
A Framework for Implementing Role-based Access Control

Using CORBA Security Service�

Konstantin Beznosov and Yi Deng

Center for Advanced Distributed Systems Engineering

School of Computer Science

Florida International University

Abstract

The paper shows how role-based access control (RBAC)
models could be implemented using CORBA Security ser-
vice. A con�guration of CORBA protection system is
de�ned. We provide de�nitions of RBAC0 and RBAC1

implementations in the framework of CORBA Security
and describe what is required from an implementation
of CORBA Security service in order to support RBAC0-
RBAC3 models.

1 Introduction

Role-based access control (RBAC) [SCFY96] is a family
of reference models in which permissions are associated
with roles and users are assigned to appropriate roles. A
role can represent competency, authority, responsibility
or speci�c duty assignments. Some variations of RBAC
include the capability to establish relations between roles,
between permissions and roles, and between users and
roles. There are four established RBAC reference mod-
els: unrelated roles (RBAC0), role-hierarchies (RBAC1),
user and role assignment constraints (RBAC2), and both

�This work was supported in part by the NSF under Coopera-

tive Agreement No. HDR-9707076 and by Baptist Health Systems

of South Florida.

All correspondence should be addressed to Konstantin Beznosov,

School of Computer Science, Florida International University, Mia-

mi, FL 33199, beznosov@cs.fiu.edu, http://cadse.cs.fiu.edu.

0

hierarchies and constraints (RBAC3). RBAC support-
s three security principals: least privilege, separation of
duties and data abstraction.

A major purpose of RBAC is to facilitate access con-
trol administration and review. RBAC is a promising ap-
proach to address the needs of the commercial enterprises
better than lattice-based MAC [BL75] and owner-based
DAC [Lam71]. Recent series of papers describe ways to
model or implement RBAC using the technologies em-
ployed by the commercial users: Oracle [Not95], NetWare
[ES95], Java [Giu98], DG/UX [Mey97], object-oriented
systems [Bar95], object-oriented databases [Won97], M-
S Windows NT [BC98], enterprise security management
systems [Awi97]. Evidence of RBAC recognition in the
US government is the fact that the proposed rules on secu-
rity from the Department of Health and Human Services
[Dep98] include RBAC as one of the required alternatives
for access control.

At the same time, the commercial market is expe-
riencing the spread of systems based on Common Ob-
ject Request Broker Architecture (CORBA) technology.
CORBA is a versatile object-based distributed comput-
ing technology, which is becoming a worldwide industry
standard for constructing distributed software systems.
CORBA standardization process is based on the consen-
sus of over 800 software companies. The computing mod-
el that CORBA adheres to is outlined in Object Man-
agement Architecture (OMA) [SS95]. The CORBA en-
vironment, including CORBA Security Service, provides
a general-purpose infrastructure for developing and de-
ploying distributed object systems in a broad range of
specialized vertical domains. CORBA Security service
(CS) de�nes the interfaces to a collection of objects for
enforcing a range of security policies using diverse security
mechanisms. It provides abstraction from an underlying

security technology so that CORBA-based applications
could be independent from the particular security infras-
tructure provided by a user enterprise computing envi-
ronment. Due to its general nature, CS is not tailored to
any particular access control model. Instead, it de�nes a
general mechanism which is supposed to be adequate for
the majority of cases and could be con�gured to support
various access control models. For example, it is shown
in [Kar96] how to implement lattice-based MAC using
the CORBA authorization model. In the next few years
we expect to witness signi�cant �nancial investments in
the enterprise-wide deployment of CS in commercial and
government organizations, including those who will con-
struct their security policies utilizing RBAC concepts. It
is important to foresee if CS will fully support RBAC
models. However, we are not aware of any work in the
research community that has explored the potential of CS
for support of RBAC reference models.

In this paper we present an approach for implementing
RBAC models using the access control mechanism pro-
vided by CS. We de�ne a con�guration of CS protection
system. Then we de�ne RBAC0 and RBAC1 implementa-
tions in terms of CS framework and describe how RBAC0-
RBAC3 could be implemented in CS. We illustrate the
discussion with several examples. Our approach allows an
implementation compliant with CS speci�cation to sup-
port RBAC0. Additional functionality, which is beyond
CS speci�cation scope, should be implemented in order
to support RBAC1 and/or RBAC2.

The paper is organized as follows: Section 2 describes
the access control model of CS and de�nes a con�gura-
tion of the CORBA protection system; Section 3 de�nes
RBAC models using CS concepts and shows a possible
implementation of RBAC0-RBAC3 using CS with illus-
tration on an example role hierarchy; Section 4 concludes
the paper.

2 CORBA Access Control Model

In this section, we �rst informally describe the CORBA
Access Control model. Then, we formally de�ne a con�g-
uration of the CORBA Protection System state.

2.1 Informal Description

The CORBA environment, including CORBA Security
Service, provides a general-purpose infrastructure for de-
veloping and deploying distributed object-based systems
in a broad range of specialized vertical domains. All enti-

ties in the CORBA computing model are identi�ed with
interfaces de�ned in the OMG Interface De�nition Lan-
guage (IDL). A CORBA interface is a collection of three
things: operations, attributes, and exceptions. An im-
plementation of a CORBA interface is called a CORBA
object. Hence, we use \CORBA object" or just \object"
to mean \implementation of a CORBA interface", where
it does not cause confusion. Object functionality is ex-
posed to other CORBA-based applications only through
the corresponding interfaces. Objects have object refer-
ences by which they can be referenced. An object refer-
ence is a handle through which one requests operations
on the object.

The CS model comprises the following functionalities
visible to application developers and security administra-
tors: identi�cation and authentication, authorization and
access control, auditing, integrity and con�dentiality pro-
tection, authentication of clients and target objects, op-
tional non-repudiation, administration of security policies
and related information.

One of the objectives of CS is to be totally unobtru-
sive to application developers. Security-unaware objects
should be able to run securely on a secure ORB without
any active involvement on the site of application objects.
In the meantime, it must be possible for security-aware
objects to exercise stricter security policies than the ones
enforced by CS. In the CS model, all object invocations
are mediated by the appropriate security functions in or-
der to enforce various security policies such as access con-
trol. A simpli�ed schema of control points in CS model
is represented in Figure 1. Those functions are part of
CS and are tightly integrated with the ORB because all
messages between CORBA objects and clients are passed
through the ORB.

CS uses the notion of principal. \A principal is a hu-
man user or system entity that is registered in and au-
thentic to the system" [Obj98]. In translation to the tra-
ditional security terminology, a principal is a subject. CS
manages access control policies based on the security at-
tributes of principals and attributes of objects as well as
operations implemented by those objects. Objects that
have common security requirements are grouped in secu-
rity policy domains. Access control policies control what
principals can invoke what operations on what objects in
the domain the policies are de�ned on. Policies can be
enforced either by the ORB or by the application. In
the latter case, such an application is called a security-
aware application. Domains allow application of access
control policies to security-unaware objects without re-
quiring changes to their implementations or interfaces.

ORB

client application
access decision

Client
Object
Target

request

request

client-side invocation access decision

target application
access decision

target-side invocation access decision

Figure 1: Access Control Points in CORBA Security Service (from [Obj98])

As it can be seen in Figure 1, the client-side and target-
side invocation access policy governs whether the client
can invoke the requested operation on the target object
on behalf of the current principal. This policy is enforced
by the ORB in cooperation with the security service it
uses for all (security-aware and unaware) applications. A
client may invoke an operation on the target object as
speci�ed in the request only if this is allowed by the object
invocation access policy.
A user uses a UserSponsor1 to authenticate to the CS

environment (Figure 2). A UserSponsor authenticates on

User
CreatePrincipal

Authenticator

User
Sponsor

Attributes

Credentials

Authenticate

ORB

Request

Client

Figure 2: User Authentication

behalf of a user with and obtains authenticated creden-
tials from a PrincipalAuthenticator . Instances of User-
Sponsor implement user interface speci�c to the authenti-
cation method supported by the concrete implementation
of CS. For example, for password-based authentication,

1A UserSponsor is an implementation artifact which handles the

user authentication process.

it prompts the user for user name and password. For
authentication based on smart-cards, it interacts with a
smart-card reader and (probably) prompts the user to
insert the card in the reader. CS standard does not
mandate any particular authentication method. What it
does specify is the interface of a PrincipalAuthenticator.
A PrincipalAuthenticator conducts the actual authenti-
cation and creates Credentials object for a new princi-
pal. Based on the authentication data it received from a
UserSponsor and on the underlying security technology
(Kerberos, SESAME, or any other capable technology) as
well as on any rules it adheres to, PrincipalAuthenticator
instantiates Credentials with various information. The
information in Credentials constitute the identity of the
new principal which initiates requests on CORBA object-
s on behalf of the user. Principal authenticated security
attributes are part of the information stored in the Cre-
dentials object.

The concept of a user is absent from CS AC model.
Instead a principal represents the user completely. The
notion of a session is indistinguishable from the notion of
a principal. Thus multiple principals can act on behalf
of a single user. They all potentially have di�erent set-
s of credentials and therefore exist in CS as completely
independent entities. Among other data, principal cre-
dentials contain security attributes. Hereafter, we under-
stand attribute to mean security attribute. From the CS
AC model point of view, a principal is nothing but an
unordered collection of authenticated attributes. All at-
tributes are typed. Attribute types are partitioned into
two families: privilege attributes and identity attributes.
The family of privilege attributes enumerates attribute

types that identify principal privileges: access identi�er,
primary and secondary groups the principal is a mem-
ber of, clearance, capabilities, etc. Identity attributes, if
present, provide additional information about the prin-
cipal: audit id, accounting id, and non-repudiation id,
reecting the fact that a principal might have various i-
dentities used for di�erent purposes. Principal credentials
may contain zero or more attributes of the same family or
type.2 An example of security attributes assigned to au-
thenticated principals is provided in Table 1. One of the
standard CORBA attribute types is the role attribute.
Due to the extensibility of the schema for de�ning se-
curity attributes, an implementation of CS can support
attribute types that are not de�ned by the CORBA Se-
curity standard. Although the normative part of CS does
not mandate the way attributes are managed, assignment
of such attributes to users is meant to be performed by
user administrators.

Principal Attributes

p1 a1
p2 a2, a6
p3 a2, a3
p4 a4, a5

Table 1: Security Attributes Possessed by Authenticated
Principals

All a principal does in the CORBA computational mod-
el is invoke operations on corresponding objects. In order
to make a request one needs to know two things: object
reference, which uniquely identi�es an object, and oper-
ation name. CORBA interfaces can inherit from other
CORBA interfaces via interface inheritance. An opera-
tion name is unique for an interface.3 Thus, any operation
is uniquely identi�ed by its name and by the name of the
interface it is de�ned in.
In this paper, we use notation ikmn, to refer to n-th

operation on k -th interface.
There is a global4 set of required rights for each oper-

ation de�ned by its interface's required rights mapping.
This set, together with a combinator (all or any right-
s), de�nes what rights a principal has to have in order

2This rule applies to all attribute types including access id, al-

though it is hard to foresee a useful implementation of CS where a

principal would have multiple or no access identities.
3Interface inheritance in CORBA does not allow to inherit from

interfaces with operations of the same type. This rule resolves the

problem of operation name overloading.
4I.e. not dependent on a policy domain in which the object is

located.

to invoke the operation. Table 2 provides an example of
required rights for operations on three interfaces i1, i2,
and i3. It is assumed that required rights are de�ned
and their semantics are precisely documented by appli-
cation developers who know the best what each opera-
tion does. Depending on the access policy (DomainAc-
cessPolicy) enforced in a particular AC policy domain,5

a principal is granted di�erent rights (GrantedRights) ac-
cording to what SecurityAttributes it has.6 Each Do-
mainAccessPolicy de�nes what rights are granted for each
security attribute. An example of a mapping between
principal privilege attributes and granted rights is pro-
vided in Table 3. Security administrators are responsible

Attributes Granted Rights
Domain

d1 d2

a1 r1 r2
a2 - r1
a3 r2;r3 -
a4 r3 r1;r4
a5 r1; r2; r3 r2; r3; r4
a6 r6 r1

Table 3: Granted Rights per Attribute

for de�ning what rights are granted to what security at-
tributes in what delegation state on domain per domain
basis. Whenever a principal attempts an operation invo-
cation, principal's e�ective rights are computed via oper-
ation AccessPolicy::get e�ective rights.7 CS speci�cation
purposefully does not de�ne how the operation combines
rights granted through di�erent privilege attribute entries
in Table 3. The speci�ers let CS implementors de�ne the
operation's internal behavior ([Obj98, p. 122]). A sim-
plest implementation of get e�ective rights could be when
the set of rights granted to a principal is a union of rights
granted to every security attribute the principal has. For
our examples, we will assume exactly this implementa-
tion of the operation. If we use our example of security
attributes assigned to principals p1, p2, p3, and p4 (Table
1), and the examples of required (Table 2) and grant-
ed (Table 3) rights, then Table 4 shows what rights the
principals are granted in each domain.

5In the CORBA security model, a security policy domain is just

a collection of objects.
6For the sake of brevity, we omit delegation state quali�er for

granted rights. This does not change the correctness of the discus-

sion, as we show below.
7Regular caching techniques can be used by an implementation

to avoid repetitive computations.

Operations Required Rights Combinator Meaning

i1m1 r1 all Only a principal who is granted right r1can invoke the
operation.

i1m2 r1, r2 any Any principal who is granted either r1 or r2 right can in-
voke the operation.

i2m1 r2, r3 all Only a principal who is granted both r2and r3 rights can
invoke the operation.

i2m2 r2, r3, r4 all Only a principal who is granted all r2; r3; r4 rights can
invoke the operation.

i3m1 r1, r2, r3, r4 any Any principal who is granted either of r1; r2; r3; r4 rights
can invoke the operation.

Table 2: Required Rights Matrix

Principal Granted Rights
Domains

d1 d2

p1 r1 r2
p2 r6 r1
p3 r2;r3 r1
p4 r1; r2; r3 r1; r2; r3; r4

Table 4: Granted Rights Per Principal

2.2 CORBA Protection State Con�gura-

tion

We summarize the above description of the CS AC mod-
el by de�ning the protection state con�guration of a
CORBA system:

De�nition 2.1 A con�guration of a CORBA system
protection state is the thirteen-tuple (A, IM, O, R, D,
C, RRM, DS, IDM, GRM, e�ective rights, combine, in-
terface operation) interpreted as follows:

� A is the set of privilege attributes.

� IM is the set of operations uniquely identi�ed by
interfaces that they are de�ned on.

� O is a set of distinguishable interface instances.

� R is the set of rights.

� D is the set of access policy domains.

� C = fall, anyg is a set of rights combinators.

� RRM is the required rights matrix, with a row for
every interface operation from IM and two columns.
For the �rst column (Required Rights), we have [IM,
Rights] �R. For the second column (Combinator),
we have [IM, Combinator] 2 C .

� DS = fi, dg is a set of delegation states.

� IDM is the matrix of domain membership for inter-
face instances with a row for every domain from D
and a column for every interface instance from O. We
denote the contents of (D, O) cell of IDM by [D,O].
We have [D, O] �fT,Fg8, [d; o] == T =) o 2 d.

� GRM is the granted rights matrix, with a row for
every attribute from A and a column for every access
policy domain from D. We denote the contents of the
(A, D) cell of GRM by [A, D]. We have [A, D] �R.

� e�ective rights : D � 2A �! 2R, a function mapping
a set a1; a2; :::al of privilege attributes (where 81 <
i < l : ai 2 A) in a domain dj 2 D to a set of rights
r1; r2; :::rp (where 8i; 1 < i < p : ri 2 R) that are in
e�ect for the given set of attributes.

� combine: 2D�2R �! 2R, a function mapping sets of
rights returned from e�ective rights for every domain
in D the interface instance is a member of, to a set
of e�ective rights.

� interface operation: M�O �! IM , a function map-
ping an operation name m and an interface instance
o 2 O into an interface operation uniquely identi�ed
on the interface, which o implements.

2

8T stands for true and F stands for false.

Function e�ective rights looks up GRM to obtain
granted rights for each attribute in all domains to which o
belongs. It combines those rights according to its imple-
mentation and returns e�ective rights for each domain.
Results returned from e�ective rights serve as input pa-
rameters for the function combine. The latter combines
them according to its implementation. Rights returned
by combine are checked against RRM. If the match suc-
ceeds, then access is granted. Otherwise, access is denied.
Table 5 shows what operations can be invoked by the

principals from our example. For each domain, an ac-

Principals Operations
Domains
d1 d2

p1 i1m1, i1m2 i1m2

p2 - i1m1, i1m2

p3 i1m2, i2m1 i1m1, i1m2

p4 i1m1, i1m2, i2m1 i1m1, i1m2, i2m1,
i2m2, i3m1

Table 5: Operations that a Principal Can Invoke

cess matrix from [Lam71], such as in Table 6, could be
constructed.

Subjects Objects
i1 i2 i3

p1 i1m2

p2 i1m1, i1m2

p3 i1m1, i1m2

p4 i1m1, i1m2 i2m1, i2m2 i3m1

Table 6: Access Matrix for Domain d2

Three general observations are worth noting for an ac-
cess matrix constructed for any CS system. First, sub-
jects cannot be objects, i.e. the CORBA access control
model does not have the concept of operations on princi-
pals. It only has the concept of operations on interfaces,
which are objects according to the terminology of the ac-
cess matrix [Lam71]. Second, since ikmp � ilmq , k �
l ^ p � q (i.e. just p � q is not enough for ikmp � ilmq),
as in Table 6, the semantics of operations in a general
case might be di�erent. Thus, for each subject s and ob-
ject o, the content of cell [s,o] is speci�c to the object, i.e.
no operations permitted on one object could be permit-
ted on another object because operations are semantically
di�erent for every interface unless interfaces are related
via inheritance. Third, all implementations of the same

interface in a given access policy domain are represent-
ed by the same object in the access matrix; therefore,
implementations of the same interface are indistinguish-
able from the access control point of view. This is one of
the reasons policy domains are important in the CORBA
access control model.

3 Support of RBAC by the

CORBA Access Control Model

Among the four RBAC reference models de�ned by Sand-
hu et al [SCFY96], RBAC0 is the base model. It requires
only that a system has notions of users, roles, permissions
and sessions. There are no constraints on the assignment
of permissions to roles and users to roles. RBAC1 has
hierarchies of roles in addition to everything RBAC0 has.
RBAC2 has constraints on the assignment of users to roles
and permissions to roles in addition to everything RBAC0

has. RBAC3 combines RBAC1 and RBAC2. In this sec-
tion, we de�ne RBAC0 and RBAC1 using the language
of De�nition 2.1 of the CORBA protection state con�g-
uration. This will help us show the correctness of our
approach to con�guring a CORBA system for supporting
various RBAC models.

3.1 RBAC0: Base Model

For the base model RBAC0, the four sets of identities are
represented in CS as follows:9 Users in RBAC map to
users in CS; Roles are represented by set A of privilege
attributes of type role; Permissions are equivalent to the
set of rights R in CS; Sessions are equivalent to principals,
which are nothing but sets of security attributes, from CS
AC point of view.
RBAC0 de�nition (reprint is available in Appendix) in

the language of CS is formally de�ned as follows:

De�nition 3.1

� U, A, R, P (users, attributes of type role, rights, and
principals, respectively)

� PA � R�A, a many-to-many assignment of granted
rights to security attributes of type role relation.

� UA � U�A, a many-to-many user to security at-
tributes of type role assignment relation.

9We do not mention CS AC domains because, as it will be shown

in the example on Page 9, RBAC models can be supported in

CORBA using a single domain.

� user : P ! U, a function mapping each principal pi
to the single user user(pi), constant for the principal
lifetime, and

� roles : P ! 2A, a function mapping each principal pi
to a set of privilege attributes of type role roles(pi)
�f a j (user(pi), a) 2Ag and principal pi has the
granted rights

S
a2roles(pi)

fr j (r, a) 2PAg

2

It is easy to see that the de�nition describes a sys-
tem compliant with the RBAC0 de�nition provided in
[SCFY96]. Given the de�nition, we will show how a
CORBA protection system speci�ed by a con�guration
language from De�nition 2.1 could be used to imple-
ment a security system compliant to this de�nition of
RBAC0. PA relation is speci�ed by granted rights ma-
trix GRM. UA relation is managed by user administra-
tors in CS that de�ne what values of attributes of type
role are assigned to users. However such managemen-
t functionality is beyond the scope of CS speci�cation,
which means that functionality de�ned by UA relation
is implementation-speci�c. An implementation of Prin-
cipalAuthenticator10 initializes new principal credentials
with security attributes according to UA. An example
is provided in Table 1, where attributes a1 through a6
have the type role. The value of the principal's privi-
lege attribute of the type AccessId is equivalent to the
return value from the function user. An implementation
of PrincipalAuthenticator should initialize principal cre-
dentials according to the function roles. Since a user in
RBAC0 can activate any subset of roles the user is as-
signed to, implementation of UA ensures implementation
of RBAC0. Thus, we have shown that all relations, func-
tions and sets speci�ed in De�nition 3.1 can be directly
supported by CS-compliant implementations. In order
for a CS implementation to support RBAC0 it should:

1. comply with CS standard, and

2. provide a means to administrate user-to-role assign-
ment relation UA, and

3. provide a means for users to select through User-
Sponsor a set of roles with which they would like to
activate the new principal, and

10As it was described in Section 2, a PrincipalAuthenticator con-

ducts the actual authentication and creates Credentials object for

a new principal.

4. implement PrincipalAuthenticator which creates
principal credentials containing privilege attributes
of type role according to relation UA, and

5. implement PrincipalAuthenticator which creates
principal credentials containing one and only one
privilege attribute of type AccessId.

A straightforward implementation of RBAC0 in CS would
be the one that uses privilege attributes of only type role
for constructing granted rights tables, such as Table 3.

3.2 RBAC1: Role Hierarchies

RBAC1 is RBAC0 with role hierarchies. RBAC1 (the def-
inition reprint is available in Appendix) in the language
of CS is formally de�ned as follows:

De�nition 3.2

� U, A, R, P, PA, UA and user are unchanged from
RBAC0.

� RH � A�A is a partial order on R called the role hi-
erarchy, written as �. It is the same as in [SCFY96].

� roles : P ! 2A is modi�ed from RBAC0 to require
roles(pi) �f a j (9 a0 � a) [(users(pi), a

0) 2UA] g
and principal pi has the granted rights

S
a2roles(pi)

f

r j (9 a00 � a) [(r, a00) 2PA] g

2

The function roles is to be implemented and enforced
by a Principal Authenticator (Figure 2 on Page 3). A us-
er provides to a UserSponsor a set of roles which they
want the principal to be activated with. The Princi-
palAuthenticator, during the authentication phase with
the UserSponsor, creates new credentials of the principal.
The credentials have requested by user roles provided that
they satisfy the de�nition of function roles for RBAC1.
A valid implementation of RBAC1 could be one that

allows a user to specify any role junior to those the user
is a member of. In this case, an implementation of Prin-
cipalAuthenticator activates all roles which are junior to
the speci�ed role.
In order for a CS implementation to support RBAC1

it should:

1. implement RBAC0, and

2. provide a means to administrate the role hierarchy
relation RH, and

3. implement PrincipalAuthenticator which creates
principal credentials containing privilege attributes
of the type role according to relations UA and RH ,
as well as the function roles.

3.3 RBAC2: Constraints

Constraints in RBAC are predicates that apply to UA and
PA relations and the user and roles functions ([SCFY96]).
Constraints on UA relation are to be enforced by an im-
plementation of user administrator tools. Constraints on
the functions user and roles are the responsibility of Prin-
cipalAuthenticator implementation. Constraints on PA
relation are to be enforced by an implementation of secu-
rity administrator tools.
In order for a CS implementation to support RBAC2

it should:

1. implement RBAC0, and

2. implement support of constraints on UA relation user
administrator tools, and

3. implement PrincipalAuthenticator with support of
constraints on functions user and roles, and

4. enable enforcement of constraints on PA relation by
security administration tools.

3.4 RBAC3: RBAC1 + RBAC2

RBAC3 is a combination of RBAC1 and RBAC2 along
with possibly additional constrains on the role hierarchy.
It can be implemented in CS as well. Obviously, in order
for a CS implementation to support RBAC3 it should:

1. implement RBAC1,

2. implement RBAC2, and

3. implement possible additional constrains on the role
hierarchy.

Requirements for support of RBAC1 and RBAC2 by
CORBA Security service implementation have been al-
ready discussed. Implementation of additional static con-
strains on the RBAC1 role hierarchy is to be done by user
administrator tools. For the support dynamic constrains,
additional functionality in the implementation of Princi-
palAuthenticator is required, in addition to the adminis-
trator tools.

3.5 Example

To illustrate the points made in this section, we describe
a protection state of a CORBA system de�ned by De�ni-
tion 2.1 that implements an example role hierarchy. We
use an example hierarchy from [SP98] shown in Figure
3. We will show how a CORBA-based distributed system
could be con�gured to support RBAC1 with an example
hierarchy shown on Figure 3 and to protect access to im-
plementations of CORBA interfaces shown in Figures 4
and 5. The following access control policies describe what

Figure 4: Example CORBA Interfaces

Figure 5: Employee Interface

actions are allowed. All other actions are denied.

1. Anyone can look up an employee's name and experi-
ence.

2. Everyone in the engineering department can get a
description of and report problems regarding any
project.

3. Engineers, assigned to projects, can make changes
and review changes related to their projects.

4. Quality engineers can inspect the quality of projects
they are assigned to.

Production
Engineer 1
(PE1)

Quality

(QE1)
Engineer 1

Production
Engineer 2
(PE2)

Quality
Engineer 2
(QE2)

Director (DIR)

Project Lead 2 (PL2)Project Lead 1 (PL1)

Employee (E)

Engineering Department (ED)

Engineer 2 (E2)Engineer 1 (E1)

Project 2Project 1

Figure 3: An Example Role Hierarchy (from [SP98])

5. Production engineers can create new releases.

6. Project leaders can close problems.

7. The director can manage employees (assign them
to projects, un-assign them from projects, add new
records to their experience, and �re) and close engi-
neering projects.

We de�ne that e�ective rights returns a union of granted
rights per attribute. We de�ne that combine returns a
union of rights granted in each domain.

Single Access Policy Domain Solution

In order to implement the role hierarchy in CS without
using access policy domains, we introduce two new in-
terfaces EngineeringProject1 and EngineeringProject2, as
shown in Figure 6. The following con�guration of a sys-
tem protection state could be used:

� A = fe, ed, e1, e2, pe1,pe2, qe1, qe2, pl1, pl2, dirg.
All these attributes have type role.

� IM = fEmployee::get name,
Employee::assign to project,
Employee::unassign from project,
Employee::add experience,
Employee::get experience, Employee::�re,
EngineeringProject1::inspect quality,
EngineeringProject1::make changes,
EngineeringProject1::report problem,
EngineeringProject1::review changes,
EngineeringProject1::close,
EngineeringProject1::close problem,
EngineeringProject1::create new release,
EngineeringProject1::get description,
EngineeringProject2::inspect quality,
EngineeringProject2::make changes,
EngineeringProject2::report problem,

Figure 6: EngineeringProject Interface Hierarchy

EngineeringProject2::review changes,
EngineeringProject2::close,
EngineeringProject2::close problem,
EngineeringProject2::create new release,
EngineeringProject2::get descriptiong.

We do not use any implementations of interface En-
gineeringProject. Only derived interfaces are used.

� O = fe, ed, e1, e2, pe1,pe2, qe1, qe2, pl1, pl2, dir, pr-
j1, prj2g. prj1 is an instance of EngineeringProject1,
and prj2 is an instance of EngineeringProject2. All
other elements of O are instances of interface Em-
ployee.

� R = fgn, atp, ufp, ae, ge, f, mc1, rc1, iq1, rp1, cp1,
cnr1, gd1, c1, mc2, rc2, iq2, rp2, cp2, cnr2, gd2, c2g11

� D = fd1g

� C = fallg { we use only one combinator.

� RRM is shown in Table 7. We omitted column with
rights combinators because required rights for all op-
erations have the same combinator { \all".12

� DS = fi, dg

� In the IDM, all interface instances are in members of
the only access policy domain.

� GRM is shown in Table 8.

Operations Rights

Employee::get name gn
Employee::assign to project atp
Employee::unassign from project ufp
Employee::add experience ae
Employee::get experience ge
Employee::�re f

EngineeringProject1::get description gd1
EngineeringProject1::inspect quality iq1
EngineeringProject1::make changes mc1
EngineeringProject1::review changes rc1
EngineeringProject1::report problem rp1
EngineeringProject1::close problem cp1
EngineeringProject1::create new release cnr1
EngineeringProject1::close c1

EngineeringProject2::get description gd2
EngineeringProject2::inspect quality iq2
EngineeringProject2::make changes mc2
EngineeringProject2::review changes rc2
EngineeringProject2::report problem rp2
EngineeringProject2::close problem cp2
EngineeringProject2::create new release cnr2
EngineeringProject2::close c2

Table 7: Required Rights Matrix for the Solution with
Single Domain

� e�ective rights(dj , a1; a2; :::al) �
S
ai;1�i�l

f r j
r2GRM[ai, dj] g { union of granted rights per at-
tribute.

� combine(r1;d1 ; r2;d1 ; :::rl;d1 ,..., r1;dp ; r2;dp ; :::rm;dp) �S
f r j r 2 fr1;d1 :::rm;dpgg { union of rights granted

in each domain.

The CORBA protection system con�guration described
above allows enforcement of the sample policies listed
on Page 8. For example, a lead of project 1 with role
pl1 activated is able to invoke operations get name and
get experience on all implementations of interface Em-
ployee as well as all but close operations on all imple-
mentations of interface EngineeringProject1.

11We used �rst letters of each operation to create a corresponding

right.
12We could have used \any" as well. When an operation's re-

quired rights set consists of only one right, the e�ect of either com-

binator is the same.

Privilege Attribute Rights

e gn, ge
ed gd1, gd2, rp1, rp2
e1 mc1, rc1
pe1 cnr1
qe1 iq1
pl1 cp1
e2 mc2, rc2
pe2 cnr1
qe2 iq1
pl2 cp1
dir atp, ufp, ae, f, c1, c2

Table 8: Granted Rights Matrix for Single Domain Solu-
tion.

From observing the con�guration of the CORBA pro-
tection system in this solution, signi�cant administrative
overhead could be noticed. The overhead is due to the
gratuitous use of a separate interface (EngineeringPro-
ject(1,2)) per project . This is because we purposefully
limited our solution to a single access policy domain. It
could be easily shown how the unnecessary redundancy
of protection system con�guration data is eliminated by
using access policy domains and a hierarchy of such do-
mains. We omit the description of a solution with multi-
ple domains due to space limitation.

4 Conclusions

In this paper, we provided a de�nition of protection sys-
tem con�guration for CORBA Security service (CS). We
de�ned RBAC0 and RBAC1 models in the language of
CS and described how RBAC0-RBAC3 could be imple-
mented in CS. We discussed what functionality needs to
be implemented, besides compliance with CS standard,
in order to support RBAC models by CS. We illustrated
the discussion with a single access policy domain example
of CS protection system con�guration, which supports a
sample role-hierarchy and access policies.
Implementations compliant with the CS speci�cation

can support RBAC0{RBAC3. However, additional func-
tionality non-speci�ed by CS is required. Implemen-
tations of PrincipalAuthenticator interface and User-
Sponsor need to be aware of roles and their hierar-
chies (RBAC1). To support constraints (RBAC2), a
PrincipalAuthenticator has to enforce corresponding con-
straints. Tools to administer user-to-role and role-to-
rights relations are also required.

The work presented in this paper sets up a framework
for implementing as well as for assessing implementations
of RBAC models using CS. It provides directions for CS
developers to realizing RBAC in their systems. It gives
criteria to users for selecting such CS implementations
that support models from the RBAC0-RBAC3 family.

Acknowledgements

We are grateful for very helpful comments from the
anonymous reviewers. We also thank the OMG securi-
ty special interest group (SecSIG) for feedback received
during the presentation, in December 1997, on support-
ing RBAC in CORBA Security. Special thanks to Bob
Blakley from DASCOM Inc. for insightful comments on
the �rst draft of Section 2.

References

[ACM95] ACM. Proceedings of the First ACM Work-
shop on Role-Based Access Control, Gaithers-
burg, Maryland, USA, November 1995.

[ACM97] ACM. Proceedings of the Second ACM Work-
shop on Role-Based Access Control, Fairfax,
Virginia, USA, November 1997.

[ACM98] ACM. Proceedings of the Third ACM Work-
shop on Role-Based Access Control, Fairfax,
Virginia, USA, October 1998.

[Awi97] Roland Awischus. Role based access control
with security administration manager (SAM).
In Proceedings of the Second ACM Workshop
on Role-Based Access Control [ACM97], pages
61{68.

[Bar95] John Barkley. Implementing role-based access
control using object technology. In Proceedings
of the First ACM Workshop on Role-Based
Access Control [ACM95], pages 93{98.

[BC98] John Barkley and Anthony Cincotta. Man-
aging role/permission relationships using ob-
ject access types. In Proceedings of the Third
ACM Workshop on Role-Based Access Control
[ACM98], pages 73{80.

[BL75] D. E. Bell and L. J. LaPadula. Secure com-
puter systems: Uni�ed exposition and multics

interpretation. Technical Report ESD-TR-75-
306, The MITRE Corporation, Bedford, MA,
USA, March 1975.

[Dep98] Department of Health and Human Services.
Security and Electronic Signature Standards;
Proposed Rule, August 1998. 45 CFR Part 142.

[ES95] Jeremy Epstein and Ravi Sandhu. NetWare
4 as an example of role-based access control.
In Proceedings of the First ACM Workshop
on Role-Based Access Control [ACM95], pages
71{82.

[Giu98] Luigi Giuri. Role-based access control in Java.
In Proceedings of the Third ACM Workshop
on Role-Based Access Control [ACM98], pages
91{99.

[Kar96] G�unter Karjoth. Analysis of authorization in
CORBA security. Technical report, IBM Re-
search Division, Zurich Research Laboratory,
December 1996.

[Lam71] Butler Lampson. Protection. In In 5th Prince-
ton Symposium on Information Science and
Systems, pages 437{443, 1971.

[Mey97] William J. Meyers. RBAC emulation on trust-
ed DG/UX. In Proceedings of the Second
ACM Workshop on Role-Based Access Control
[ACM97], pages 55{60.

[Not95] LouAnna Notargiacomo. Role-based access
control in ORACLE7 and Trusted ORACLE7.
In Proceedings of the First ACM Workshop
on Role-Based Access Control [ACM95], pages
65{69.

[Obj98] Object Managment Group. CORBAservices:
Common Object Services, July 1998. OMG
document number: formal/98-07-05.

[SCFY96] Ravi Sandhu, Edward Coyne, Hal Feinstein,
and Charles Youman. Role-based access con-
trol models. IEEE Computer, 29(2):38{47,
February 1996.

[SP98] Ravi Sandhu and Joon S. Park. Decentralized
user-role assignment for web-based intranets.
In Proceedings of the Third ACM Workshop
on Role-Based Access Control [ACM98], pages
1{12.

[SS95] Richard Mark Soley and Christopher M. S-
tone. Object Management Architecture Guide.
John Wiley & Sons, 3 edition, June 1995.

[Won97] Raymond K. Wong. RBAC support in object-
oriented role databases. In Proceedings of the
Second ACM Workshop on Role-Based Access
Control [ACM97], pages 109{120.

Appendix

De�nitions of RBAC models from [SCFY96]:

De�nition 4.1 The RBAC0 model has the following
components:

� U, R, P, and S (users, roles, permissions and sessions
respectively),

� PA � P � R, a many-to-many permission to role
assignment relation,

� UA� U�R, a many-to-many user to role assignment
relation,

� user : S ! U, a function mapping each session si
to the single user user(si) (constant for the session's
lifetime), and

� roles : S ! 2R, a function mapping each session si
to a set of roles roles(si) �f r j (user(si), r) 2UAg
(which can change with time) and session si has the
permissions

S
r2roles(si)

f p j (p, r) 2PAg

2

De�nition 4.2 The RBAC1 model has the following
components:

� U, R, P, S, PA, UA, and user are unchanged from
RBAC0,

� RH� R � R is a partial order on R called the role
hierarchy or role dominance relation, also written as
�, and

� roles : S ! 2R is modi�ed from RBAC0 to require
roles(si) �f r j (9r0 � r) [(users(si), r

0) 2UA] g
(which can change with time) and session si has the
permissions

S
r2roles(si)

f p j (9r00 � r)[(p, r00) 2PA

] g

2

