a, c, i) has been denied and s > s′.

We can summarize these observations by writing q ⇒ q′

to denote that a decision to grant q determines whether to
grant q′ (and hence a decision to deny q′ determines whether
to deny q). Then the request (q′, i′) is granted if a previous
request (q, i) exists such that q ⇒ q′ with a cached response
(r, i, E, allow), and is denied if a request (q, i,) exists such
that q′ ⇒ q with a cached response (r, i, E, deny).

Clearly, the greater the number of cached responses, the
greater the information available to the SDP. As more and
more PDP responses are cached, the SDP will become a
better and better simulator of the PDP. If it is a safe SDP,
the number of false negatives will decrease over time; if it is
a consistent SDP, the number of false positives will decrease
over time.

In summary, in order to compute an approximate au-
thorization, we need to cache primary authorizations and
we need some method for inferring whether and how each
cached response is applicable to the current request. The no-
tion of “applicability” depends on the implementation, the
underlying access control policy, and the additional informa-
tion that is available to the SDP. An important aspect of fu-
ture research will be to determine “what works” in terms of
the information that can be usefully and efficiently stored by
the SDP (in addition to the cached responses). In the next
section, we examine how approximate authorization works
when the underlying access control policy is based on an in-
formation flow policy for confidentiality, as implemented in
the Bell-LaPadula model.

2This would be particularly easy for RBAC systems.
3Note that this does not define a partial ordering on the set
of subjects as it is not anti-symmetric: that is, s 6 s′ and
s′ 6 s does not imply that s = s′.

3. SAAMBLP

This section describes the construction of an SDP for an
information flow policy for confidentiality, which is used in
the Bell-LaPadula (BLP) model [1, 2]. The information flow
policy forms the mandatory part of the model and defines
the following sets and functions:

• a set of subjects S and a set of objects O;

• a lattice of security labels L;4

• a security function λ: S ∪ O → L.

The simple security property permits a subject s to read
an object o if λ(s) > λ(o); the *-property permits a subject
s to write to an object o if λ(s) 6 λ(o). The BLP model
identifies three generic access rights to which these security
properties apply: read, which is a read-only action; append,
which is a write-only action; and write, which is a read-write
action. Hence, the request (s, o, write, c, i) is only granted
if λ(s) = λ(o).

In the full BLP model, a request must be authorized by an
access matrix (in addition to satisfying the simple security
and *-properties). In this paper, we focus on the mandatory
part of the model.

We now describe how we can derive approximate autho-
rization responses for the BLP model. We distinguish be-
tween three different scenarios:

1. Each SDP contains a copy of the security lattice. The
λ(o) is locally available to the SDP. The λ(s) is either
part of the security context of the application request
(i.e., it is “pushed” from the client to the server) or is
also locally available to the SDP.

2. Each SDP contains a copy of the security lattice. Pri-
mary responses (from the PDP) for a request of the
form (s, o, a, c, i) contain λ(s) and λ(o).

3. Primary responses contain no information about the
security level of the entities in the request.

To decide requests in the first scenario, the SDP looks
up the security labels for both subject and object and com-
pares them using the lattice. Clearly, no involvement of the
PDP is required for the SDP to compute a precise response.
This case is common among systems in which (1) λ(o) is
part of the object meta-data, and (2) subject credentials
are “pushed” from the client’s security subsystem to that
of the server. An example of systems that support “push-
ing” subject credentials is CORBA [21]. However, not all
systems use the “push” approach for credentials, due to the
limitations of the underlying security protocols, the commu-
nication technologies, or the administrative constraints.

In the second scenario, the SDP can decide a new request,
provided both subject and object have been involved in ear-
lier requests. In particular, the SDP searches its cache for
requests involving the two entities and obtains their respec-
tive security labels. The SDP can then use the security
lattice to determine whether one label dominates the other
and hence generate an appropriate response to the request.
Clearly, the first two cases are simple; we therefore focus on
the more challenging third case.

4Strictly speaking, the BLP model requires L to have the
form C × 2K , where C is a linearly ordered set of security
classifications and K is a set of needs-to-know categories.

A näıve solution to the third scenario would be to pro-
vide each SDP with the security lattice and a complete set
of (o, λ(o)) (s, λ(s)) tuples, essentially combining the PEP
and PDP. Although such an approach is straightforward, it
does not scale with large populations of subjects and ob-
jects, and voids the benefits of decoupling PDPs and PEPs,
namely consistent policy enforcement across multiple PEPs
and reduced administration of authorization policy. In this
section, we describe an approach that does not have these
drawbacks.

Intuitively, responses to requests enable us to infer infor-
mation about the relative ordering on security labels as-
sociated with subjects and objects. If, for example, the
requests (s, o, read) and (s′, o, append) are allowed by the
PDP, then we can infer that λ(s) > λ(o) > λ(s′). If, in
addition, the request (s, o, append) is denied, then we can
infer that λ(s) > λ(o).

To record the relative ordering on subject and object se-
curity labels, we build a data structure, called a dominance
graph, from authorization responses made by the PDP. Each
node in the dominance graph represents a set of entities with
the same security label, while each edge records information
about the ordering of entities. The dominance graph rep-
resents partial knowledge about the security lattice and the
mapping of entities to labels in that lattice. We now de-
scribe the dominance graph more formally, its construction,
and how it can be used to generate approximate responses.

3.1 The Dominance Graph
The dominance graph is constructed from the set of re-

sponses made by the PDP. It is used to encode information
that can be inferred from those responses. Let Q denote the
set of requests for which primary responses exist, and let R

denote the set of corresponding responses. Let S(R) denote
the set of subjects that appear in requests in Q and let O(R)
be defined analogously for objects.

Definition 6. Given a set of responses R, the domi-
nance graph G(R) = (V (R), E(R)) is a directed acyclic
graph with the following properties:

• For each vertex v ∈ V (R), v ⊆ S(R) ∪ O(R) and for
all x, y ∈ v, λ(x) = λ(y);

• For each edge (x, y) ∈ E(R), a response exists in R
that implies λ(x) > λ(y).

When R is obvious from the context, we simply write
G = (V, E) for the dominance graph, S for S(R), and O for
O(R). We write E∗ to denote the transitive closure of the
binary relation E. In other words, (v, v′) ∈ E∗ iff there is a
(directed) path from v to v′ in G. Examples of dominance
graphs are shown in Figure 6.

There is no ambiguity in referring to the security label of
a node in the graph. By definition, each entity associated
with a particular node in the dominance graph has the same
security label. Henceforth, we will write λ(v) to signify the
security label of all the entities contained in node v of the
dominance graph.

Note, however, that two different nodes may have the
same security label. In the simplest case, where Q =
{(s, o, read, c, i)} and R = {(r, i, [], allow)}, we can only
infer that λ(s) > λ(o). Hence, the dominance graph would
contain two nodes, one containing s and one containing o,

and a single edge from the node containing s to the node con-
taining o. It may be that λ(s) = λ(o), but we would require
additional requests and responses to infer this fact. In par-
ticular, if the PDP granted the request (s, o, append, c, i′),
we could infer that λ(s) 6 λ(o) and hence create a loop
in the dominance graph, which can be collapsed to a single
node containing s and o.

Moreover, a path in the dominance graph, and the transi-
tivity of the partial order, means that we can use the domi-
nance graph to make approximate responses. In particular,
if s ∈ v and o ∈ v′ and there is a path from v to v′ in the
dominance graph (that is, (v, v′) ∈ E∗), then we can deduce
that λ(s) > λ(o) and that a request from s to read o should
be granted.

Note that the dominance graph is a faithful (though in-
complete) representation of the security lattice L in the sense
that if l 6 l′ in L, v, v′ ∈ V , λ(v) = l and λ(v′) = l′, then
(v′, v) ∈ E∗. As more primary responses are added to R,
more edges can be added to the graph, and more cycles will
be created in the dominance graph; this lead, after cycle col-
lapsing, to fewer nodes, each containing more entities. Over
time, therefore, the dominance graph will tend to resemble
the security lattice.

3.2 Constructing the Dominance Graph
In this section, we present two algorithms: the first is for

adding an edge to the dominance graph given a response
from the PDP that allows a new request (s, o, a, c, i); the
second is for coalescing multiple nodes in the graph into a
single node. It is used when a cycle is created within the
dominance graph and two or more nodes are collapsed into
a single node in which all the entities have the same security
level.

Note that a deny response from the PDP does not allow
enough information to be inferred about the ordering be-
tween two entities to add an edge to the dominance graph.
Hence, in the first algorithm we only consider allow re-
sponses from the PDP. Making use of deny responses is the
subject of ongoing work.

3.2.1 Adding New Responses
When the PDP allows a request (s, o, a, c, i), we can add

further information to the dominance graph. In particular,
we may add a new node for s or o if they do not already
exist in the graph, and we may add an edge from s to o

if a involves reading o (a is read or write), or from o to
s if a involves writing to o (a is append or write). Fig-
ure 4 shows pseudo-code for the AddAllowResponse algo-
rithm, which takes the current dominance graph and the re-
quest (s, o, a, c, i) as parameters, and constructs a new dom-
inance graph.

The algorithm first adds s and o to the graph if they are
not already associated with one of the nodes (lines 02–07).
It then adds a new edge to the graph if there is no path
between the entities (lines 10–11 and 17–18). The edge is
directed from s to o if the requested right includes reading
o (line 12), and is directed from o to s if the requested right
includes appending to o (line 19).

Notice that the algorithm CollapseCycles is used when-
ever a cycle would be created in the dominance graph by
the addition of an edge (lines 13–14 and 20–21). We de-
scribe this algorithm in the next section.

1: AddAllowResponse(G, (s, o, a, c, i))
2: if s is not in any node in G then

3: add s to G

4: end if

5: if o is not in any node in G then

6: add o to G

7: end if

8: let vs denote node containing s

9: let vo denote node containing o

10: if a ∈ {read, write} and (vs, vo) 6∈ E∗ then

11: if (vo, vs) 6∈ E∗ then

12: add an edge between vs and vo

13: else

14: G = CollapseCycles(G, vo, vs)
15: end if

16: end if

17: if a ∈ {append, write} and (vo, vs) 6∈ E∗ then

18: if (vs, vo) 6∈ E∗ then

19: add an edge between vo and vs

20: else

21: G = CollapseCycles(G, vs, vo)
22: end if

23: end if

Figure 4: Adding a response to the dominance graph

3.2.2 Removing Cycles
The addition of an edge to the dominance graph may

introduce a cycle in the graph. For any cycle comprising
the edges (v1, v2), (v2, v3), . . . , (vn−1, vn), (vn, v1) we have,
by definition of the dominance graph,

λ(v1) 6 λ(v2) 6 · · · 6 λ(vn) 6 λ(v1).

By transitivity, we deduce that

λ(v1) = λ(v2) = · · · = λ(vn).

Hence, our algorithm removes cycles from the dominance
graph by reducing the set of nodes in the cycle to a single
node.

A pseudo-code implementation of this algorithm is shown
in Figure 5. The algorithm takes the dominance graph G, a
start node vstart and an end node vend as parameters. The
first stage of the algorithm (line 02) is to compute the sub-
graph G′ comprising all paths from vstart to vend . The intu-
ition is that CollapseCyles is called if a response means that
we could infer that the edge (vend , vstart) should be added to
the graph. Hence, the existence of a path from vstart to vend

implies the existence of a cycle in the dominance graph. As
a result of the algorithm execution, G′ is replaced by the
single node vstart . We then compute all nodes outside G′

that are neighbors of some node in G′ (lines 03–04). These
nodes are re-connected to vstart , the node that will replace
G′ (lines 10–15). We also re-assign all subjects and objects
associated with each node in G′ to vstart (lines 05–09). Fi-
nally, we prune all the redundant edges and nodes from the
dominance graph (lines 19–20).

When the set of cached responses is small, the dominance
graph will contain many nodes, as there will be insufficient
information to infer that several entities have the same se-
curity level. Over time, the number of cached responses
will grow and cycles will emerge and be collapsed into sin-
gle nodes, reducing the number of nodes in the dominance

1: CollapseCycles(G, vstart , vend)
2: let G′ = (V ′, E′) be subgraph comprising all paths from

vstart to vend

3: let InEdges = {(v, v′) ∈ E : v ∈ V \ V ′, v′ ∈ G′}
4: let OutEdges = {(v′, v) ∈ E : v ∈ V \ V ′, v′ ∈ G′}
5: for all v′ ∈ V ′ do

6: for all x ∈ v′ do

7: add x to vstart

8: end for

9: end for

10: for all (v, v′) ∈ InEdges do

11: add (v, vstart) to E

12: end for

13: for all (v′, v) ∈ OutEdges do

14: add (vstart , v) to E

15: end for

16: delete all nodes in V ′ except for vstart

17: delete all edges in InEdges and OutEdges

Figure 5: Removing cycles from the dominance

graph

graph. The dominance graph will eventually become iden-
tical to the security lattice and each node will be labelled
with precisely the set of entities that have the corresponding
security label.5

3.2.3 Example
We now illustrate how a simple dominance graph develops

as responses are generated by the PDP. We will assume that
the security lattice L is simply a linear ordering with three
elements (say, Low < Medium < High) and that the set of
needs-to-know categories is empty. For the sake of readabil-
ity, we will omit the context variable in these requests and
put the request identifier in the right column. Let us assume
that the following requests are all allowed by the PDP:

(s1, o1, read), (1)

(s2, o1, append), (2)

(s3, o2, read), (3)

(s3, o1, write), (4)

(s1, o2, read), (5)

(s4, o2, append), (6)

(s4, o3, read), (7)

(s4, o4, read), (8)

(s3, o3, write), (9)

(s2, o4, write). (10)

The evolution of the dominance graph is shown in Fig-
ure 6. We note the following features of this diagram.

• Request (1) causes the first two nodes to be created in
the dominance graph; the arrow is directed from the
subject to the object because it is a read request.

• Request (2) causes one new node to be added to the
graph, because the requested object was also used in
the previous request.

• Request (3) causes two further nodes to be created in
the graph, because neither the requesting subject nor
the requested object are stored in the cache.

5Formally speaking, we can define a binary relation ∼ on
S ∪ O, where x ∼ y iff λ(x) = λ(y). It is easy to prove
that ∼ is an equivalence relation, and hence that S ∪ O is
partitioned into equivalence classes. Each equivalence class
is a node in the dominance graph.

• Request (4) causes two edges to be added to the graph,
creating a cycle (because write in BLP is append and
read). As a result, s3 and o1 are associated with the
same node.

• Request (5) has no effect on the dominance graph, be-
cause a path already exists between s1 and o2 in the
graph.

• Requests (6), (7), and (8) simply increase the height
of the dominance graph.

• Request (9) creates a cycle involving four nodes in the
graph, which are collapsed onto a single node contain-
ing o1, s3, o2, s4, and o3.

• Finally, request (10), for performing generic write,
creates a cycle between s2, and o4, causing them to
be collapsed into a single node.

At this point, the dominance graph is identical to the
security lattice.

3.3 Generating Approximate Responses
Given a request (s, o, a, c, i), we can use the dominance

graph to compute an approximate response. If a is read,
then we allow the request if a path exists from the node con-
taining s to the node containing o in the dominance graph.
If a is append, then we allow the request if there is a path
from the node containing o to the node containing s in the
dominance graph. Finally, if a is write, then we allow the
request if s and o belong to the same node in the dominance
graph.

1: EvaluateRequest (G, (s, o, a, c, i), l)
2: let vs be the node containing s

3: let vo be the node containing o

4: if a = write then

5: if vs = vo then

6: return allow

7: else

8: return undecided

9: end if

10: end if

11: if a = read then

12: if there is a path of length 6 l from vs to vo then

13: return allow

14: else

15: return undecided

16: end if

17: end if

18: if a = append then

19: if there is a path of length 6 l from vo to vs then

20: return allow

21: else

22: return undecided

23: end if

24: end if

Figure 7: Computing an approximate response

Note that this decision process may yield “false neg-
atives”, in the sense that our algorithm may return an
undecided response for those requests that the PDP would

(1) (2)

s1

o1

s2

s3

o2

(3) (4)(5)

(6)

s1

o1

s2

s3

o2

(7)(8)

s4

o3 o4

s1

o1

s2

s3 o2

(9)

s4 o3

o4

s1

o1

s2

s3 o2

(10)

s4 o3

o4

s1

o1

s2

s3

o2

s4

s1

o1

s2

s3

o2

s1

o1

s2

s1

o1

Figure 6: Evolution of the dominance graph

allow. In other words, the EvaluateRequest algorithm im-
plements a safe SDP.6

We can limit the scope of the search for paths in the dom-
inance graph by specifying a maximal length l for the paths
that can be traversed in trying to decide the request. This
has the effect of reducing the search space within the domi-
nance graph, thereby reducing the time taken by the SDP to
compute an approximate response. Clearly, this also reduces
the possibility of finding a suitable path in the dominance
graph, thereby increasing the number of false negatives.

One obvious choice of l can be derived from the secu-
rity lattice L. In particular, note that L is finite, hence
the Hasse diagram7 of L contains a path of maximal length
lmax . In other words, one strategy would be to terminate
the search for an approximate response if we do not find a
path of length less than or equal to lmax between the nodes
containing the relevant entities in the dominance graph.

The algorithm used to compute an approximate response
is shown in Figure 7.

6It is less easy to develop an algorithm that implements a
consistent SDP. One might imagine that such an algorithm
would deny a read request, for example, if there is a path
from the node containing the object to the node containing
the subject. However, this path includes the possibility that
the security label of the object and subject are equal, in
which case the PDP would allow the request and the SDP
would deny the request. In other words, the SDP is not
consistent, as it has denied a request that the PDP would
allow.
7The Hasse diagram of a lattice is the graph of the reflexive,
transitive reduction of the partial order relation [5].

3.4 Complexity Analysis
In this section, we provide further analysis of SAAMBLP.

Full details are available in the associated technical re-
port [16].

We will write n to denote the number of responses from
the PDP in the cache (and we will assume that this is equal
to the number of requests). The number of edges in the
dominance graph is bounded by n (since a response can add
at most one edge to the graph) and the number of nodes
is bounded by 2n (since a single response can add at most
two entities to the dominance graph). We will assume that
we cache responses in such a way that we can find a subject
or object in time O(log n) (using hash tables [11], for exam-
ple). We will also assume the use of a breadth-first search
algorithm (BFS) that can traverse the dominance graph in
time proportional to the sum of the numbers of edges and
nodes in the graph; that is, in time O(n).

3.4.1 Collapsing Cycles in the Dominance Graph
The algorithm that processes new responses from the PDP

calls the CollapseCycles algorithm, so we consider the time
complexity of this first. This algorithm contains the follow-
ing steps:

• compute all the paths from vstart to vend (line 02),
which has complexity O(n) (using BFS);

• move subjects and objects to vstart (lines 05–09), which
has complexity O(n) (since there may be O(n) entities
in the cycle);

• create new edges connected to vstart (lines 10–15),

which has complexity O(n) (since there may be O(n)
edges to be added).

Hence, the overall time taken to collapse cycles in the dom-
inance graph is O(n).

3.4.2 Processing a PDP Response
The main steps in adding a response to the request

(s, o, a, c, i) (as shown in Figure 4) are to:

• test whether s is already associated with a node in the
graph (line 02), which has complexity O(log n);

• test whether o is already associated with a node in the
graph (line 05), which has complexity O(log n);

• test whether a path between the nodes containing s

and o exists (lines 10 and 14), which has complexity
O(n);

• collapse any cycles that are created in the graph (lines
14 and 21), which has complexity O(n).

Hence the total time to add new information from a PDP
response to the dominance graph is O(n).

3.4.3 Generating an SDP Response
The main steps required to generate an SDP response are

to:

• compute the node(s) containing the subject and object
(lines 02–03), which has complexity O(log n);

• compute whether there is a (possibly trivial) path be-
tween the two nodes (lines 04–24), which has complex-
ity O(n).

The overall complexity of computing an SDP response is
therefore O(n). (As we discuss in Section 3.3, one way of
controlling the time taken to evaluate a request is to limit the
length of paths that are traversed in the dominance graph
when executing EvaluateRequest .)

4. RELATED WORK
SAAM is a conceptual framework that is implemented

by an SDP and used to compute approximate responses
to authorization requests. These heuristics provide a re-
placement for conventional authorization responses from the
PDP, when the PDP is unavailable. SAAM assumes that
PDP responses will be cached and used to infer approxi-
mate responses.

Caching authorization responses is not a new idea in the
domain of access control: it has been used to improve sys-
tem efficiency and reliability [3, 8, 13, 19, 28]. However,
these and other approaches only compute precise authoriza-
tions and are therefore only effective for resolving repeated
requests. SAAM can resolve new requests by extending the
space of supported responses to approximate ones. In other
words, SAAM provides a richer alternative source for autho-
rization responses than do existing approaches. It is unique
in offering a systematic approach to authorization recycling
by suggesting a generic model of authorization requests, and
responses, as well as providing response classification and
strategies.

Other work [18, 22, 23] exploits the relationships be-
tween (database) objects to improve system scalability,

while SAAMBLP uses the relationships between subjects and
objects to improve system reliability and reduce latency.
This work also infers authorizations from existing ones, but
ours is the first to re-use previous responses to infer infor-
mation about the underlying access control policy, and to
make approximate responses that are consistent with that
policy.

SAAM is a domain-specific approach to improving per-
formance and fault tolerance of those access control mech-
anisms that employ remote authorization servers. Three
general classes of fault tolerance solutions are failure mask-
ing through information redundancy (e.g., error correction
checksums), time redundancy (e.g., repetitive invocations),
or physical redundancy (e.g., data replication). SAAM em-
ploys physical redundancy [10]: when the PDP is unavail-
able, the SDP would be able to mask the fault by provid-
ing the requested access control decision. However, general-
purpose physical redundancy techniques for distributed sys-
tems scale poorly beyond a small number of systems [9],
and become technically and economically infeasible when
the scale reaches the thousands [27]. Unlike such techniques,
our approach requires no specialized software, simply modi-
fications to the logic of the PEP cache. No distributed state,
election, or synchronization algorithms are necessary either.
With SAAM, only authorization responses are cached, and
no dynamic authorization data are replicated, enabling lin-
ear scalability on the number of PEPs and PDPs.

5. CONCLUSIONS
We have developed a simulation testbed to evaluate the

utility of SAAMBLP and used it to generate a random test
set of authorization requests. We then measured the pro-
portions of requests resolved by a conventional PEP that
recycles only precise responses and the SDP described in
Section 3. Preliminary results demonstrate that when 10%
of authorizations are cached, our SDP can evaluate over 30%
more authorization requests than a conventional PEP. Inter-
estingly, these results hold even with small numbers of 1000
objects and 100 subjects in a system with a BLP policy de-
fined with a 14-node lattice. We are currently conducting
further experiments and will report on our results in detail
in the near future. Results of our evaluation indicate that
active recycling of precise and approximate authorizations
could be a viable alternative to general purpose techniques
for improving fault tolerance and reducing delays associated
with access control.

To the best of our knowledge, the work described in this
paper is the first attempt to formulate a general application-
independent framework for computing new authorization re-
sponses using previous ones. While our approach is not nec-
essarily appropriate for small-scale access control solutions,
it is expected to improve reliability and performance of ap-
plications in those enterprises that have a high cumulative
rate of partial fail-stop failures, or high communication over-
head due to widespread distribution of systems.

The rate of observed failures can be decreased significantly
even with a small (10%) proportion of authorizations cached.
On the other hand, the reduction of the observed perfor-
mance overhead is the subject of the trade-off between the
delay of PEP-PDP communication and the cost of comput-
ing approximate authorizations. However, both the failure
rate and the performance overhead reductions are limited
by the availability and the performance, respectively, of the

application as well as the network connecting the client to
the application. For example, if the application itself is very
slow (or the client-server connection is very unreliable), then
the overall gain in performance (or availability), as observed
by the client, will be small.

We have developed a safe SDP for handling policies based
on the Bell-LaPadula model. However, other access control
models will likely require different SDPs. Support for role-
based access control, time-based policies, history-sensitive
policies (e.g., Chinese Wall), dynamic separation of duties,
or other types of policies that require subject rights to be
consumable (e.g., task-based authorizations [26]) has yet
to be developed. Future work will investigate support for
the above models as well as the use of subject, object, and
access-right space structures.

Acknowledgements
The authors would like to thank Liang Chen for his careful
reading of an earlier draft of the paper, Kyle Zeeuwen for
doing an evaluation study of the SDP described in Section 3,
and Craig Wilson for improving the readability of the paper.

6. REFERENCES
[1] Bell, D., and LaPadula, L. Secure computer

systems: Mathematical foundations. Tech. Rep.
MTR-2547, Volume I, Mitre Corporation, Bedford,
Massachusetts, 1973.

[2] Bell, D., and LaPadula, L. Secure computer
systems: A mathematical model. Tech. Rep.
MTR-2547, Volume II, Mitre Corporation, Bedford,
Massachusetts, 1973.

[3] Borders, K., Zhao, X., and Prakash, A. CPOL:
High-performance policy evaluation. In Proceedings of
the 12th ACM Conference on Computer and
Communications Security (2005), pp. 147–157.

[4] Brown, N., and Kindel, C. Distributed component
object model protocol (DCOM/1.0), January 1998.

[5] Davey, B., and Priestley, H. Introduction to
Lattices and Order. Cambridge University Press,
Cambridge, United Kingdom, 1990.

[6] DeMichiel, L. G., Yalçinalp, L. Ü., and

Krishnan, S. Enterprise JavaBeans Specification,
Version 2.0. Sun Microsystems, 2001.

[7] Eddon, G. The COM+ security model gets you out
of the security programming business. Microsoft
Systems Journal 1999, 11 (1999).

[8] Entrust. GetAccess Design and Administration
Guide, September 20 1999.

[9] Jimenez-Peris, R., Patino-Martinez, M., Kemme,

B., and Alonso, G. Improving the scalability of
fault-tolerance database cluster. In Proceedings of the
22nd International Conference on Distributed
Computing Systems (2002), pp. 477–486.

[10] Johnson, B. W. Fault-tolerant computer system
design. Prentice-Hall, Inc., Upper Saddle River, NJ,
USA, 1996, ch. An introduction to the design and
analysis of fault-tolerant systems, pp. 1–87.

[11] Johnsonbaugh, R., and Schaefer, M. Algorithms.
Pearson Education, Inc., 2001.

[12] Kalbarczyk, Z., Lyer, R. K., and Wang, L.

Application fault tolerance with armor middleware.
IEEE Internet Computing 9, 2 (2005), 28–38.

[13] Karjoth, G. Access control with IBM Tivoli Access
Manager. ACM Transactions on Information and
Systems Security 6, 2 (2003), 232–57.

[14] Kiczales, G., Lamping, J., Mendhekar, A.,

Maeda, C., Lopes, C., Loingtier, J.-M., and

Irwin, J. Aspect-oriented programming. In
Proceedings of the 1997 11th European Conference on
Object-Oriented Programming, ECOOP, Jun 9-13
1997 (Jyvaskyla, Finl, 1997), vol. 1241 of Lecture
Notes in Computer Science, pp. 220–242.

[15] Kong, M. M. DCE: An environment for secure
client/server computing. Hewlett-Packard Journal 46,
6 (1995), 6–15.

[16] Leung, W., Crampton, J., and Beznosov, K.

Authorization recycling in BLP systems. Tech. Rep.
2005-11-11, University of British Columbia,
Vancouver, Canada, 2005.

[17] Meier, J., Mackman, A., Dunner, M., and

Vasireddy, S. Building Secure ASP.NET
Applications: Authentication, Authorization, and
Secure Communication. Microsoft Press, 2002.

[18] Motro, R. An access authorization model for
relational databases based on algebraic manipulation
of view definitions. In Proceedings of ICDE (1989),
pp. 339–347.

[19] Netegrity. SiteMinder Concepts Guide, 2000.

[20] OASIS. eXtensible Access Control Markup Language
(XACML) Version 2.0, 2005. OASIS Committee
Specification (T. Moses, editor).

[21] OMG. CORBA Services: Common Object Services
Specification, Security Service Specification v1.8, 2002.

[22] Rizvi, S., Mendelzon, A., Sudarshan, S., and

Roy, P. Extending query rewriting techniques for
fine-grained access control. In SIGMOD ’04:
Proceedings of the 2004 ACM SIGMOD International
Conference on Management of Data (2004),
pp. 551–562.

[23] Rosenthal, A., and Sciore, E. Administering
permissions for distributed data: Factoring and
automated inference. In Proceedings of the 15th
Annual Working Conference on Database and
Application Security (2001), pp. 91–104.

[24] Saltzer, J., and Schroeder, M. The protection of
information in computer systems. Proceedings of the
IEEE 36, 9 (1975), 1278–1308.

[25] Securant. Unified Access Management: A Model For
Integrated Web Security, 25 June 1999.

[26] Thomas, R., and Sandhu, R. Task-based
authorization controls (TBAC): A family of models for
active and enterprise-oriented authorization
management. In Database Securty XI: Status and
Prospects. Proceedings of the IFIP TC11 WG11.3
Eleventh International Conference on Database
Security (1997), pp. 166–181.

[27] Vogels, W. How wrong can you be? Getting lost on
the road to massive scalability. In Middleware 2004
(2004). Keynote address.

[28] Wimmer, M., and Kemper, A. An authorization
framework for sharing data in web service federations.
In Proceedings of 2nd VLDB Workshop on Secure
Data Management (2005), pp. 47–62.

	Introduction
	SAAM Building Blocks
	Authorization Requests
	Authorization Responses
	Secondary Decision Point
	On the Strategy for Computing Approximate Authorizations

	SAAMBLP
	The Dominance Graph
	Constructing the Dominance Graph
	Adding New Responses
	Removing Cycles
	Example

	Generating Approximate Responses
	Complexity Analysis
	Collapsing Cycles in the Dominance Graph
	Processing a PDP Response
	Generating an SDP Response

	Related Work
	Conclusions
	REFERENCES -9pt

